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4. The Discrete Fourier Transform and Fast Fourier Transform

• Reference: Sections 8.0-8.7 of Text

Note that the text took a different point of view towards the derivation and
the interpretation of the discrete Fourier Transform (DFT). Our derivation
is more “direct”.

• In many situations, we need to determine numerically the frequency
response of an analog system or the spectrum of an analog signal. Let  ( )x t
be the signal under consideration. Then the procedure usually adopted is

1. Select a suitable sampling fequency 1/sf T=  according to the Nyquist
sampling criterion.

2. Sample ( )x t  at time t nT=  to obtain the discrete time (DT) signal [ ]x n .

3. If the discrete time signal is infinitely long, truncate it to a suitable
length, say N  samples. Call the resultant signal  ˆ[ ]x n .

4. Compute the Fourier transform (assuming a casual signal)

( )
1

0

ˆ ˆ[ ]
N

j j n

n

X e x n eω ω
−

−

=

= ∑                                     (1)

at the desired frequencies. Note that if there is no need to truncate the
signal, then

( ) ( ) 1ˆ j j
aX e X e X j

T T
ω ω ω = =   
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where ( )aX jΩ  is the Fourier transform of the analog signal ( )x t . In
general,

( ) 1ˆ j
aX e X j

T T
ω ω ≈  

 

• If the signal whose spectrum we want to deterime is a discrete time signal,
then Steps 1 & 2 in the above procedure is no longer needed.

• This chapter is concerned with the efficient computation of Eqn (1)  at
discrete frequencies

2 / ;              0,1,..., 1k N k Nω π= = −

For convience, we will drop the sign ^  associated with ( )ˆ jX e ω  and simply

use ( )jX e ω  instead.

4.1 The Discrete Fourier Transfomr (DFT)

• The DFT of a finite  duration (and casual) signal is defined as
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where
2 /j N

NW e π−=

• In addition to being a sample of the FT at 2 /k Nω π= , the DFT coefficient
[ ]X k  also represents a sample of the ZT on the unit circle.

• The inverse discrete Fourier transform (IDFT) is
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Proof:
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• The DFT and the IDFT pair can also be represented in matrix form as

1 2 1

2 4 2( 1)

( 1) ( 1)2 ( 1)( 1)

1 1 1 1[0] [0]

1[1] [1]

1[2] [2]

1[ 1] [ 1]

N
N N N

N
N N N

N N N N
N N N

X x

W W WX x

W W WX x

W W WX N x N

−
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− − − −

    
    
    
    =
    
    
    − −    

L
L
L

M M M L MM M
L

or
=X Wx

where

1 2 1

2 4 2( 1)

( 1) ( 1)2 ( 1)( 1)

1 1 1 1
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     
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     
     − −      

x X W

L
L
LM M M M M L M
L

Note that

1 †1
N

− =W W

where ( )†i  denotes the Hermitian (or conjugate) transpose of a matrix.
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• We can deduce from the matrix representation of the DFT that its
computational complexity is in the order of ( )2O N .

• The Fast Fourier Transform (FFT) is an efficient algorithm for the
computation of the DFT. It only has a complexity of  ( )logO N N .

• From the DFT coefficients, we can compute the FT at any frequency.
Specifically
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• Since the FT is the ZT evaluated on the unit circle, this means we can also
obtain the ZT from the DFT coefficients by replacing the term je ω  in the
above equation by z . In other word



4-6
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4.1.1 Convolution of Sequences

• Let 1[ ]x n  and 2[ ]x n  be two DT signals of duration N samples. We want to
obtain their convolution:

1 2[ ] [ ] [ ]y n x n x n= ⊗

• Direct convolution leads to a complexity in the order of ( )2O N . With the
availability of the FFT, it is possible to perform the same task with  a
complexity of only ( )logO N N .

The idea is to first multiply the DFT coefficients of the two signals together
and then take an IDFT of the product.

This ideal, although simple, has to be exercised carefully.

• Let ( )1
jX e ω , ( )2

jX e ω , and  ( )jY e ω  be the FTs  of 1[ ]x n , 2[ ]x n , and [ ]y n

respectively. Then

( ) ( ) ( )1 2
j j jY e X e X eω ω ω=
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• From the definition of the DFT, we know
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So we can deduce that
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• While ˆ[ ], 0,1,..., 1Y k k N= − , are samples of  ( )jY e ω , we will not be able to
compute [ ]y n  from them through an IDFT operation. To see this, let
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2 ( )

2 ( ) /

          1
0           otherwise1

j k n m

j k n m N

N m n rNe

e

π

π

−

−

= +− = −  ,

the above becomes

ˆ[ ] [ ]
r

y n y n rN
∞

=−∞

= +∑

In other word, ˆ[ ]y n  is an aliased version of [ ]y n .

• Example : Let

1 2

1     0 3
[ ] [ ]

0     otherwise

n
x n x n

≤ ≤
= = 


.

Then [ ]y n  is a triangular signal

and ˆ[ ] 4y n = , n = 0,1,2,3.

