ENSC327 Communication Systems26: Raised Cosine Pulse and Eye Diagram

Jie LiangSchool of Engineering ScienceSimon Fraser University

Outline

□ 6.4 Raised cosine pulse spectrum

6.6 Eye Diagram

Nyquist Pulse Shaping Condition

$$
\sum_{k=-\infty}^{\infty} P(f + \frac{k}{T_b}) = T_b \sqrt{E}.
$$

 \Box Nyquist channel and Nyquist bandwidth:

> If the bit duration is fixed at T_b , or bit rate Rb is 1/Tb, then the transmission bandwidth is

$$
B_T \ge B_0 = \frac{1}{2T_b} = \frac{1}{2} R_b
$$

so the minimal bandwidth is half of the bit rate.

П On the other hand, if the transmission bandwidth is fixed at BT, then

$$
R_b \leq 2B_T
$$

 \Box the maximal transmitted bits per second (bit rate) is twice of the bandwidth.

t

f

 $T_b \sqrt{E}$

 $B_0=1/(2T_b)$

) $t=Tb=1/(2B_0)$

-B0

 $p(t)$

Examples of zero ISI spectrum

If BW of P(f) is greater than $1/(2Tb)$, there are infinite possible solutions to satisfy

$$
\sum_{k=-\infty}^{\infty} P(f + \frac{k}{T_b}) = T_b \sqrt{E}.
$$

In particular, if the BW of $P(f)$ is less than $1/Tb$, then the summation only involves two terms at each frequency, which can be easily satisfied:

Raised Cosine Spectrum

 \Box For example, the previous case can be achieved by using raised cosine function.

Many other functions also satisfy the requirement, for example,

P(f) can be a triangle. But the cosine function has some nice properties.

Raised Cosine Spectrum

□ The previous example can be generalized. **□ Raised Cosine Spectrum:** Let $2B_0 = 1/T_b$, or $T_b \sqrt{E} = \frac{\sqrt{E}}{2B_0}$ $T_b\sqrt{E}=\frac{V}{2}$ E

> : cut f_1 : cut-off frequency. f_1 : cut-off frequency.
 $\begin{array}{c} \textbf{Math functions:} \\ \textbf{r}\textbf{cosfir} \textbf{if} \textbf{$

rcosine(): FIR/IIR

E

=

Example: Raised Cosine Spectrum

7($\frac{1}{2(B_0 - f_1)}$:)- $\binom{0-f_1}{0}$ $\frac{|J|}{B_0 - f_1}$ π \int $\frac{f_1}{f_1}$: scales [f₁, 2B₀ – f₁] to [0, π]. \Box Constant for $f < f1$, raised cosine for f in [f₁, 2B₀ – f₁]. ($\frac{1}{2(B_0 - f_1)}$:)-) $1 + \cos$ 0 J_1 $\overline{1}$ \int $\bigg)$ \setminus $\bigg($ −− $+$ cos $2(B_0 - f_1)$ π f |- f_1 $\frac{N_{1}}{N_{2}}$: Mapped to $1 + \cos(x)$, x in [0, π].

Example: Raised Cosine Spectrum

Roll-off factor, or excess-bandwidth factor (over Nyquist bw B0):

Cut-off frequency:

Bandwidth:

- \Box f1 and α can be adjusted to control the trade-off between the bandwidth and length of the impulse response.
- $\alpha > 0$: more bandwidth than Nyquist, but filter is shorter.

Example: Raised Cosine Spectrum $f_1 = (1 - \alpha)B_0$ $-\alpha$) B

 A nice thing about raised cosine window is that its impulse responsehas closed-form expression:

This is a scaled sinc function: $a = 0: \rightarrow p(t) = \sqrt{E}$ sinc $(2B_0 t)$.

- If rolloff factor α increases
	- \blacksquare f₁ decreases
	- T Bandwidth increases
	- T But $p(t)$ is shorter \rightarrow More robust to timing error. robust to timing error.

Root Raised Cosine Pulse

 \Box If the raised cosine pulse is used, we have $p(t)$ $= g(t) * h(t) * q(t)$ =Raised cosine function \Box One way to achieve this is:

- Given the channel $H(f)$, use the first equation to find transmitter filter G(f).
- Received filter is the root raised cosine.

Example: Bandwidth of T1 system

- **□** T1 system: multiplexing 24 telephone inputs.
- **Bit duration:** $T_b = 0.647 \,\mu s$ $=0.647\,\mu$
- $\Box \rightarrow$ Bit rate: = $=1/$ = $R_{b} = 1/T_{b} = 1.544 \text{ Mb/s}$
- The Nyquist bandwidth is (minimal required BW):

 $\Box A$ more realistic choice is to use $\alpha = 1$:

 \Box Note: the unit of bandwidth is Hz, and the unit of bit rate is bits/sec (b/s).

Outline

□ 6.4 Raised cosine pulse spectrum

6.6 Eye Diagram

6.6 Eye Diagram

An effective way to observe ISI

- $\mathcal{C}_{\mathcal{A}}$ Extract one or more symbol periods
- $\mathcal{L}_{\mathcal{A}}$ Superimpose all possible results
- $\mathcal{L}_{\mathcal{A}}$ Can be easily obtained by oscilloscope

http://www.highfrequencyelectronics.com/Archives/Nov05/HFE1105_Tutorial.pdf

cont …

Easy to show on a scope

Figure $1 \cdot$ At top is an undistorted eye diagram of a band-limited digital signal. The bottom eye pattern includes amplitude (noise) and phase (timing) errors. The various transition points can provide insight into the nature of the impairments.

Example: sinc pulse

 \Box If the composite filter $p(t)$ is a sinc pulse:

 \Box If only interferences from the immediate neighboring pulses are considered: ==> 8 possibilities

t

Th

 $p(t)$

Example: sinc pulse

17

Example: sinc pulse

Details within [-Tb/2, Tb/2]

If there is no noise and no timing error, the data 1 or -1 can be perfected detected at time 0.

Eye Diagram Summary

□ Practical eye diagrams have some errors:

FIGURE 6.6 Interpretation of the eye pattern for a baseband binary data transmission system.