4. The Discrete Fourier Transform and Fast Fourier Transform

Reference: Sections 8.0-8.7 of Text

Note that the text took a different point of view towards the derivation and
the interpretation of the discrete Fourier Transform (DFT). Our derivation
iIsmore “direct”.

In many situations, we need to determine numerically the frequency

response of an analog system or the spectrum of an analog signal. Let  X(t)
be the signal under consideration. Then the procedure usually adopted is

1. Select a suitable sampling fequency f,=1/T according to the Nyquist
sampling criterion.

2. Sample x(t) attime t =nT to obtain the discretetime (DT) signal Xn].

3. If the discrete time signal is infinitely long, truncate it to a suitable
length, say N samples. Call theresultant signal X{n] .

4. Compute the Fourier transform (assuming a casual signal)

N
o]

X (ejw) = __1>A<[n]e‘ puin (1)

5

at the desired frequencies. Note that if there is no need to truncate the
signal, then
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where X,(jW) is the Fourier transform of the analog signal x(t). In
general,

If the signal whose spectrum we want to deterime is a discrete time signal,
then Steps 1 & 2 in the above procedure is no longer needed.

This chapter is concerned with the efficient computation of Egn (1) at
discrete frequencies

w=20k/N,; k=01,..,N-1

For convience, we will drop the sign ~ associated with X (ejw) and simply
use X (€") instead.

4.1 The Discrete Fourier Transfomr (DFET)

The DFT of afinite duration (and casual) signal is defined as

. N-l .
XIK] = X (€")]cgpin =& e EM)
n=0
No-l
=a Xnw,."; k=01,..N-1
n=0
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where
W :e- j2p/N
N

In addition to being a sample of the FT at w =2pk/ N, the DFT coefficient
X[k] aso represents a sample of the ZT on the unit circle.

Theinverse discrete Fourier transform (IDFT) is

1%*

X[n] = N a X[kw, " ; n=0,1,.,N-1
k=0
Pr oof:
1% o 1%t -
—a Xkw,"==—a 8a X MIW™ W ¢
N o N =0 &m=0 a
11 -1 o
= L& qm %R wrn
N m=0 8k:0 4]
But
ngk(m ) _ 1- W[\(lm-n)N _ 1- e j(2p IN)M-n )N
ol N 1- Wl\(lm— n) 1- @ 1@p/N)m-n)
_iN m=n
_}O m?t n
S0
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Wé XKW, = Xn]

k=0

The DFT and the IDFT pair can also be represented in matrix form as

é X[0] u & 1 1 1 ué {0 u
é u é 1 2 Nn-1 Ué U
e X G & WoowW Wt aE Xl g
é X[2] i=& W; W WD 0é x2]
é u & : : : ué .
e ae o e
SX[N :I-]H g- W’\(IN-l) W’\(IN-l)Z W(N 1)(N-1) HSX[N _ 1]H
or
X =WXx
where
€l 1 1 1
e 0] u e X[0] u & 1 2 N1
WG k=t g W W we
e J C : , e . . .
€ U € U é : : :
eX[N'l]u eX[N'l]u gl WN(N 1) WI\EN-l)Z W(N 1(N-1) |
Note that
W-l:iWT
N

where (-)" denotes the Hermitian (or conjugate) transpose of a matrix.
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We can deduce from the matrix representation of the DFT that its
computational complexity isin the order of o(N?).

The Fast Fourier Transform (FFT) is an efficient algorithm for the
computation of the DFT. It only has a complexity of O(NlogN).

From the DFT coefficients, we can compute the FT at any frequency.
Specifically

. N1 .
X(e‘W) =a Nnje ™"
n=0
No1g1 Nl .
=8 a—a XKW, " g’
n:oeN k=0 u
175* j(w-2 k/N)nu
==8 X[K] ;
N o ea i
1 l\cl>1 1 e j(w-2pk/N)N
=& XM
_l-evwt XK
- N a 1 ) JWeJZpk/N

Since the FT isthe ZT evaluated on the unit circle, this means we can also

obtain the ZT from the DFT coefficients by replacing the term €™ in the
above equation by Z. In other word
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4.1.1 Convolution of Sequences

Let X[N] and x,[n] betwo DT signals of duration N samples. We want to
obtain their convolution:

yinl = x[nl A x[n]

Direct convolution leads to a complexity in the order of o(N?). With the
availability of the FFT, it is possible to perform the same task with a
complexity of only O(NlogN).

Theideaisto first multiply the DFT coefficients of the two signals together
and then take an IDFT of the product.

Thisideal, although simple, has to be exercised carefully.

