ENSC327 Communication Systems 26: Raised Cosine Pulse and Eye Diagram

Jie Liang School of Engineering Science Simon Fraser University

Outline

□ 6.4 Raised cosine pulse spectrum

G 6.6 Eye Diagram

Nyquist Pulse Shaping Condition

$$\sum_{k=-\infty}^{\infty} P(f + \frac{k}{T_b}) = T_b \sqrt{E}$$

Nyquist channel and Nyquist bandwidth:

□ If the bit duration is fixed at T_b, or bit rate R_b is 1/T_b, then the transmission bandwidth is

$$B_T \ge B_0 = \frac{1}{2T_b} = \frac{1}{2}R_b$$

so the minimal bandwidth is half of the bit rate.

On the other hand, if the transmission bandwidth is fixed at BT, then

$$R_b \leq 2B_T$$

the maximal transmitted bits per second (bit rate) is twice of the bandwidth.

f

 $T_{h}\sqrt{E}$

 $B_0=1/(2T_b)$

t=T_b=1/(2B₀)

-B0

p(t)

Examples of zero ISI spectrum

If BW of P(f) is greater than 1/(2Tb), there are infinite possible solutions to satisfy

$$\sum_{k=-\infty}^{\infty} P(f + \frac{k}{T_b}) = T_b \sqrt{E}.$$

In particular, if the BW of P(f) is less than 1/Tb,
then the summation only involves two terms at each frequency, which can be easily satisfied:

Raised Cosine Spectrum

□ For example, the previous case can be achieved by using raised cosine function.

Many other functions also satisfy the requirement, for example, P(f) can be a triangle. But the cosine function has some nice properties.

Raised Cosine Spectrum

□ The previous example can be generalized. □ Raised Cosine Spectrum: Let $2B_0 = 1/T_b$, or $T_b \sqrt{E} = \frac{\sqrt{E}}{2B_0}$

 f_1 : cut - off frequency.

Matlab functions:

rcosfir():FIR

rcosine():FIR/IIR

Example: Raised Cosine Spectrum

□ Constant for f < f1, raised cosine for f in [f1, 2B₀ - f1]. $\frac{\pi(|f| - f_1)}{2(B_0 - f_1)}: \text{ scales [f1, 2B_0 - f1] to [0, \pi].}$ $1 + \cos\left(\frac{\pi(|f| - f_1)}{2(B_0 - f_1)}\right): \text{ Mapped to } 1 + \cos(x), x \text{ in [0, \pi].}$

Example: Raised Cosine Spectrum

Roll-off factor, or excess-bandwidth factor (over Nyquist bw B₀):

Cut-off frequency:

Bandwidth:

- f1 and α can be adjusted to control the trade-off between the bandwidth and length of the impulse response.
- $\alpha > 0$: more bandwidth than Nyquist, but filter is shorter.

Example: Raised Cosine Spectrum $f_1 = (1-\alpha)B_0$

A nice thing about raised cosine window is that its impulse response has closed-form expression:

This is a scaled sinc function: a = 0: $\rightarrow p(t) = \sqrt{E} \operatorname{sinc}(2B_0 t)$.

- \square If rolloff factor α increases
 - f1 decreases
 - Bandwidth increases
 - But p(t) is shorter → More robust to timing error.

Root Raised Cosine Pulse

If the raised cosine pulse is used, we have
p(t) = g(t) * h(t) * q(t) = Raised cosine function
One way to achieve this is:

□ Given the channel H(f), use the first equation to find transmitter filter G(f).

□ Received filter is the root raised cosine.

Example: Bandwidth of T1 system

- □ T1 system: multiplexing 24 telephone inputs.
- **D** Bit duration: $T_b = 0.647 \,\mu s$
- $\square \rightarrow \text{Bit rate:} \qquad R_b = 1/T_b = 1.544 \text{ Mb/s}$
- □ The Nyquist bandwidth is (minimal required BW):

 \Box A more realistic choice is to use $\alpha = 1$:

■Note: the unit of bandwidth is Hz, and the unit of bit rate is bits/sec (b/s).

Outline

□ 6.4 Raised cosine pulse spectrum

G 6.6 Eye Diagram

6.6 Eye Diagram

□ An effective way to observe ISI

- Extract one or more symbol periods
- Superimpose all possible results
- Can be easily obtained by oscilloscope

http://www.highfrequencyelectronics.com/Archives/Nov05/HFE1105_Tutorial.pdf

cont ...

□ Easy to show on a scope

Figure 1 · At top is an undistorted eye diagram of a band-limited digital signal. The bottom eye pattern includes amplitude (noise) and phase (timing) errors. The various transition points can provide insight into the nature of the impairments.

Example: sinc pulse

 \Box If the composite filter p(t) is a sinc pulse:

- □ If only interferences from the immediate neighboring pulses are considered: ==> 8 possibilities
 - $\{1, 1, 1\}, \{1, 1, -1\}, \{-1, 1, 1\}, \{-1, 1, -1\}$ $\{-1, -1, -1\}, \{-1, -1, 1\}, \{1, -1, -1\}, \{1, -1, 1\}$

Tb

p(t)

Example: sinc pulse

Example: sinc pulse

Details within [-Tb/2, Tb/2]

If there is no noise and no timing error, the data 1 or -1 can be perfected detected at time 0.

Eye Diagram Summary

□ Practical eye diagrams have some errors:

FIGURE 6.6 Interpretation of the eye pattern for a baseband binary data transmission system.