1

33
22

4

1
n

0 1 2 3 4 5 6
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• The cause for aliasing in ˆ[ ]y n  is the lack of sufficient DFT coefficients in
its construction. Note that [ ]y n  is of duration 2 1N −  samples so we need as
many DFT coefficients to capture all the information about the signal.

• To eliminate aliasing, we first treat 1[ ]x n  and 2[ ]x n  as signals with a
duration of

2M N=

samples, where 1 2[ ] [ ] 0x n x n= =  when 2 1N n N≤ ≤ − . Note that in
general, M can be any number as long as it is not smaller than the duration
of [ ]y n .

We then take the M-point DFTs of 1[ ]x n  and 2[ ]x n  to obtain
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After this, we form the product

( )1 2 /[ ] [ ] [ ] ,              0,1,..., 1j
k NY k X k X k Y e k Mω

ω π== = = −

Finally, we calculate the IDFT
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Since the duration of [ ]y n  is 2 1N − , which is less than M , the term
[ 2 ]y n rN+  in the above equation equals to 0 for any 0r ≠ . Consequently

1

0

1
[ ] [ ]

M
kn

M
k

Y k W y n
N

−
−

=

=∑

and there is no more aliasing.

4.1.2. Cicular Convolution and Aliasing

• We show in Section 4.1.1 that if we take the IDFT of the product
coefficients 1 2

ˆ ˆ ˆ[ ] [ ] [ ]Y k X k X k= , 0,1,..., 1k N= − , we obtain

ˆ[ ] [ ]
r

y n y n rN
∞

=−∞

= +∑ ,                                      (2)

which is an aliased version of [ ]y n .

• We will arrive at the same result through circular convolution of periodic
signals constructed from 1[ ]x n  and 2[ ]x n .
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• Let

( )1 1[ ]
N

x n x n =  %

and

( )2 2 [ ] ,
N

x n x n =  %

where ( )N
n  is the modulo-N value of the integer n.

Because of the property of the modulo-N operation, the signals 1[ ]x n%  and

2[ ]x n%  are periodic with a period of  N. Specifically,

1 1[ ] [ ],             0,1,..., 1x m rN x m m N+ = = −%
and

2 2[ ] [ ],             0,1,..., 1x m rN x m m N+ = = −%

for any integer r .

• Conversely, the signals 1[ ]x n  and 2[ ]x n  can be obtained from 1[ ]x n%  and

2[ ]x n%  according to

1 1[ ] [ ] [ ]Nx n x n R n= %
and

2 2[ ] [ ] [ ]Nx n x n R n= % ,
where

1           0 1
[ ]

0           otherwiseN

n N
R n

≤ ≤ −
= 


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is a rectangular windowing function.

• The circular or periodic convolution of  1[ ]x n%  and 2[ ]x n%  is defined as

1

3 1 2
0

[ ] [ ] [ ]
N

m

x n x m x n m
−

=

= −∑% % %

Clearly, 3[ ]x n%  is a periodic signal with a period of  N.
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• We want to show that the signal ˆ[ ]y n  in Eqn (2) is simply one period of

3[ ]x n% , i.e.

3ˆ[ ] [ ] [ ]Ny n x n R n= %

Proof:

- Since the signal 3[ ]x n%  is periodic, we resctrict our attention to time
indices n   between  0  and  N-1.

- Since 0 1m N≤ ≤ − , the term 1[ ]x m%  in the circular convolution is

simply 1[ ]x m .

- The index  n m−   of the term 2[ ]x n m−%  can be as small as 1 N−  or as
large as 1N − . When 0n m− ≥ ,

2 2[ ] [ ];                   0x n m x n m n m− = − − ≥%

On the other hand when n m−  is negative, then

2 2[ ] [ ];                   0x n m x N n m n m− = + − − <%

- The circular convolution can now be rewritten as:
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for 0 1n N≤ ≤ −

- We will discuss more about circular convolution in the section on
OFDM modulation.
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4.1.2 The DFT of an infinite-duration signal

• The DFT is defined only for a finite duration signal. As mentioned earlier,
when the signal is of infinite duration, we must first truncate the signal to a
suitable length before taking DFT. Truncation is equivalent to multiplying
the infinitely long signal by the  rectangular window function

1           0 1
[ ]

0           otherwise

n N
w n

≤ ≤ −
= 



• Let [ ]x n  and [ ] [ ] [ ]y n x n w n=  be the signals before and after truncation. As
shown in Chapter 2, the FT of [ ]y n  is

( ) ( ) ( )( )1
2

j j jY e X e W e d
π

ω θ ω θ

π

θ
π

−

−

= ∫ ,

where ( )jX e ω  and  ( )jW e ω  are respectively the FTs of the signal [ ]x n  and
the windowing function [ ]w n .

• The DFT coefficients of the signal [ ]y n  are
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=

−

=

=

=

=
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• Since  ( ) ( )j jY e X eω ω≠ , so the [ ]Y k s are not exactly the samples of

( )jX e ω  at 2 /k Nω π= .

The spectral distortion can be reduced by using a longer truncation length
and/or a different windowing function.