Let X,(e"), X,(e™), and Y(e") bethe FTs of %[n], x,[n],and yIn]
respectively. Then

Y(e)=x(e") %, ()
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From the definition of the DFT, we know

- N-1 .
X,[k]= 8 x[NWe" = X, (€], »
n=0

So we can deduce that

YIKI =Y (€") |-
= X JK] X [K]

While Y[K], k=0,1,..,N- 1, are samples of Y(€"), we will not be able to
compute y[n] from them through an IDFT operation. To seethis, let

(=Y

YIK W,

Qo

yin] =

o

'_\
O

e y[m]e' j2pkm/N ?eijkn/N
&y o

Qoz 7

zlk zZ|k Z|k z|-
n
o

¥ 1 "
— é y[m]% ej2pk(n—m)/N8
m=- ¥ k=0 1%}

1_ ej2pk(n- m)

Qox

Ty y[m] 1- ej2pk(n- m)/ N

3
Tl

Since
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1- ei2pk(n-m

N m=n+rN
1- ei2pk(n-m)/N %O

the above becomes
" 3
yin]=a y[n+rN]
r=-¥

In other word, Y[n] isan aliased version of y[n].

Example: Let

(ni (] il O£nE3
nl=x[n] =i
. % %O otherwise*

Then y[n] isatriangular signal

» N

P —eN
N F—eoWw
wh——eon
Prl—weow
o |—e

and yY[n]=4,n=0,1,2,3.

otherwise -
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The cause for aliasing in y[n] is the lack of sufficient DFT coefficients in
its construction. Notethat y[n] isof duration 2N - 1 samples so we need as
many DFT coefficients to capture all the information about the signal.

To eliminate aliasing, we first treat x[Nn] and X,[N] as signals with a
duration of

M =2N

samples, where X[n]=Xx[n]=0 when NEn£2N-1. Note that in
general, M can be any number aslong as it is not smaller than the duration

of y[n].
We then take the M-point DFTs of x[n] and X,[n] to obtain

X,[KI= 8 X[ = X, (e™)

n=0

|W=pk/N !

M-1 .
X,[K]= Q %[nWy = X, (elw)|w:pk/N ’

n=0

After this, we form the product

YIK] = X, [KIX,[K] =Y (€" )] oo k=01,.,M -1

Finally, we calculate the IDFT
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¥
yin+rM] :é y{n+2rN]

-¥ r=-¥

1 Mo-l
—a YIKIW, " =
N k=0 r

Qo

Since the duration of y{n] is 2N-1, which is less than M, the term
yln+ 2rN] in the above equation equalsto O for any r * 0. Consequently

1'%t y
a YIKIW,™ = y[n]
k=0

Z|

and thereis no more aliasing.

4.1.2. Cicular Convolution and Aliasing

We show in Section 4.1.1 that if we take the IDFT of the product
coefficients Y[K] = X,[K]X,[K], k=0,1,...,N - 1, we obtain

S\/[n] — _é_ y[n+I’N]’ (2)

which is an aliased version of y[n].

We will arrive at the same result through circular convolution of periodic
signals constructed from x,[n] and X,[N].
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Let

Xl[n] =% gn)N H
and

)~(2[n] =% gn)N EI’

where (n),, isthe modulo-N value of the integer n.

Because of the property of the modulo-N operation, the signals %[Nn] and
X,[N] are periodic with aperiod of N. Specifically,

X[m+rN] =x[m], m=0,1,..,N-1
and

X,[M+rN] = x,[m], m=0,1,.,N-1

for any integer I .

Conversely, the signals X[n] and X,[n] can be obtained from ¥%[N] and
X,[Nn] according to

x[n] =% [n]Ry[n]

and
x[n] =% [n]Ry[n],
where
RN[n]—\!l OEnNnEN-1
_%O otherwise
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Is arectangular windowing function.

. Thecircular or periodic convolution of %[N] and %,[N] isdefined as
. Nt
x[n=a X[mX,[n- m]

m=0

Clearly, %[n] isaperiodic signa with aperiod of N.

lu 13 l dﬂll‘ :
({1 11 J

h_{,rl {_U_Ig:frll { IHI
L Hf L 1] \H
|\ 1[”

1] |l¢1]|H
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We want to show that the signal Y[n] in Eqn (2) is simply one period of
%[n]i.e.

yin] = %[nRy[n]

Pr oof:

- Since the signa %[n] is periodic, we resctrict our attention to time
indices N between O and N-1.

- Since OEMEN-1, the teem X[M| in the circular convolution is
simply %[m].

