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5. Design of FIR Filters

• Reference: Sections 7.2-7.4 of Text

• We want to address in this Chapter the issue of approximating a digital
filter with a desired frequency response

( )j
dH e ω

using filters with finite duration.

5.1 The Windowing Technique

• When  the desired frequency response ( )j
dH e ω  of the system has abrupt

transitions (as in the case of an ideal low pass filter), then the impulse
response [ ]dh n  has infinite duration.

• The most obvious way to approximate such a filter (system) is to truncate
its impulse response to, say, 1M +  samples. The impulse response of the
new filter (assuming [ ]dh n  is casual) is thus:

[ ]             0
[ ]

0             otherwise
dh n n M

h n
≤ ≤= 


.
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• The last equation can also be rewritten as

[ ] [ ] [ ]d Rh n h n w n=
where

1             0
[ ]

0             otherwiseR

n M
w n

≤ ≤= 


is a rectangular windowing function.

• It becomes apparent that one can use different windowing functions to
truncate/shape the desired impulse response to a finite duration. Let [ ]w n
represents in general a windowing function of length M+1 samples. The
truncated impulse response is

[ ] [ ] [ ]dh n h n w n=

According to the Windowing Theorem in  pp. 2-36 of the lecture notes, the
frequency response of this approximation filter is
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 where ( )jW e ω  is the Fourier Transform (FT) of [ ]w n .
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• Example : When [ ] [ ]Rw n w n= , i.e. a rectangular window,
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A plot of  ( )j
RW e ω  when M = 7 is shown below. Also shown is the

convolution of an ideal low pass spectrum with ( )j
RW e ω .
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• The convolution in the frequency domain leads to a smearing of the
spectrum. The sinusoidal nature of the sinc function in  ( )j

RW e ω  leads to

the oscillations in ( )jH e ω  - the Gibbs phenomenon.

• To reduce the smearing and oscillations, we should use a windowing
function whose ( )jW e ω  has a (relatively)

1. narrow mainlobe, and
2. low sidelobes

Note that
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1. the longer the windowing function (in the time domain), the narrower
is the main lobe, and

2. the “smoother” the windowing function (in the time domain), the
lower the sidelobes.

It is clear that when M is fixed, we have conflicting requirements.

• Raised Cosine family of windows

Many commonly used windowing functions can be written in the general
form

2 4
[ ] cos cos ;               0

n n
w n a b c n M

M M

π π   = + + ≤ ≤       .

(a) Rectangular window

1,  0 ,  0a b c= = =

(b) Hanning window

0.5, 0.5, 0a b c= = − =

(c) Hamming window

0.54, 0.46, 0a b c= = − =

(d) Blackman window

0.42, 0.5, 0.08a b c= = − =
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• Example : The FT of the Hanning window is
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where ( )j
RW e ω  is the FT of the rectangular window.

• Barlett (triangular window):

2 /               0 / 2
[ ] 2 2 /               / 2

0               otherwise

n M n M

w n n M M n M

≤ ≤
= − < ≤



This can be viewed as the convolution of two identical rectangular
windows of half the length.
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• Plot of different windowing functions in the time domain

• The spectral characteristics of the different windows are shown in the next
two pages. Numerical values of the peak sidelobe and width of the main
lobe are summarized below.
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(a) Rectangular window, (b) Barlett window, (c) Hanning window
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(d) Hamming window, (e) Blackman window

• The spectrum of the rectangular window is characterised by a relatively
narrow main lobe but high sidelobes and a slow rate of decay.

• The triangular window is the convolution of 2 rectangular windows of half
the size. This means
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1. the spectrum of a triangular window has a 2sinc  characteristics, i.e. it
decays asymptotically at twice the rate of the spectrum of a rectangular
window;

2. the width of the mainlobe and sidelobes are twice that in the spectrum of
a rectangular window (because of the “halfing” in the time domain).

• Recall that the spectrum of the Hanning window is the sum of 3 different
frequency shifted versions of ( )j

RW e ω , the spectrum of a rectangular
window. Consequently it has a wider main lobe.

