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Outline

O Review: energy signals & power signals

0 2.8 Energy spectral density and autocorrelation

» For deterministic energy signals

0 2.9 Power spectral density and autocorrelation

» For deterministic power signals

O In chapter 8, we generalize these definitions to
random processes.



Recall: Energy Signals vs Power Signals

O Power and energy of arbitrary signal x(t):
sEnergy: E=[im fT\x(r)\zdr =[" (o) at

T—

: . 1 ¢r 2
mPower: pP= 1}E}ﬁ _[_T\x(t)\ dt

x(t)| dt

. . . 1 to+T
For periodic signals:  P=—|

O Energy Signal: energy 1s finite
0<E<w (soP=0)

O Power Signal: power 1s finite
O0<P<o (soE =)



Recall: Properties of FT

O Convolution Theorem:
| a@g-0dr o G()G(/)

O Correlation Theorem:
| a0 -n)di < G()G,(/)

O Correlation measures the similarity between gl and shifted g2.

0O Difference from convolution: no time reversal.



Rayleigh’s Energy

Theorem

(Parseval’s Theorem)

fw ‘g(f)‘zdf = fooo ‘G(f)‘zdf (Property 14 on Page 38)

Proof (see Lecture 2):
[ lefdt=]" gt)g ()t =

[ e[ G (fre""dfdr

=[G N[ g didf =|

" GG =[Gl df

fw\g () dr is the energy of the signal.

— ‘G( f )‘2 can be viewed as energy density in freq domain.

Note that |G(f)|’

has real value. 5



Rayleigh’s Energy Theorem
(Parseval’s Theorem)

J: ‘g(f)‘zdf = _‘: ‘G(f)‘zdf (Property 14 on Page 38)

Alternative Proof:
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2.8 Correlation and Spectral Density
for Energy Signals

O Autocorrelation function of an energy signal:
A
R, (7)=

O This 1s a measure of the similarity between x(t)
and 1ts shifted version x(t- 7).

O Error 1n the book: dt 1n (2.124) should be dt.

O This definition 1s for deterministic signal x(t).

O In Chapter 8, we will define the autocorrelation of
a random process using statistical expectation.
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2.8 Correlation and Spectral Density
for Energy Signals

O If the time lag T = 0:

O From Rayleigh’s Energy Theorem:

We can define ‘ X(f )‘2 as the energy spectral density
or energy density spectrum of an energy signal.

A
v, (=X (f )‘2 Real value, Unit: (Joules/Hz)



Wiener-Khintchine Theorem

0 From Correlation Theorem: J: g,(7) g; (t—-7)dt < G/(f )G; (f)

—

ie, Rx(t) and |X(f)|* form a Fourier transform pair!
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Wiener-Khintchine Theorem

v (0) =] R.(r)dr R0) =[ y.(f)df



Example

O Find the autocorrelation of the sinc pulse:

x(t) = Asinc (¢)
Solution:
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Effect of Filtering X() —— h(t) —— y(t)

O If x(t) 1s filtered by h(t):
v, (f)=|H) v.(f)

Proof:



Cross-correlation of energy signals

O The cross-correlation between two energy signals:
A
R, (7)=
O We can also define:
A
R, (7)=

O Relationship: R (7) =R, (-7)
Proof:
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Cross-correlation of energy signals

O Orthogonal: x(t) and y(t) are orthogonal 1f
R, (0)= Lo x(t)y' (t)dt = 0.
O The cross spectral density 1s defined as:

Wy (f) = v, (f) =

O By correlation property of FT:
[La0ge-ndi=R,, @) & GG

—
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2.9 Power spectral density

O Autocorrelation of a deterministic power signal:

R,(r)= 1}@% [ x@ow @~ oyar

: . 1 2
O Average power of a signal: P = hmﬁux(’)‘ at
T—o

O Fourier transform of a power signal may not exist because the
energy is infinite:

O Solution: work with the truncated signal with finite energy:

The FT of this signal exists. 7



Power spectral density

O The power can be written as:

O Xrt(t) has finite energy = by Rayleigh energy theorem:

Exchanging lim and integral =»

O So we can define power spectral density of a
deterministic signal as

O Thus
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Summary

O Deterministic Energy signals:

R.(@)=[ x(Ox (t—o)d v () =X
E=] [ dr=[ |X()'df =] v.(Ndf

Wiener-Khintchine Theorem: R _(7) < w_(f)

O Deterministic Power signals:
5.0 =1im 5= P=lim5; —J xof @t =] s.(ndr

T >0

O In chapter 8, we generalize the autocorrelation, psd, and the

Wiener-Khintchine Theorem to random processes.
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