- Theindex N- m of theterm %[N- M| can be assmall as 1- N or as
largeas N- 1. When n- m3 O,

X[n- ml=x[n- m|; n-m30
On the other hand when N- M is negative, then
X[n- m]=x[N+n- m; n- m<0

- Thecircular convolution can now be rewritten as;

%[nl =& K[mix,[n-

=8 x[mMg[n- M+ & X[mg[n- i
m=0 m=n+1
& x[mbx[n- ml+ & xlmx[N+n-m

m=0 m=n+1

]
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Jd ael bt~ Oael "5
- X [k]\N km X [I’]\N r(n m) :
QogN kao ' " ESN a i " Q
"5t ael No1 w 02l 'S N+n-m) O
+ — [KWV, m X [r W, r(N+n-m)
m:an+18N a:O . " % a ? " ﬂ
1 I\(l)_ll\(l)l - nr (r- k)mo
=Wa a X,IKIX,[rIw, 8a Wy
k=0 r=0 m=0 ﬂ
N-1N-1 N-1 *
28 & KK T8 w2
k=0 r=0 m=n+1 1]
1 I%-l%l nr r- mo
=raa X,[KIX,[rIWg 8a W
k=0 r=0 m=0 ﬂ
But
g.lw(r-k)m :\: N = k
o 10 otherwise
S0
S 1'% nk
Rl =& X[KIR KM,
k=0
= IDFT { IK]IX [k]}
=y[n]
for OENEN-1

- We will discuss more about circular convolution in the section on
OFDM modulation.
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4.1.2 The DFT of an infinite-duration signal

The DFT is defined only for afinite duration signal. As mentioned earlier,
when the signal is of infinite duration, we must first truncate the signal to a
suitable length before taking DFT. Truncation is equivalent to multiplying
the infinitely long signal by the rectangular window function

OEnEN-1

il
n] =i
wnl }O otherwise

Let x[n] and y[n]=Xx[n]W{n] be the signals before and after truncation. As
shown in Chapter 2, the FT of Y[N] is

p

Y(ejw) :% OX (ejq)\N(ej(W'Q))dq |
-p

where X(ejw) and W(ejw) are respectively the FTs of the signal x[n] and
the windowing function win].

The DFT coefficients of the signal Y[n] are

[EnY

YIK =& yinW,"
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since Y(e™)* X(e"), so the Y[Kls are not exactly the samples of
X (e") at w=2pk/N.

The spectral distortion can be reduced by using a longer truncation length
and/or a different windowing function.

Some commonly used windowing functions are
1. Hamming,
2. Hanning,
3. Kaiser, and
4. Blackman

We will talk more about them in the Chapter on FIR filter design.

Example: Let the original signal be
x[n] =a"u[n] .

where the parameter a is real, positive, and less than 1. The FT of this
signal is

a1
x(e")=r—=

Now, if we truncate thissignal to N samples, we obtain the signal

i x(n] O£ENEN-1
y[n]=i

X
70 otherwise
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The DFT coefficients of thissignal is

N-1 N-1 N-1
YIKI =@ ynWy =8 aWy" =g (ae )
n=0 n=0 n=0
1- (ae- j2pk/N)N
= 1- ge 12K\
_1-a
- 1- qg iZPK/N

= (1- aN ) X (ejW)|W=2pk,N

4.1.4The DFT of a2-sided signal

In the definition of the DFT, the signal isimplicitly assumed casual. In this
case,

N-1 .
X[K] = & XINM" = X (™) | ezpian k=01,.,N-1
n=0

What happens when the signal is not casual, like the discrete-time version
of the SQRC pulse used in our project?

Let X[N] be a non-casua signal time-limited to the range & 5.5 - 1,
where the duration N is assumed to be an even number.

One possible definition of the DFT of thissignal is
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X
2,

1

Qo?
X
('%\

1
|z
Zx

5

n=0
No-l
— 40 - N g §20kn/N
=a X@g- %
n=0
l\é—l
— 4~ N g 1 20K(n-N/2)/IN - jpk
_axg] 2@ e
n=0
N(/)Z-l
— - j2pkm/N 4- jpk
= a X[m]erm g P
m=- N/2
— A~ Jpk jw
=€ X(e )‘WZZpK/N

However, thisis not exactly X (€")u=zpin -

In order that the k-th DFT coefficient equals X (€") at w =2pk/N when
the signal is 2-sided, we should take instead the DFT of the signal

i XN OEnEgd-1
yinl =i N ‘
ix{n- N] TENEN-1
Pr oof:
. N/2-1 .
X(e‘W): a Xnje™
n=-N/2
N/2-1 _ l .
=a qnle ™+ § xnje ™
n=0 n=-N/2
N/2-1 _ N1 _
=a Anle ™+ g Hn- Nje M
n=0 n=N/2
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Evaluating the aboveat W = 20K/ N vyields

N/2-1 N-
jw - 0 - j2pkn/N o - j2pk(n- N)/N
X (€")wezpin = @ Anle +a An- NJe
n=0 n=N
N/21

=a W+ a {n- NIW"

n=0 n=N/2

"1 ‘
=a yinW'

n=0

=Y[K]

In summary, for a 2-sided signal, we should first attach the negative-time
portion of the signal to the positive-time portion before taking DFT. For
example, if the original signal is

-l

then after manupulation, we have

= ]
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4.2 The Decimation-in-Time FFET Algorithm

Reference: Sections 9.1-9.3 of Text

As discussed in the last section, the direct method of computing the DFT
coefficients has a complexity of N2 complex multiplications and N(N- 1)
complex additions.