• Some commonly used windowing functions are

1. Hamming,
2. Hanning,
3. Kaiser, and
4. Blackman

We will talk more about them in the Chapter on FIR filter design.

• Example : Let the original signal be

[ ] [ ]nx n a u n= .

where the parameter a  is real, positive, and less than 1. The FT of this
signal is

( ) 1
1

j

j
X e

ae
ω

ω−=
−

Now, if we truncate this signal to N  samples, we obtain the signal

[ ]         0 1
[ ]

0         otherwise
x n n N

y n
≤ ≤ −

= 

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The DFT coefficients of this signal is
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4.1.4 The DFT of a 2-sided signal

• In the definition of the DFT, the signal is implicitly assumed casual. In this
case,
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0

[ ] [ ] ;           0,1,..., 1
N

kn j
N k N

n

X k x n W X e k Nω
ω π

−

=
=

= = = −∑

What happens when the signal is not casual, like the discrete-time version
of the SQRC pulse used in our project?

• Let [ ]x n  be a non-casual signal time-limited to the range 2 2, 1N N− −  ,
where the duration N is assumed to be an even number.

One possible definition of the DFT of this signal is
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However, this is not exactly ( ) 2 /
j

k NX e ω
ω π= .

• In order that the k-th DFT coefficient equals ( )jX e ω  at 2 /k Nω π=  when
the signal is 2-sided, we should take instead the DFT of the signal
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Evaluating the above at 2 /k Nω π=  yields
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∑

• In summary, for a 2-sided signal, we should first attach the negative-time
portion of the signal to the positive-time portion before taking DFT. For
example, if the original signal is

then after manupulation, we have

4−
n

2− 1− 0 1 2 33−

[ ]x n

n
0 1 2 3 4 6 75

[ ]y n
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4.2 The Decimation-in-Time FFT Algorithm

• Reference: Sections 9.1-9.3 of Text

• As discussed in the last section, the direct method of computing the DFT
coefficients has a complexity of 2N  complex multiplications and ( )1N N −

complex additions.

Each complex multiplication itself requires 4 real multiplications and 2 real
additions.

Each complex addition involves two real additions.

So the total number of real multiplications is 24N  and the total number of
real addition is 24 2N N− .

• By decomposing the original N-point DFT into successively smaller DFTs
(a divide-and-conquer approach), the amount of computations can be
dramatically reduced. In this process, the properties of the complex
exponential function

2 /j N
NW e π−=

are exploited. Specifically, we notice that

1. ( )*( )k N n kn kn
N N NW W W− −= =   (complex conjugate symmetry)

2. ( ) ( )kn k n N n k N
N N NW W W+ += =   (periodicity in  n and k).

The resultant algorithms are collectively known as Fast Fourier Transform
(FFT).
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• We will focus in this section on the derivation of the decimation-in-time
FFT algorithm. For convenience, we assume

2vN =

where v  is an integer. The idea, however, can be generalized to any other
composite  (i.e. non-prime) value of N .

• The DFT coefficients are given by

1

0

[ ] [ ] ;                 0,1,..., 1
N

kn
N

n

X k x n W k N
−

=

= = −∑

Since 2vN =  is an even number, we can express the above as the sum of
two terms, one involving the even-numbered [ ]x n s, and the other involving
the odd-numbered [ ]x n s:

 even  odd

/ 2 1 / 2 1
2 (2 1)

0 0

/ 2 1 / 2 1
2 2

0 0

[ ] [ ] [ ]

       [2 ] [2 1]

       [2 ] [2 1]

kn kn
N N

n n

N N
kr r k

N N
r r

N N
kr k kr

N N N
r r

X k x n W x n W

x r W x r W

x r W W x r W

− −
+

= =

− −

= =

= +

= + +

= + +

∑ ∑

∑ ∑

∑ ∑

• The term 2kr
NW  can be written as

2 2 (2 )/ 2 /( /2)
/ 2

kr j kr N j kr N kr
N NW e e Wπ π− −= = =
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Consequently [ ]X k  can be rewritten as

/ 2 1 / 2 1
2 2

0 0

/ 2 1 / 2 1

/ 2 / 2
0 0

[ ] [2 ] [2 1]

        [2 ] [2 1]

        [ ] [ ]

N N
kr k kr

N N N
r r

N N
kr k kr

N N N
r r

X k x r W W x r W

x r W W x r W

G k H k

− −

= =

− −

= =

= + +

= + +

= +

∑ ∑

∑ ∑

where
/ 2 1

/ 2
0

[ ] [2 ] ;            0,1,..., 1
N

kr
N

r

G k x r W k N
−

=

= = −∑
and

/ 2 1

/ 2
0

[ ] [2 1] ;               0,1,..., 1
N

kr
N

r

H k x r W k N
−

=

= + = −∑

• Since

( /2)
/ 2 / 2
m N r mr

N NW W+ = ,

this means

[ /2] [ ];          0,1,... / 2 1G m N G m m N+ = = −

and
[ /2] [ ];          0,1,... / 2 1H m N H m m N+ = = − .