Since this windowing function tapers off to zero very smoothly, it has
much lower sidelobes than the rectangular window.

• The main lobe width of the Hamming window is similar to that of the
Hanning window for exactly the same reason.

The sidelobes, although lower than that of the rectangular window, decays
very slowly. This is due to the discontinuities at the two edges of the
window.

• The spectral mainlobe of the Blackman window is wider than that of the
Hamming/Hanning windows because of the additional cosine term in the
windowing function.

Its sidelobes, however, are lower because of the smoother transition to
zero.
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• All the windows described above have the property that

[ ]        0
[ ]

0         otherwise

w M n n M
w n

− ≤ ≤
= 


.

This means (assuming M is even)
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( ) ( )
/ 2 1
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[ / 2] 2 [ ]cos
M
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W e w M w n nω ω
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=

 = + − ∑

is a real and even function in ω .

Note that the phase of ( )jW e ω  is linear.

In most design exercises, we can ignore the phase and focus only on
( )j

eW e ω .
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• If the desired impulse response is of linear phase, i.e.

[ ] [ ]d dh n h M n= − ,

then

( ) ( ) / 2j j j M
d eH e H e eω ω ω−=

where ( )j
eH e ω  is a real and even function in ω .

• Exercise: Shown that if  both [ ]w n  and [ ]dh n  are linear phase, then

[ ] [ ] [ ]dh n h n w n=

is also linear phase, i.e.

( ) ( ) / 2j j j M
eH e A e eω ω ω−=

where ( )j
eA e ω  is a real and even function in ω . Consequently during filter

design, we can just focus on ( )j
eA e ω  and ( )j

eH e ω .

5.1.1 Kaiser Windows

• All the windows discussed so far can be approximated by an equivalent
Kaiser window of the form
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( )
( )

2
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0

1
            0[ ]

0             otherwise

nI
n Mw n I

α
αβ

β

−  −    ≤ ≤= 



,
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2

cos
0

0

1
( )

2
xI x e d

π
θ θ

π
= ∫

is the modified zero-th order Bessel function of the first kind,

/ 2Mα =

is half the window length, and β  is a design parameter.

• Let the square-root term inside one of the bessel functions be denoted by
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2

1n

n
x

α
α
− = −    .

As shown in the figure below, nx  increases monotonically from 0 to 1 in
the interval 0 n α≤ ≤  and decreases monotonically from 1 to 0 in the
interval n Mα ≤ ≤ . Consequently, [ ]w n  is largest  at n α=  but decreases
monotonically on ether sides of this maxima.

When 0β = , [ ] 1w n =  for all values of n. In other word, the Kaiser window
at this value of β  degenerates into a rectangular window.
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• Plot of Kaiser windows in the time and frequency domains.
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It is observed that:

1. the Kaiser windows have linear phase, and
2. the larger β  is, the smoother is the windowing function. This implies a

wider mainlobe but lower sidelobes.

The relationships between Kaiser windows and other windows are shown
in the table on pp 2-7.

• Design guidelines using Kaiser windows

- Assume a low pass filter .

- Given that Kaiser windows have linear phase, we will only focus on the
function ( )j

eA e ω  in the approximation filter ( )jH e ω  and the term

( )j
eH e ω  in the ideal low pass filter ( )j

dH e ω .

- Normalize ( )j
eH e ω  to unity for 0 cω ω≤ ≤ , where cω  is the cutoff

frequency of the ideal low pass filter.

- Specify ( )j
eA e ω  in terms of a passband frequency pω , a stop band

frequency sω , a maximum passband distortion of 1δ , and a maximum

stopband distortion of  2δ . Note that (1) the cutoff frequency cω  of the
ideal low pass filter is midway between pω  and sω , (2) 1δ  should equal
to 2δ  because of the nature of windowing.
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- Let

s pω ω ω∆ = − ,

1 2δ δ δ= = ,
and

1020logA δ= − .