Each complex multiplication itself requires 4 real multiplications and 2 rea
additions.

Each complex addition involves two real additions.

So the total number of real multiplicationsis 4N? and the total number of
real additionis 4N?- 2N .

By decomposing the original N-point DFT into successively smaller DFTs
(a divide-and-conquer approach), the amount of computations can be
dramatically reduced. In this process, the properties of the complex
exponential function

— A~ 12p/N
W, =e

are exploited. Specifically, we notice that

1w =w; = =(w") (complex conjugate symmetry)
2. W =W =weteN - (periodicity in n and k).

The resultant algorithms are collectively known as Fast Fourier Transform
(FFT).
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We will focus in this section on the derivation of the decimation-in-time
FFT algorithm. For convenience, we assume

N =2"

where V is an integer. The idea, however, can be generalized to any other
composite (i.e. non-prime) valueof N .

The DFT coefficients are given by

N-1
X[kl = @ K[nwW,; k=01,.,N-1

n=0
Since N =2 js an even number, we can express the above as the sum of

two terms, one involving the even-numbered X[Nn] s, and the other involving
the odd-numbered X[n]s:

X[k]= & AW +Q {nw,

n even n odd
— N/°2-1 2kr N/°2- ! (2r+)k
= a XN2rWwWg" + a x2r+2QwW
r=0 r=0
N(/)Z-l N(/)Z-l
= a X2rWH+WS q X 2r + QW
r=0 r=0

Theterm Wz can be written as

WNZkr — @ (2N _ o [20kr/(N/2) :WNkrIZ
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Consequently X[k] can be rewritten as

N/2 1

a 2rW2 +WE & H2r +gwW

r=0
N/2-1

= a X2rW, +Wi g x2r +1IwW,

N/2 1
X[k] =
r=0
N62 1
r=0
=G[k] +H[K]
where
N/02-1 .
Glk]= a XM2rW.,;
r=0
and
N/2 1
HIK] = a X 2r +1W,,;
Since
/
WI\EI’/T;'N 2)r
this means
Gm+N/2]=G[m];
and
H[m+N/2]=H[m];

r=0

k=01,.,N-1

k=01,.,N-1

mr
WN/Z;

m=0,1,..N/2-1

m=0,1,..N/2-1,

Moreover, the G[0],G[1],..,G[N/2-1] are the DFT coefficients of the

subsequence x[2n].

Similarly, HI[O],H[1],..,H[N/2-1
coefficients of the subsequence x[2n+1] .

ae the DFT
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So in summary, we have at this point express the original DFT as a sum of
two DFTs of half the size. Example for the case of N=8 is shown below

G[0]

x[0] o—>—

x[2] o——

x[4] o——

x[6] o—=—

N int
3 ~pa

DFT

x[1] o——

x[3] o——

x[5] o——

x[7] o——

[

]

— point
DFT

H(2] Wx
— =0 X (7]
H[3]

In the above diagram, the 8 DFT coefficients X[0] to X[7] are computed
from G[0],G[1], d2],d3] and H[0], H[1], H[2], H[3] via N/2=4 butterfly
structures. Each butterfly is of the form

Glk] o

H[K] o

X[K]

X[k+N/2]
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The butterfly used in the computation of the DFT is an example of a signal
flow graph (essentially a computational structure).

In general, a signal flow graph would consist of a set of nodes or states (as
represented by the circles in the butterfly structure) interconnected by a set
of directed branches. The weights (as represented by the parameters 1, 1,
wy, and w2 in the butterfly) associated with the branches are called

transmittances. The transmittance from node j to node k might be denoted
by ty ingeneral.

Associated with each node in the signal flow graph is a variable or node

value. The value associated with node k might be denoted by s, and is
equal to

The butterfly shown in the previous page requires 2 complex
multiplications and 2 complex additions. But since

k+N/2 __ k
WN __WN ,

the number of multiplications can be reduced to 1 if the following structure
Is adopted instead

GlK] X[k
1
1

HIK] o— 0 o X[k +N/2]
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S0 in total, the complexity of the 4 butterflies in the above example is 4
complex multiplications (CM) and 8 complex additions (CA). In general,
thereare N/2 CMsand N CAs.

Since N =2", N/2 is also an even number. This means each of the two
N/2-point DFT in the above example can be expressed in terms of two
N/4-DFTs. For example, we show below the computation of

G[0],G[1], 2], G3] from X0], 2], 4], 6] .

x[0jo—— ., . a\ - i"[”]
'——pmnt

e[4] DFT

¢ [4] o—— c[u
:><X
x[2]o—— -
%-poimﬂ
r[6]o—— DFT —% G[3]
Ni2

The overall computational structure now takes on the form shown in the
diagram in the next page. Thetwo N/2-point DFTs are now replaced by 4
butterflies.