Moreover, the [0], [1],..., [ / 2 1]G G G N −  are the DFT coefficients of the
subsequence [2 ]x n . Similarly, [0], [1],..., [ / 2 1]H H H N −  are the DFT
coefficients of the subsequence [2 1]x n + .
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• So in summary, we have at this point express the original DFT as a sum of
two DFTs of half the size. Example for the case of N=8 is shown below

In the above diagram, the 8 DFT coefficients [0]X  to [7]X  are computed
from [0], [1], [2], [3]G G G G  and [0], [1], [2], [3]H H H H  via / 2 4N =  butterfly
structures. Each butterfly is of the form

/ 2k N
NW +

k
NW

1

1
[ ]G k

[ / 2]X k N+

[ ]X k

[ ]H k

[ ]G k
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• The butterfly used in the computation of the DFT is an example of a signal
flow graph (essentially a computational structure).

In general, a signal flow graph would consist of a set of nodes or states (as
represented by the circles in the butterfly structure) interconnected by a set
of directed branches. The weights (as represented by the parameters 1, 1,

k
NW , and / 2k N

NW +  in the butterfly) associated with the branches are called
transmittances. The transmittance from node j  to node k might be denoted
by jkt  in general.

Associated with each node in the signal flow graph is a variable or node
value. The value associated with node k might be denoted by ks  and is
equal to

1

L

k j jk
j

s s t
=

= ∑

• The butterfly shown in the previous page requires 2 complex
multiplications and 2 complex additions. But since

/ 2k N k
N NW W+ = − ,

the number of multiplications can be reduced to 1 if the following structure
is adopted instead

1
[ ]G k

k
NW

1

1
[ ]G k

[ / 2]X k N+

[ ]X k

[ ]H k

[ ]G k

1−
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So in total, the complexity of the 4 butterflies in the above example is 4
complex multiplications (CM) and 8 complex additions (CA). In general,
there are / 2N  CMs and N  CAs.

• Since 2vN = , / 2N  is also an even number. This means each of the two
/ 2N -point DFT in the above example can be expressed in terms of two
/ 4N -DFTs. For example, we show below the computation of

[0], [1], [2], [3]G G G G  from [0], [2], [4], [6]x x x x .

The overall computational structure now takes on the form shown in the
diagram in the next page. The two / 2N -point DFTs are now replaced by 4
butterflies.

Since the number of butterflies in the second stage (from the right) is the
same as that in the first stage, the computational complexities of both
stages are identical and equal to 4 CMs and 8 CAs.

In general, (when 2vN = ,) there are always / 2N  butterflies at each stage.
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• Each of the four / 4N -point DFTs in the above example can be computed
using the following butterfly

Notice that there is actually no need to perform any multiplication. For
simplicity though, we assume the complexity of this butterfly is the same as
the one that we presented earlier, i.e. 1 CM and 2 CAs.

1

0
2 1W =

1 / 2
2 1N

NW W= = −

1
[ ]G k
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• It is evident that when 2vN = , there will be altogether v  stages in the
overall computational structure, with / 2N  butterflies at each stage.
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The total number of complex multiplications is thus

2

1
1 log ( )

2 2M

N
n v N N= × × =

The total number of additions is

22 log ( )A Mn n N N= = .

In conclusion, the complexity of this decimation-in-time algorithm is in the
order of logN N , which is much smaller than 2N  for large  N.

• It is observed from the 8N =  example that the input data needed to be
shuffled before being any computation can be take place. This can be done
through the bit-reversal algorithm.

Let

( )[0], [1],..., [ ],..., [ 1]a a a n a N= −A

be the array containing the shuffled data. In the 8N =  example, this vector
is ( )[0], [4], [2], [6], [1], [5], [3], [7]x x x x x x x x=A . Furthermore, let

( )1 2 0, ,..., ;             {0,1}v v jb b b b− −= ∈B

be the natural binary representation of the integer n , i.e.

1

0

2
v

j
j

j

n b
−

=

= ∑
Then

[ ] [ ]a n x m=
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where
1

1

0

2
v

v j
j

j

m b
−

− −

=

= ∑

is the decimal equivalent of the binary vector

( )0 1 1, ,...,r vb b b −=B .

• Exercise: Show that if [ ] [ ]a n x m= , then [ ] [ ]a m x n= , i.e. the samples are
pair-wise interchanged.

• In-place computations

The FFT algorithm computes the DFT coefficients in stages.
The input data at the (m-1)-th stage ( 0 to m v=  from left to right) are
transformed into another set of data that will be used in the computations in
the m-th stage.

Clearly, we can store the data to be computed in one array and those used
in the computation in another array. This requires a total of  2N   storage.

However, the FFT algorithm we just described can be used to implement
in-place computations. This will essentially reduce the storage to about
50%.

Let us first index the data at the m-th stage in the signal flow graph as
[ ]mX l , where 0,1,..., 1N= −l  (from top to bottom), then it can be easily

shown that the pair

( )[ ], [ ]m mX p X q
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can be computed exclusively from the pair

( )1 1[ ], [ ]m mX p X q− −

using the butterfly

This means as far as data storage is concerned, we need only one array of
N samples (and a temporary buffer of 2 samples). At the beginning of the
m-th stage, this array stores all the 1[ ]mX − l , 0,1,..., 1N= −l . As soon as

[ ]mX p  and [ ]mX q  are computed, the corresponding entries in the array are
then updated.