Then choose β  and M according to

0.4

0.1102( 8.7)          50
0.5842( 21) 0.07886( 21)         21 50
0         <21

A A

A A A

A

β
− >

= − + − ≤ ≤



and
8

2.285
A

M
ω

−
=

∆



5-18

• Example : Determine cω , β , and M  when 0.4pω π= , 0.6sω π= , and

1 2 0.001δ δ δ= = = .

Solution:

Since 1020log 60A δ= − = , this means

0.1102(60 8.7) 5.6533β = − = .

Since 0.2s pω ω ω π∆ = − =  and 60A = ,

60 8
36.22 37

2.285 0.2
M

π
−

= = →
×

• Example : Consider an ideal bandpass filter with a frequency response

( )
/2               0.3 0.7

0                otherwise

j M
j

d

e
H e

ω
ω π ω π− ≤ ≤

= 


The corresponding impulse response, [ ]dh n , is symmetrical about
/ 2 25.Mα = =  We want to approximate this ideal filter by multiplying it

with a Kaiser window of length 1 51M + =  and with 3.9754β = . Determine
the width of the transition bands ω∆  and the maximum distortion δ . What
are the passband and stopband frequencies?

Solution:

- Since the length of the window is 1M +  and [ ]dh n  is symmetrical about
/ 2M , the approximation filter ( )jH e ω  has linear phase and can be

rewritten in the form ( ) ( ) /2j j j M
eH e A e eω ω ω−= , where ( )j

eA e ω  is a real and
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even function in ω . Consequently we can just focus on the term ( )j
eA e ω

and have the following specifications:

- In the time domain, the desired impulse response is

( ) ( )sin 0.7 ( 25) sin 0.3 ( 25)
[ ]

( 25) ( 25)d

n n
h n

n n

π π

π π

− −
= −

− − ,

which is the difference of two ideal low pass signals.

- When the Kaiser window is applied to any of the two low pass
components of [ ]dh n , there is a peak spectral distortion of  λ . So the
total spectral distortion is 2δ λ=  (a conservative estimate).

- Given 3.9754β = , it means 1020log 45A λ= − = , or 35.6234 10λ −= × .
Consequently

22 1.3247 10δ λ −= = × .

( )j
eA e ω

1 δ+

δ−

δ

1

0.3π 0.7π

ω

1 δ+
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- The width of each of the two transition bands in ( )j
eA e ω  is governed by

8
0.1031

2.285
A

M
ω π

−∆ = =

This means the stopband frequencies are

1

2

0.3 0.1031 / 2 0.2485

0.7 0.1031 / 2 0.7516

s

s

ω π π π

ω π π π

= − =

= + =

and the passband frequencies are

1

2

0.3 0.1031 / 2 0.3516

0.7 0.1031 / 2 0.6485

p

p

ω π π π

ω π π π

= + =

= − =

• In general, any ideal multiband filter can be expressed as a weighted sum
of ideal low pass signals of different frequencies, i.e.

( )/ 2

1

sin ( /2)
[ ]

( /2)

N
kj M

d k
k

n M
h n e w

n M
ω ω

π
−

=

−
=

−∑

with real weight coefficients kw . The total distortion is

1

N

k
k

wδ λ
=

 =   
∑

where λ  is the peak distortion when the Kaiser window is applied to each
individual ideal low pass signal.
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5.2 The Park-McClellan Algorithm

• The windowing method of FIR filter design is straight forward. However,
the technique has 2 disadvantages:

1. distortion in the passband and the stopband are more or less equal, and
2. distortion is usually largest at the discontinuities of the ideal frequency

response.

• Very often, we want to design a filter with different passband and stopband
distortions.

In addition, if the distortion is more evenly spread, we will be able to come
up with a shorter FIR filter.

• The Park-McClellan algorithm is an iterative procedure for designing an
equi-ripple FIR filter with different distortion in the pass and stop bands.

We will focus our attention on the design of low pass filters of length

2M L=
using this method.

