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Outline
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Definition of Random Process

� A deterministic process has only one possible 'reality' of how 
the process evolves under time.

� In a stochastic or random process there are some uncertainties 
in its future evolution described by probability distributions. 
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� Even if the initial condition (or starting point) is known, there 
are many possibilities the process might go to, but some paths 
are more probable and others less.

� http://en.wikipedia.org/wiki/Stochastic_process



Definition of Random Process

� Many time-varying signals are random in nature:

� Noises

� Image, audio: usually unknown to the distant receiver.

� Random process represents the mathematical model of these 
random signals.
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random signals.

� Definition: A random process (or stochastic process) is a 
collection of random variables (functions) indexed by time. 

� Notation: 

� s: the sample point of the random experiment.

� t: time.

� Simplified notation:

 ),( stX

)(tX



Random Processes

� The difference between random variable and random process:

� Random variable: an outcome is mapped to a number.

� Random process: an outcome is mapped to a random 
waveform  that is a function of time
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� We are interested in the ways that these time functions evolve

� correlation

� spectra

� linear systems



Cont…

� For a fixed sample point sj, X(t, sj) is a realization or 
sample function of the random process.

� Simplified Notation: 

).(  as denoted is  ),( txstX
jj
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� For a fixed time tk, the set of numbers 

{X(tk, s1), …, X(tk, sn)} = {x1(tk), …, xn(tk)}

is a random variable, denoted by X(tk).

� For a fixed sj and tk, X(tk, sj) is a number.
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Pictorial View
Each sample point represents a time-varying function.

Ensemble: The set of all time-varying functions.

7



Examples of Random Processes

� Y: a random variable.

� f:  a deterministic function of parameter t.

1.

2.

short.for   )(),(or    )()(),( tYfstXtfsYstX ==

.)2cos()(or    )2cos()(),( QtfAtXQtfsAstX +=+= ππ
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2.

� A: a random variable.

� : a random variable.

3. 

� X(n), T(n):  random sequences.

� p
n
(t): deterministic waveforms.

.)2cos()(or    )2cos()(),(
00

QtfAtXQtfsAstX +=+= ππ
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Probability Distribution of a Random Process

� For any random process, its probability distribution function is 

uniquely determined by its finite dimensional distributions. 

� The k dimensional cumulative distribution function of a process is 

defined by 
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for any            and any real numbers x
1
, …, x

k
.

� The cumulative distribution function tells us everything we need to 

know about the process {X
t
}. 
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Stationarity

� In general, the time-dependent N-fold joint pdf’s are needed to 

describe a random process for all possible N:

� Very difficult to obtain all pdf’s.

� The analysis can be simplified if the statistics are time 

independent.
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independent.

� The random process is called first-order stationary if

 t. timefixed aat  X(t) process random  theof CDF   the:)()( xF
tX



Stationarity

� The mean and variance of the first-order stationary 

random process are independent of time:

⇒  timeoft independen is  )( pdf the )( xf
tX

,)()(
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� Proof: 
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Stationarity

�The random process is called second-order 

stationary if the 2nd order CDF is independent of 

time:
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Strict Stationarity

� A strictly stationary process (or strongly stationary process, or 

stationary process) is a stochastic process whose joint pdf does 

not change when shifted in time. 

� Definition: a random process X(t) is said to be stationary if, for 

all k, for all τ, and for all t1, t2, …, tk,
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all k, for all τ, and for all t1, t2, …, tk,



Strict Stationarity

� An example of strictly stationary process is one in which all 

X(ti)’s are mutually Independent and Identically Distributed.

� Such a random process is called IID random process.

� In this case,
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� Since the joint pdf above does not depend on the times {ti}, 

the process is strictly stationary.

� An example of IID process is white noise (studied later)

� Widely used in communications theory
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Correlation of Random Processes

.  tand at t X(t) of samples  :)( and )(Consider 
2121

tXtX

[ ][ ]{ } { }
YXYX

XYEYXEYXCov µµµµ −=−−=  ),(

�Recall: Covariance of two random variables:
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So we can also define their covariance:



Correlation of Random Processes
� Recall: autocorrelation of deterministic energy signals:

∫
∞

∞−

∆

−=   )()( )( *
dttxtxR

x
ττ

� Similarly, the autocorrelation of deterministic power signal is:
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� The limit is necessary since the energy of the power signal can 

be infinite.
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Correlation of Random Processes

� The autocorrelation function of a random process:

� For random processes: need to consider probability distributions.
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� If X(t) is stationary to the 2nd order or higher order, RX(t1,t2) only depends on 

the time difference t1 - t2, so it can be written as a single variable function:

� Note: steps to  get :

� 1: For each sample function X(t, sj), calculate X(t1, sj) X*(t2, sj).

� 2: Take weighted average over all possible sample functions sj.

� (See Example 1 later)

{ })()(
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Wide-Sense Stationarity (WSS)

� In many cases we do not require a random process to 

have all of the properties of the 2nd order stationarity.

� A random process is said to be wide-sense stationary
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� A random process is said to be wide-sense stationary

or weakly stationary if and only if



Property of Autocorrelation

� For real-valued wide-sense stationary X(t), we have:

� 1. 

{ } ).()()(),( *
stRsXtXEstR

XX
−==

{ }.)()0( 2
tXER

X
=

� 2. R
X
(τ) is even symmetry: R

X
(-τ) = R

X
(τ).

� Proof:
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� Proof:

� 3. R
X
(τ) is max at the origin τ = 0.

� Proof:



Property of Autocorrelation

� Example of the autocorrelation function:

{ } ).()()(),( *
stRsXtXEstR

XX
−==
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� Symmetric, peak at 0.

� Change slow if X(t) changes slow.



Example 1

A: constant. Θ: uniform random variable in [0, 2π].

� Find the autocorrelation of X. 

� Is X wide-sense stationary?

Solution:

)2cos()( Θ+= ftAtX π
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Solution:



Example 1 ∫
∞
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Example 2

A: uniform random variable in [0, 1].

� Find the autocorrelation of X.  Is X WSS?

)2cos()( ftAtX π=

Solution:Solution:
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Example 2

Note the value of A at time t1 and t2 are same in this example, 

because it’s determined by the random experiment.

)2cos()( ftAtX π=
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Example 3

� A random process X(t) consists of three possible sample functions: 

x1(t)=1, x2(t)=3, and x3(t)=sin(t). Each occurs with equal probability.

Find its mean and auto-correlation. Is it wide-sense stationary?

� Solution:
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