• There are other versions of FFT that do not require re-ordering of the input;
see Fig. 9.14-9.16 of Text. Some of these algorithms, however, have the
disadvantage that computations can not be implemented in place. Others,
on the other hand, requires re-ordering of the output (see for example the
decimation-in-frequency FFT algorithm described in Section 9-4).

• Algorithms for general value of  N  may have more complicated indexing
problem.

1[ ]mX q−

1
[ ]G k

r
NW

1

1
[ ]G k1[ ]mX p−

1−

[ ]mX p

[ ]mX q
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4.3 Application of FFT in OFDM

• References:

1. Chapter 12 of the book by J. G. Proakis, Digital Communicaitons,
McGraw Hill, 4th Edition, 2001.

2. IEEE Standard 802.11a-1999, Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications – High Speed
Physical Layer in the 5 GHz Band.

3. ADSL Tutorial at

http://www.rad.com/networks/1997/adsl/AdslMainPage.htm

• Orthogonal Frequency Division Multiplexing (OFDM) is a parallel
modulation format. Instead of transmitting data serially at a high speed
with a single carrier, an OFDM modem organizes the data into N  lower-
rate substreams and transmit the data in the different substreams at different
carrier frequencies.

       Conventional serial modem

High rate data

cf

QAM Modulator ( )z t%
Bit duration
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OFDM Modulator

- note that by a QAM modulator, we mean a modulator that generates a
modulated signal of the form

( ) ( )( ) ( ) cos 2 ( ) sin 2o ow t u t f t v t f tπ π= −

New bit
duration

High rate data ( )s t%

Bit duration

/ 2 1Nf −

1 / 2Nf −

/ 2Nf−

   QAM

Modulator

   QAM

Modulator

   QAM

Modulator

M
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from the input data. Here ( )u t  and ( )v t  are baseband pulse-amplitude
modulated (PAM) signals. Example of a QAM modulator is QPSK.

- Spectral characteristics of conventional serial modulation and OFDM

Spectral characteristics of conventional serial modem. sT  is the
symbol duration of the signal ( )z t% .

Spectral characteristics of the OFDM signal ( )s t% . T  is the symbol
duration in the subchannels and 1/ aT  is the frequency separation
between adjacent subchannels.

cf
f

1/ sT

1/T

1/ aT

         ••••

f

cf
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• Why OFDM?

In many applications, the communication channel is not ideal, i.e. its
frequency response is not flat (nor linear phase) over the transmission band.

A nonideal channel causes severe intersymbol interference (ISI) in serial
modems.

By dividing the entire transmission band into subchannels, then  as long as
the frequency response over a subchannel is flat (and linear phase), that
subchannel is ideal.

• The subchannel spacing (and the number of subchannels) is thus a function
of the coherent bandwidth of the channel.

4.3.1 The Basic OFDM Signal Structure

• Data in an OFDM system is organized into frames. In the basic OFDM
system, each frame is of duration aT  sec, where 1/ aT  is the symbol rate of
each subchannel.

• Without loss in generality, we can focus on the frame in the interval [0, ]aT .
The OFDM signal in this interval can be written as

/ 2 1

/ 2

1
( ) ( );                 0

N

k a
k N

s t s t t T
N

−

=−

= ≤ ≤∑% %

where
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( ) ( )( ) [ ]cos 2 [ ]sin 2k k ks t X k f t Y k f tπ π= −%

is the output signal of the  k-th QAM modulator. In the above equation,

{ }[ ] 1, 3, , ( 1)X k Q∈ ± ± ± −…
and

{ }[ ] 1, 3, , ( 1)Y k Q∈ ± ± ± −…

are respectively the in-phase (I) and quadrature (Q) channel data of the  k-
th modulator  in the interval [0, ]aT ,

2M Q=

is the number of points in the signal constellation, and

k c

a

k
f f

T
= +

is the k-th subcarrier frequency. The term cf  is the center frequency of the
OFDM signal.

• The signal constellation of the k-th modulator is obtained by plotting all
possible

[ ] [ ] [ ]S k X k jY k= +

as points in the complex plane; see the examples below.

It is possible to use different constellations in different subchannels. A
“good” subchannel can use a denser (and hence more efficient)
constellation while a “bad” channel uses a less dense constellation.
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Signal constellations of BPSK, QPSK, 16QAM and 64QAM. The binary
patterns in these constellations are the information contained in the
signal points.
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• Exercise: Show that the overall bit rate of the above OFDM signal is

2

1
logb

a

R N M
T

= × ×

• Exercise: Convince yourself that when Q=2, the signal in each subchannel
is a QPSK signal with rectangular pulse shaping.