The design of  low pass filters with an odd value of M, as well as the design
of other types of filters (such as bandpass, highpass, etc), require some
modifications to the procedure to be described.
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• We assume the desired response ( )j
dH e ω  has linear phase. This is achieved

when the desired impulse response, [ ]dh n , is symmetrical about / 2n M= ,
i.e.

[ ] [ ]d dh n h M n= −

Given that ( )j
dH e ω  has linear phase, we will focus on its zero-phase

equivalent, ( )j
eH e ω , in the discussion. This function is a real and even in ω.

• We impose the condition that the approximation filter ( )jH e ω  also has linear
phase. This means the approximated impulse response [ ]h n  satisfies

[ ] [ ]h n h M n= − ,

and the zero-phase equivalent of ( )jH e ω  is

( ) ( )
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=
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where
[ ] [ ]ea n h n L= +

is a non-casual signal symmetrical about 0n = .
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• The term ( )cos nω  can be written as a polynomial of degree n in ( )cos ω .

For example, ( ) ( )2cos 2 2cos 1ω ω= − , and ( ) ( ) ( )3cos 3 4cos 3cosω ω ω= − , etc.

This means the zero-phase response ( )j
eA e ω  can be written as a L-th order

polynomial in ( )cos ω  :

( ) ( )
0

cos( )
L

kj
e k

k

A e aω ω
=

= ∑

where the  ka s are the coefficients in this polynomial respresention.

• The Park-McCelland algorithm allows us to find the optimal ( )j
eA e ω  (i.e.

the coefficients ka  in the polynomial representation) for  fixed  L, pω , sω ,
and

1

2

K
δ
δ

= .

The distortion, 1δ  (or 2δ ), however is a variable. Let us define the
approximation error function as

( ) ( ) ( ){ }( ) j j
e eE W H e A eω ωω ω= − ,

where

( ) 1/            0
1             

p

s

K
W

ω ω
ω

ω ω π
≤ ≤

=  ≤ ≤

is a weighting function that normalizes the spectral distortion in the pass
and stop bands. (notice  that the weighting function is not defined for
transition band, i.e. when p sω ω ω≤ ≤ ).
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The optimality criterion used by Park and McCelland algorithm is the
minimax criterion, i.e. the algorithm finds the set of filter coefficients

( )[0], [1],..., [ ]e ea a a L

or equivalently the set of polynomial coefficients

( )0 1, ,..., La a a

that minimizes the maximum of ( )E ω  (normalized peak distortion) over

the intervals 0 pω ω≤ ≤  and sω ω π≤ ≤ . Example of an ( )j
eA e ω  after

optimization is shown below.

• From the so-called Alternation Theorem in polynomial approximation
theory, we have the following results:

There exists a UNIQUE set of polynomial coefficients
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( )0 1, ,..., La a a

and a unique set of extremal frequencies

{ }1 2 2, ,..., Lω ω ω +Ω = ,
with

1 2 2Lω ω ω +< < <L ,
such that

( ) ( ) 11 i

iE ω δ+= −                             (equiripple)

where δ  is the minimum peak distortion. Note that both the pass band
frequency pω  and  the stop band frequency sω   belong to Ω , and if

k pω ω= ,
then

1k sω ω+ = .

• The Park-McClelland algorithm uses an iterative procedure to find the set
of extremal frequencies.

1. At the start of the algorithm, guess the the locations of the L+2 extremal
frequencies. Call these frequencies ˆ ;  1,2,..., 2k k Lω = + .

2. Define kx  as

( )ˆcosk kx ω=

3. Use (7.101) and (7.102) to obtain δ̂ , an estimate of the normalized peak
distortion δ .
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4. Use (7.103) to compute ( )ˆ j
eA e ω , an estimate of ( )j

eA e ω . This function
has the characteristics

( )
ˆ1 /           ˆ

ˆ           
k k pj

e

k s

K
A e ω δ ω ω

δ ω ω

 ± ≤= 
± ≥

.