Since the number of butterflies in the second stage (from the right) is the
same as that in the first stage, the computational complexities of both
stages are identical and equal to 4 CMs and 8 CAs.

In general, (when N =2")) there are always N/2 butterflies at each stage.
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,r[ﬂ] St

-a"!r-poim

1[4] O——

J;[Il B

x[ﬁ] Cr——

x[1] o——

Each of the four N/4-point DFTs in the above example can be computed
using the following butterfly

Notice that there is actually no need to perform any multiplication. For
simplicity though, we assume the complexity of this butterfly is the same as
the one that we presented earlier, i.e. 1 CM and 2 CAs.
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It is evident that when N =2", there will be altogether V stages in the
overall computational structure, with N/2 butterflies at each stage.
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The total number of complex multiplications is thus
. N. 1
n, =V > 1:§NI092(N)

The total number of additionsis
n,=2n, =Nlog,(N).

In conclusion, the complexity of this decimation-in-time algorithm isin the
order of Nlog N, which is much smaller than N? for large N.

It is observed from the N =8 example that the input data needed to be
shuffled before being any computation can be take place. This can be done
through the bit-reversal algorithm.

Let
A =(a[0],a[1],...,a[n],...,a[N - 1])

be the array containing the shuffled data. In the N =8 example, this vector
is A =(X0],x[4],x[2],x[6],x[1],X[5],X[3], X 7]) . Furthermore, |et

B=(h,..,0, 5. 00); b1 {01}

be the natural binary representation of the integer N, i.e.

v-1 .
n=4 b2
j=0
Then

a[n] =x{m|
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where

v-1
m=g b 2"

j=0

Is the decimal equivalent of the binary vector

B, = (Bybynhy).

Exercise: Show that if a[n]=xm], then am]=x[n], i.e. the samples are
pair-wise interchanged.

I n-place computations

The FFT agorithm computes the DFT coefficients in stages.
The input data at the (m-1)-th stage (m=0tov from left to right) are
transformed into another set of data that will be used in the computationsin
the m-th stage.

Clearly, we can store the data to be computed in one array and those used
in the computation in another array. Thisrequires atotal of 2N storage.

However, the FFT algorithm we just described can be used to implement
in-place computations. This will essentially reduce the storage to about
50%.

Let us first index the data at the m-th stage in the signal flow graph as

X.[41,where ¢=0,1,.,N-1 (from top to bottom), then it can be easily
shown that the pair

(X[ Pl X, [)
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can be computed exclusively from the pair

(Xom il Pl X, oLl

using the butterfly

1
Xm- 1[ p] Xm[ p]

1
1
xm-l[q] @) ; »O O Xm[q]
Wy

This means as far as data storage is concerned, we need only one array of
N samples (and a temporary buffer of 2 samples). At the beginning of the
m-th stage, this array stores all the X, 7, ¢=01,.,N-1. As soon as
X, [p] andX [q] are computed, the corresponding entries in the array are
then updated.

There are other versions of FFT that do not require re-ordering of the input;
see Fig. 9.14-9.16 of Text. Some of these algorithms, however, have the
disadvantage that computations can not be implemented in place. Others,
on the other hand, requires re-ordering of the output (see for example the
decimation-in-frequency FFT algorithm described in Section 9-4).

Algorithms for general value of N may have more complicated indexing
problem.
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4.3 Application of FFT in OFDM

References:

1. Chapter 12 of the book by J. G. Proakis, Digital Communicaitons,
McGraw Hill, 4™ Edition, 2001.

2. |IEEE Standard 802.11a-1999, Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications — High Speed
Physical Layer inthe 5 GHz Band.

3. ADSL Tutoria at

http://www.rad.com/networks/1997/adsl/Adsl M ainPage.htm

Orthogonal Frequency Division Multiplexing (OFDM) is a pardlel
modulation format. Instead of transmitting data serially at a high speed
with a single carrier, an OFDM modem organizes the data into N lower-
rate substreams and transmit the datain the different substreams at different
carrier frequencies.

High rate data ~
» QAM Modulator ——  Z(t)

—>I‘|<— Bit duration
’ I
f

U

c

Conventional serial modem
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New bit
duration

>

QAM
»™ Modulator |

I

QAM

Modulator |
High rate data 7§ T 5(t)
fl— N/2

—bﬂd— Bit duration
>

U

QAM
Modul ator

N/2-1

OFDM M odulator

- note that by a QAM modulator, we mean a modulator that generates a
modulated signal of the form

w(t) = u(t) cos(2p f.t)- v(t) sin(2p ft)
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from the input data. Here u(t) and w(t) are baseband pulse-amplitude
modulated (PAM) signals. Example of a QAM modulator is QPSK.,

- Spectral characteristics of conventional serial modulation and OFDM

Spectral characteristics of conventional serial modem. T, is the
symbol duration of thesignal Z(t) .