• Consider the pairwise correlation of the subchannel signals:

( ) ( ){ }

( ) ( ){ }

( ) ( )

0 0

0

0

( ) ( ) [ ]cos 2 [ ]sin 2

                                      [ ]cos 2 [ ]sin 2

                   [ ] [ ]cos 2 cos 2

                      [ ] [ ]si

a a

a

a

T T

k m k k

m m

T

k m

T

s t s t dt X k f t Y k f t

X m f t Y m f t dt

X k X m f t f t dt

Y k Y m

π π

π π

π π

= −

−

=

+

∫ ∫

∫

∫

% %

( ) ( )

( ) ( )

( ) ( )

0

0

n 2 sin 2

                      [ ] [ ]cos 2 sin 2

                      [ ] [ ]sin 2 cos 2

a

a

k m

T

k m

T

k m

f t f t dt

X k Y m f t f t dt

Y k X m f t f t dt

π π

π π

π π

−

−

∫

∫

Since
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( ) ( ) ( ) ( ){ }

( ) ( ){ }
0 0

0

1
cos 2 cos 2 cos 2 [ ] cos 2 [ ]

2

1
                                          cos 4 2 cos 2

2

/ 2        
                                          

a a

a

a a

T T

k m k m k m

T

k m k m
c T T

a

f t f t dt f f t f f t dt

f t t t dt

T

π π π π

π π π+ −

= + + −

   = + +   

=

∫ ∫

∫
   

,
0          

k m

k m

=


≠

( ) ( ) ( ) ( ){ }

( ) ( ){ }
0 0

0

1
sin 2 sin 2 cos 2 [ ] cos 2 [ ]

2

1
                                          cos 2 cos 4 2

2

/ 2        
                                          

a a

a

a a

T T

k m k m k m

T

k m k m
cT T

a

f t f t dt f f t f f t dt

t f t t dt

T

π π π π

π π π− +

= − − +

   = − +   

=

∫ ∫

∫
   

,
0          

k m

k m

=


≠

and

( ) ( ) ( ) ( ){ }

( ) ( ){ }
0 0

0

1
sin 2 cos 2 sin 2 [ ] sin 2 [ ]

2

1
                                          sin 2 sin 4 2

2

                                          0

a a

a

a a

T T

k m k m k m

T

k m k m
cT T

f t f t dt f f t f f t dt

t f t t dt

π π π π

π π π− +

= − + +

   = + +   

=

∫ ∫

∫

when 1/c af T>> ,  the correlation becomes

( )2 2

0

[ ] [ ] / 2       
( ) ( )

0       

aT
a

k m

X k Y k T k m
s t s t dt

k m

 + == 
≠

∫ % % .

In other word, the signals in different subchannels are orthogonal to one
another and hence the term OFDM.
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• To ensure orthogonality, the different QAM modulators must be in phase-
synchronsim. This is because

( ) ( ){ }

( ) ( ){ }
0

[ ]cos 2 [ ]sin 2

          [ ]cos 2 [ ]sin 2 0

             

aT

k k k k

m m m m

X k f t Y k f t

X m f t Y m f t dt

π φ π φ

π φ π φ

+ − + ×

+ − + ≠

∫

if the phases kφ  and mφ  are different. Unfortunately, it will be very
complicated and expensive to keep the different modulators in phase-sync
using analog technologies.

A DSP approach, based on FFT, can get around the problem.

• Consider the k-th subchannel signal again. This signal can be written as

( ) ( )
( ) ( ){ }

( ){ }
( ) ( ){ }
( ){ }

( ) [ ]cos 2 [ ]sin 2

       Re [ ] [ ] cos(2 ) sin(2 )

       Re [ ]exp 2

       Re [ ]exp 2 exp 2

       Re ( )exp 2

a

k k k

k k

k

k
cT

k c

s t X k f t Y k f t

X k jY k f t j f t

S k j f t

S k j t j f t

s t j f t

π π

π π

π

π π

π

= −

= + +

=

 =  

=

%

where

( ) [ ]exp 2k
a

k
s t S k j t

T
π

 
=  

 

is the baseband equivalent (or complex envelop) of  ( )ks t% .
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• The OFDM signal can now be written as

( ){ }

( )

( ){ }

/ 2 1

/ 2

/ 2 1

/ 2

/ 2 1

/ 2

1
( ) ( )

1
      Re ( )exp 2

1
      Re ( ) exp 2

      Re ( )exp 2

N

k
k N

N

k c
k N

N

k c
k N

c

s t s t
N

s t j f t
N

s t j f t
N

s t j f t

π

π

π

−

=−

−

=−

−

=−

=

=

  =     
=

∑

∑

∑

% %

where

/ 2 1 /2 1

/ 2 /2

1 1
( ) ( ) [ ]exp 2

                               ( ) ( )

N N

k
k N k N a

k
s t s t S k j t

N N T

u t jv t

π
− −

=− =−

 
= =  

 
= +

∑ ∑

    is the complex envelop of ( )s t% . This complex envelop has a real part of
( )u t  and an imaginary part of ( )v t .

• In a DSP implementation of the OFDM modem, the complex envelop ( )s t
is generated digitally using a DSP and DAC. The two components of this
signal is then fed to a QAM modulator operating at a center frequency of

cf ; see diagrams next page.

Since there is only one QAM modulator, there is no need to worry about
relative phase shifts.
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Baseband segment of the OFDM modulator

IF/RF segment of OFDM modulator

• Let

/[ ] ( )
at nT Ns n s t ==

be the DT signal obtained by sampling the baseband OFDM signal ( )s t  at
time / ; 0,1,..., 1at nT N n N= = − . This means

( )v t

( )u t

[ ]v n

[ ]u n

[ ]/ 2 1S N− +

[ ]1s N −

[ ]1s

[ ]0s

[ ]/ 2S N

[ ]/ 2S N−

IFFT

[ ]Re •

[ ]Im •

DAC

DAC

M M

( )s t%

( )v t

( )u t

cos(2 )cf tπ

sin(2 )cf tπ−
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/ 2 1

/ 2 /

/ 2 1

/ 2

/ 2 1

/ 2

/ 2 1 1

0 / 2

/ 2 1

0

1
[ ] [ ]exp 2

1
      [ ]exp 2

1
      [ ]

1 1
      [ ] [ ]

1      [ ]

a

N

k N a t nT N

N
a

k N a

N
kn

N
k N

N
kn kn

N N
k k N

N
kn

N
k

k
s n S k j t

N T

nTk
S k j

N T N

S k W
N

S k W S k W
N N

S k W
N

π

π

−

=− =

−

=−

−
−

=−

− −
− −

= =−

−
−

=

  
=   

  

 
=  

 

=

= +

=

∑

∑

∑

∑ ∑
1

( )

/ 2

/ 2 1 1

0 / 2

1

0

IDFT of [ ]

1 [ ]

1 1
      [ ] [ ]

1
      [ ] ;                                            0,1,2,..., 1

N
k N n

N
k N

N N
kn kn

N N
k k N

N
kn

N
k

D k

S k N W
N

S k W S k N W
N N

D k W n N
N

−
− −

=

− −
− −

= =

−
−

=

+ −

= + −

= = −

∑ ∑

∑ ∑

∑
1442443

where

[ ]           0,1,..., / 2 1
[ ]

[ ]           / 2,..., 1

S k k N
D k

S k N k N N

= −
=  − = −

represents the permutated data in the different subchannels.

At this point, it is obvious that we can exploit the efficiency of the FFT to
compute the [ ]s n ’s.

The signal ( )s t  is obtained by passing the [ ]s n ’s to a digital to analog
converter (DAC).
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• Example of an OFDM waveform over two symbol intervals:

Baseband OFDM waveform in wireless LAN: 64N =  but with only 53
active subchannels (the inactive channels have data values of 0); BPSK
modulation in each subchannel; 20% guard interval ( 0.8aT T= ). A
normalized time of 1 corresponds to 1 symbol interval.

- It is observed that the magnitude of the signal fluctuates over a wide
range, i.e. a large peak-to-average power ratio. This is a drawback of
OFDM because many power amplifiers in wireless applications are peak
power limited while the performance is determined by the average
power.

- Clipping or waveform coding can be used to reduce the fluctuation.



4-44

• As for demodulation, let

( ) ( ) ( )r t s t n t= +

be the received signal. Here ( )n t  represents channel noise. If the channel is
noiseless, then ( ) ( )r t s t= . It is obvious in this ideal case that if the receiver
samples ( )r t  at / , 0,1,..., 1at nT N n N= = − ,  and then takes a FFT of the
resultant DT signal, it will obtain the permutated data [ ]D k . In the
presence of noise, the result simply becomes [ ]D k  plus a noise term.

4.3.2 Modified OFDM for Multipath

• While the OFDM signal described in Section 4.3.1 is sufficient for the
additive noise channel, it offers little protection against multipath (which is
an example of a non-ideal channel).

If the channel is an additive noise channel, there is no point in using OFDM
in the first place because of its large peak to average power ratio. A
conventional (serial) modulation scheme will do better and will be simpler
to implement.

• To be anti-multipath, the original OFDM signal should be modified to
(again, focusing on one-frame only)

( )
/2 1

/2

1
( ) [ ]exp 2 ,         0

N

G
k N a

k
a t S k j t T t T

N T
π

−

=−

 
= − ≤ ≤ 

 
∑

where

a GT T T= +
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is the new OFDM symbol period, with aT  being the fundamental symbol

duration, and GT  being the duration of the guard interval.

The frequency-spacing between adjacent sub-channels is still  1/ aT .

• The value of GT  should be at least the delay spread of the multipath
channel. (In general, it should be the inverse of the coherent bandwidth of a
non-ideal channel.)

• Exercise: Determine the bit rate of the above modified OFDM signal,
assuming all the other system parameters remain the same .

• The modified OFDM signal ( )a t  is divided into two segments, one in the
interval [0, ]GT , and the other in the interval [ , ]GT T . The latter segment is
called the effective data while the former is called the cyclic prefix or
guard interval. It should be clear that the effective data segment is

( )( ) ;             G Ga t s t T T t T= − ≤ ≤ ,

where ( )s t  is the basic OFDM signal in Section 4.3.1. The cyclic prefix is
simply a repeat of the last portion of the effective data; see figure below.