A= xo

UT c
Spectral characteristics of the OFDM signal S(t). T is the symbol

duration in the subchannels and 1/T, is the frequency separation
between adjacent subchannels.
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Why OFDM?

In many applications, the communication channel is not ideal, i.e. its
frequency response is not flat (nor linear phase) over the transmission band.

A nonideal channel causes severe intersymbol interference (1Sl) in serial
modems.

By dividing the entire transmission band into subchannels, then aslong as
the frequency response over a subchannel is flat (and linear phase), that
subchannel isideal.

The subchannel spacing (and the number of subchannels) is thus a function
of the coherent bandwidth of the channel.

4.3.1 TheBasic OFDM Signal Structure

Data in an OFDM system is organized into frames. In the basic OFDM
system, each frame is of duration T, sec, where 1/T, is the symbol rate of
each subchannel.

Without loss in generality, we can focus on the frame in the interval [0, T,].
The OFDM signal in thisinterval can be written as

1 N62-1
é(t):ﬁ a s; OFt£T,

k=-N/2

where
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5(t) = X[K]cos(2p f,t)- Y[K]sin(2p f.t)
isthe output signal of the k-th QAM modulator. In the above equation,

X[KIT {+1,%3,...,£(Q- 1)}
and
YIKIT {#1,#3,..., Q- 1)}

are respectively the in-phase (1) and quadrature (Q) channel data of the k-
th modulator intheinterval [0, T,],

M =@

Isthe number of pointsin the signal constellation, and

isthe k-th subcarrier frequency. The term f; isthe center frequency of the
OFDM signal.

The signal constellation of the k-th modulator is obtained by plotting all
possible

k] = X[K]+ jY[K]
as points in the complex plane; see the examples below.
It is possible to use different constellations in different subchannels. A

“good” subchannel can use a denser (and hence more efficient)
constellation while a*“bad” channel uses a less dense constellation.
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Signal cor_laellalions of BPSK, QPSK, 16QAM and 64QAM. The binary
p_atterns in these constellations are the information contained in the
signal points.
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Exercise: Show that the overall bit rate of the above OFDM signal is

, .1
R, =N’ log, M =

a

Exercise: Convince yourself that when Q=2, the signal in each subchannel
Isa QPSK signal with rectangular pulse shaping.

Consider the pairwise correlation of the subchannel signals:

& (05, (0t =g X[KIcos(2p f,t)- YIK]sin (2p 1)}
{ X[mlcos(2p f,t)- YImIsin(2p f,t)} ct

:Tz‘)X[k]X[m]cos(Zp f.t)cos(2p f,t) ct

T

+ OYIKIYImisin(2p f,t)sin(2p £, t) ot

Ta

- OXIKIY[mlcos(2p ft)sin(2p f,t)dt

- OYIKIX[misin(2p f,t)cos(2p f,t)ct

Since
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Ta Ta
pos(2p f,t)cos(2p fmt)dt:% {cos(2p[ f, + f]t)+cos(2p[ f, - f,]t)}dt
0

0
= %TOC\{ cos(4p ft+2p g@ﬂt) +cos(2p g";—;“at)}dt

T./2 k=m
0 kim'

E‘ﬁin(aa ft)sin(2p f.t)dt :% acos(Zp[ fi - flt)- cos(p[f+ f,]t)} ot

Ta
:% C‘{cos(Zp g%ﬂt) - cos(4p ft+2p g@ﬂt)}dt
0
T, /2 kK=m
{0 kim’

and

(a‘)sin(zp ft)cos(2p f,t)dt :%adsin(ao[ fi - f]t)+sin(2p[ f, + f ]t)} ct

= %Tg{ sin(2p gs2ft) +sin(4p £+ 2p gsnitet
=0

when f. >>1/T_, the correlation becomes

0 K ]‘O kim’

In other word, the signals in different subchannels are orthogonal to one
another and hence the term OFDM.
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To ensure orthogonality, the different QAM modulators must be in phase-
synchronsim. Thisis because

aX[k]cos(ao fit+f,)- YK]sin(2p ft+f, )}’

{X[mlcos(2p f,t+f,)- YImlsin(2p f t+f )} dt® O

if the phases f, and f,_ are different. Unfortunately, it will be very
complicated and expensive to keep the different modulators in phase-sync
using anal og technologies.

A DSP approach, based on FFT, can get around the problem.