GT0 T
t

Effective
Data

Cyclic
prefix
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• Samples of the effective data segment of ( )a t  are obtained via an IFFT of
the permutated data [ ]D k ; see Section 4.3.1. The resultant DT signal is
again denoted by [ ]; 0,1,..., 1s n n N= − . However [ ]s n  is now the value of
the modified OFDM signal ( )a t  at ( 1) /G at T n T N= + − .

• Assuming

( )/G aT L T N=

(i.e. the Guard interval is made up of  L samples) and let

/[ ] ( ) ;               0,1,..., 1
at nT Na n a t n N L== = + −

This means for the effective data section,

[ ][ ] ;             , 1,..., 1a n s n L n L L L N= − = + + − .

As for the cyclic prefix,  we have

[ ][ ] ;             0,1,..., 1a n s N L n n L= − + = − .

• Let ( )r t  be the received signal when the modified OFDM signal is
transmitted over a communication channel consisting of exactly L  paths
with path gains

0 1 1, ,..., Lg g g −

and delays
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0, , 2 , ,  ( 1)t t L t∆ ∆ − ∆… .

Here
/at T N∆ =

is the time-separation between adjacent samples in the DT signal [ ]a n . It
can be shown that the following row sum yields the samples of ( )r t  at
t n t= ∆  (only one symbol is shown)

0 0 0 0 0 0

1 1 1 1 1 1

[ ], [ 1], ,  [ 1],|| [0],              [1],  ...,     [ 1]||
                   [ ],    ,   [ 2],|| [ 1],        [0],  ,   [ 2],|| [ 1]
                    

g s N L g s N L g s N g s g s g s N

g s N L g s N g s N g s g s N g s N

− − + − −
− − − − −

…
… …

1 1 1 1 1

                                                                          
                                              [ ],|| [ 1], ,           [ ],|| [ 1], , L L L L Lg s N L g s N L g s N L g s N L g− − − − −− − + − − +

O O O O O O
… … [ 1]

 

s N −

where the sign “ || ||• ” are the delimiters for the time interval [ GT ,T]. Let the
received samples in this interval be denoted by [ ]r n , 0,1,...., 1n N= − , and
define the vector r  as

[0]
[1]

[ 1]

r

r

r N

 
 
 =
 
 − 

r M .

It is observed that

( )
1

0

[ ] ;              0,1,..., 1
L

m N
m

r n g s n m n N
−

=

 = − = − ∑

where ( )
N

•  represents a mod-N operation. This summation is a circular
convolution and is vital to the anti-multipath capability of OFDM.
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• In matrix form, the circular convolution can be written as

1 1
1

0 0

L L
m m

m m
m m

g g
− −

−

= =

 = =  
 

∑ ∑r P s P W D

where
0 10 0 0
0 00 01
0 00 01

1 00 0 0

 
 
 
 =
 
 
  

P

L
L
L

M MM M M L
L

is a cyclic permutation matrix,

1 2 1

2 4 2( 1)

( 1) ( 1)2 ( 1)( 1)

1 1 1 1
1

  1

1

N
N N N

N
N N N

N N N N
N N N

W W W

W W W

W W W

−

−

− − − −

 
 
 
 =
 
 
  

W

L
L
L

M M M L M
L

is the matrix representing DFT with

1 †1
N

− =W W ,

and

[0]
[1]

      ,   

[ 1]

D

D

D N

 
 
 =
 
 − 

D M

is the permutated data vector.
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• To detect the data vector D , the receiver performs a DFT of the [ ]r n s.
This is equivalent to computing

1
1

0

1
1

0

1

0

   

   

   

L
m

m
m

L
m

m
m

L

m m
m

g

g

g

−
−

=

−
−

=

−

=

=

 =   
 =  
 
 =   

∑

∑

∑

R Wr

W P W D

WP W D

Q D

where (show this)

( )

0

21 †

1

1

N
m

N

mm m
Nm

N m
N

W

W

W
N

W

−

−

 
 
 
 = = =
 
 
   

Q WP W WP W

O

is a diagonal matrix. Consequently, the recovered data can be rewritten as

1

0

L

m m
m

g
−

=

 = = 
 
∑R Q D HD ,

where
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0

1
1

0

1

L

m m
m

N

H

H
g

H

−

=

−

 
 
 = =
 
 
  

∑H Q O

is also a diagonal matrix whose  k-th element,

1

0

L
km

k m N
m

H g W
−

=

= ∑ ,

represents the frequency response of the channel at the subcarrier frequency

k c

a

k
f f

T
= +

• Since the matrix H is diagonal, the k-th recovered data is simply

[ ] [ ]kR k H D k= .

The result implies that there is no ISI, even though the channel is a non-
ideal channel.

• It should be pointed out that in order to successfully detect the data in [ ]R k ,
the frequency response kH  needs to be estimated. This can be done by
inserting a preamble (training symbols) to the data. Alternatively, we can
use differential detection.