Consider the k-th subchannel signal again. This signal can be written as

3. (t) = X[K]cos(2p f,t)- Y[K]sin(2p f,t)
= Re{(X[K]+ ] Y[K]) (cos(2p fit) + j sin( f,1))}
= Re{ S[k]exp(j2p f,t)}
= Re{S[k]exp( i2p gﬁgt)exp(i 2 fct)}
=Re{s, (texp(j 2p 1)}
where

] k O
5.(0) = SKlexpg i —ts
e Ta (1]

is the baseband equivalent (or complex envelop) of S (t) .
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The OFDM signal can now be written as

N/o -1 _
a s

k=- N/2
21

a Re{s (texp(j2p ft)

k= N/2

/2 ..
= 'aeli Nalsk(t) exp(ijft)%

| k=- N/2 %]

= Re{ s(t)exp(j 2p ft)}

N

&(t) =

Z|H Z|H

where

N/2 1 N/2-1
o)

1 &, k. 0O
M== & sO=— 8 SKlexpai2p —t
N k="ni2 N k="nr2 e T. g

=u(t) + Jv(t)

is the complex envelop of S(t). This complex envelop has a real part of
u(t) and an imaginary part of V(t).

In a DSP implementation of the OFDM modem, the complex envelop (t)
is generated digitally using a DSP and DAC. The two components of this
signal is then fed to a QAM modulator operating at a center frequency of

f.; see diagrams next page.

Since there is only one QAM modulator, there is no need to worry about
relative phase shifts.
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4>S['N/2] 4>s[o] —» R[] ﬂ DAC i(tr)
s[- N/2+]] 1]
| IFFT 4'} \ )|

S[N/2] oN- 1] | Im[] W DAC _V(B

Baseband segment of the OFDM modulator

cos(2p f 1)

—»
v(t)

&(1)

- sin(2p f.t)

| F/RF segment of OFDM modulator

Let

gn] =s(t)

t=nT,/N

be the DT signal obtained by sampling the baseband OFDM signal S(t) at
timet=nT,/N; n=0,1,...,N -1, This means
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N/21

e1 k
dnl=e— a S[k]eprJZp ?t—u

eNk N/2 € a - nT,/N
_ 1 Nt k nT, o
a S[Klexpe]
NS TN
1 N(/)Zl ’
_N a S[k]VVN "
k=-N/2
1 NGl w1t i
=@ Sk 8 SKW,
k=0 k=- N/2
— 1 62 kn (k-N)n
=— a kMW, Nl a k- NW
N =0 k=N/2
1 62 kn 1 N-l - kn
N a S[k]\NN +W S[k' N]WN
k=0 k=N/2
N- 1
:%é D[kWNkn’ n:011121---
k=0
) IDFT of D[k]
where
DIK] |S[k] k=01,...N/2-1
“Lgik- N] k=N/2,.,N-1

represents the permutated datain the different subchannels.

,N-1

At this point, it is obvious that we can exploit the efficiency of the FFT to

compute the s[n]’s.

The signal S(t) is obtained by passing the s[n]’'s to a digital to analog

converter (DAC).
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Example of an OFDM waveform over two symbol intervals:

|:|35 T T T T T T T T T
|- — P Tou MY N e TS Toy v e
| ARSI RN AN SN NN N AN s Tewh e g

1 1 1 1 1 1 1 1 1

1 1 I 1 1 1 1 1 1
I:I_z_'_ _____ T Fr-"~~"T7T~=~~=7="71I7 A i D i B -r- i e S e i I

1 1 1 1 1 1 1 1 1

|=(t)]

015 Ht -

0.1 Hid

D.Da--[-ﬂi--- -

0 0.z 0.4 0.6 ] 1 12 1.4 16 1.8 7
Maormalized Time, 4T

a

Baseband OFDM waveform in wirelessLAN: N =64 but with only 53
active subchannels (the inactive channels have data values of 0); BPSK
modulation in each subchannel; 20% guard interval (T,=0.87). A

normalized time of 1 corresponds to 1 symbol interval.

- It is observed that the magnitude of the signal fluctuates over a wide
range, i.e. a large peak-to-average power ratio. This is a drawback of
OFDM because many power amplifiersin wireless applications are peak
power limited while the performance is determined by the average
power.

- Clipping or waveform coding can be used to reduce the fluctuation.
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Asfor demodulation, let

r(t) =s(t) +n(t)

be the received signal. Here n(t) represents channel noise. If the channel is
noiseless, then r(t) =s(t). It isobviousin thisideal case that if the receiver
samples r(t) a t=nT,/N,n=0,1,..,N-1 and then takes a FFT of the
resultant DT signal, it will obtain the permutated data D[k]. In the
presence of noise, the result ssmply becomes D[K] plusanoise term.

4.3.2 Modified OFDM for Multipath

While the OFDM signal described in Section 4.3.1 is sufficient for the
additive noise channel, it offers little protection against multipath (which is
an example of anon-ideal channel).

If the channel is an additive noise channel, there is no point in using OFDM
in the first place because of its large peak to average power ratio. A
conventional (serial) modulation scheme will do better and will be simpler
to implement.

To be anti-multipath, the origina OFDM signal should be modified to
(again, focusing on one-frame only)

1 Ngt 0
N, & S[k]eXDgJaO ( Ts)s  OEtET
- o

k=- a

a(t) =

where
T= 'I'a +TG
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is the new OFDM symbol period, with T, being the fundamental symbol
duration, and Ts being the duration of the guard interval.

The frequency-spacing between adjacent sub-channelsisstill 1/T,.

The value of T; should be at least the delay spread of the multipath

channel. (In general, it should be the inverse of the coherent bandwidth of a
non-ideal channel.)

Exercise: Determine the bit rate of the above modified OFDM signal,
assuming all the other system parameters remain the same .

The modified OFDM signal a(t) is divided into two segments, one in the
interval [0,T;s], and the other in the interval [T, T]. The latter segment is

called the effective data while the former is called the cyclic prefix or
guard interval. It should be clear that the effective data segment is

a(t) =s(t- T,); T, ELE£T,

where s(t) isthe basic OFDM signal in Section 4.3.1. The cyclic prefix is
simply arepeat of the last portion of the effective data; see figure below.

Effective

Cycl <\ baa

prefix '
/
p
0 T; T
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Samples of the effective data segment of a(t) are obtained via an IFFT of
the permutated data D[K]; see Section 4.3.1. The resultant DT signa is
again denoted by s[n]; n=0,1,...,N - 1. However 9n] is now the value of

the modified OFDM signal a(t) at t =T, + (n- DT,/ N

Assuming
T, = L(Ta / N)
(i.e. the Guard interval ismade up of L samples) and let

a[n] =a(t)

t=nT, IN n=01,., N+L-1
This means for the effective data section,

aln] =s[n- L]|; n=L,L+1,...,L+N-1
Asfor the cyclic prefix, we have

an]=s[N- L+n]; n=01,.,L-1

Let r(t) be the received signa when the modified OFDM signal is
transmitted over a communication channel consisting of exactly L paths
with path gains

90,9001

and delays
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0, Dt, 20t,..., (L- DDt

Here
Dt=T,/N

IS the time-separation between adjacent samples in the DT signal a[n]. It
can be shown that the following row sum yields the samples of r(t) at

t =nDt (only one symbol is shown)

quN - L]’goqN- L+l] """ goqN - l]vllgoqo]! goql]v vy quN' 1]”
gls{N' L]! [ERY) glﬂ:N'Z]!”gls[N'l]’ glqOL ERRS) QS:N- 2]1”913:N']]
gL-qu_ L]’”gL-qu_ L+1]’-"1 gL-qu_ L]’llgL-qu_ L+l] 11111 gL.qu':ﬂ
where the sign “||- |” are the delimiters for the time interval [T1,,T]. Let the

received samples in this interval be denoted by r[n], n=0,1,...,N-1, and
define the vector I as

¢ 0] g
é G
c=e Mg
e i G
é
&[N - 1g
It is observed that
. ; .
rinl=a g.s&n- m), b n=01,.,N-1
m=0

where (-), represents a mod-N operation. This summation is a circular
convolution and is vital to the anti-multipath capability of OFDM.
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In matrix form, the circular convolution can be written as

51 o L 5
r= é ngmS: a gmpm +W-1D
m=0 m=0 7]
where
€ 0 0 - 0 1@
21 00 ..0 03
P=é 1 o ... 0 0u
e .. . .U
@: : . . .L:J
€ 0 0 1 OH
IS a cyclic permutation matrix,
é]_ 1 1 1 l;l
1 U
€ W,\} WNz WNNl i
W =¢él W? W o e WNZ(N'”@
é. : .
g]_ W'\(IN-l) W’\(IN-l)Z W’\(IN-l)(N-l)EI

IS the matrix representing DFT with

W-l — _WT

and

¢ DI0] ¢

e u

e v

é g

D[N - 1g
Is the permutated data vector.
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To detect the data vector D, the receiver performs a DFT of the [N]s.
Thisisequivalent to computing

R=Wr
1
W g,
m=0 ,0

-1

= ?é‘ g, WP™W-" 19

m=0 %]
% 0
- ga ngm +D
m=0 (4]
where (show this)

AN y
é m U
. e W (
Q. =WP"Wl==—WwWpP"W'=¢€ W,jm u
N e u
e Y
: Wiy

Is adiagonal matrix. Consequently, the recovered data can be rewritten as

R—Sa 0,Qn 'D HD

where
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I

|61
a 9.Qn =

m=0

H

@xD> (D> (D> (D> (D>

Is also adiagonal matrix whose k-th element,
Ldl km
Hk = a. ngN ,

m=0

represents the frequency response of the channel at the subcarrier frequency

f, = fC+£
T

a

Since the matrix H is diagonal, the k-th recovered datais simply
RIK] =H,DIK].

The result implies that there is no ISI, even though the channel is a non-
ideal channel.

It should be pointed out that in order to successfully detect the datain RK],
the frequency response H, needs to be estimated. This can be done by

Inserting a preamble (training symbols) to the data. Alternatively, we can
use differential detection.
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