5. Locate the local maxima in

( ) ( ) ( ){ }ˆˆ ( ) j j
e eE W H e A eω ωω ω= −

where ˆˆ( )E ω δ≥ . If there are more than 2L +  such maxima ( pω  and sω

are counted as “maxima” even though the slopes at these two
frequencies are not zero), retain only the 2L +  largest ones. Call these
frequencies ;  1,2,..., 2k k Lω = +% .
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6. If the kω% s differ “substantianlly” from the ˆ kω s, update the ˆ kω s using
these frequencies and go back to Step 2. If not, declare that the optimal

solution has been found. In this case, make ˆk kω ω= , ˆδ δ= , and

( ) ( )ˆj j
e eA e A eω ω= . Take a M-point IFFT of ( )j

eA e ω  to obtain [ ]ea n .

Delay [ ]ea n  by / 2L M=  samples to obtain [ ]h n .

• The impulse and frequency response of an approximation filter for
0.4pω π= , 0.6sω π= , 10K = , and 26M =  are shown below. Note that

1 0/0116δ δ= =  and a FIR filter based on Kaiser window with a similar
value of δ  has  a length of M=38.
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5.3 Implementation Structure of FIR Filters

• Reference: Section 6.5 of Text

• The relationship between the input [ ]x n  and the output [ ]y n  of a FIR filter
of length  1M +  is

0

[ ] [ ] [ ]
M

k

y n h k x n k
=

= −∑ ,

where [ ]h n  is the impulse response of the filter, and

0

( ) [ ]
M

k

k

H z h k z−

=

= ∑

is the transfer function of the filter.

• According to the above equations, a possible implementation structure of
the FIR filter is
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This is called the direct form implementation. Note that a branch in the
signal flow graph with a transmittance of 1z−  represents a delay of 1
sample. On the other hand, a branch with a transmittance of [ ]h k  means the
signal at the originating node of that branch is multiplied by the constant

[ ]h k . Again, as in any signal flow graph, the signal at a node is the sum of
the product of the signal at an originating node and the corresponding
branch transmittance.

• The transfer function ( )H z  of a FIR filter can be expressed in terms of its
zeros according to the following equation

( ) ( )( )
1 2

1 1 * 1

1 1

( ) 1 1 1
M M

k k k
k k

H z C f z g z g z− − −

= =

= − − −∏ ∏

Here the kf ’s are the real zeros and the kg ’s are the complex zeros. The
parameter C is a constant.

The complex zeros will always appear in conjugate pairs (as long as the

impulse response is real). Moreover, ( ) ( )1 * 11 1k kg z g z− −− −  is a 2nd order

polynoimal in 1z −  with real coefficients.

Assuming 1 2M K= , where K is an integer. Then we can group the
11 kf z −− ’s  into pairs and the product of any pair is always a 2nd order

polynoimal in 1z −  with real coefficients. In other word, the transfer
function can always be written in product form as

( ) ( )1 2
0 1 2

1 1

( ),
s sM M

k k k k
k k

H z b b z b z B z− −

= =

= + + =∏ ∏
where
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( )1 2
0 1 2( )k k k kB z b b z b z− −= + +

and

2sM K M= + .

This  product form  suggests that the FIR filter can be considered as the
cascade of sM  subsystems, with the transfer function of the k-th subsystem
being equal to ( )kB z .

The signal flow graph below shows this Cascade form of implementing the
FIR filter.

• Compared to the direct form, the cascade form is less sensitive to the
quantization of the jkb ’s. Specifically, the poles of the transfer function
will experience smaller changes.

The computational complexity, as well as the number of delay elements, of
the direct and cascade forms are identical.
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• All the FIR filters considered in this chapter are assumed to have linear
phase. This is a direct result of the symmetry in the impulse response.
Specifically

[ ] [ ];            0,1,...,h M n h n n M− = =

Because of the symmetry, there is no need to do all the 1M +
multiplications in the direct form implementation of the FIR filter. We can
first add [ ]x n k−  and  [ ]x n k M+ −  together before multiplying the sum
by [ ]h k . The figure below illustrates the direct form structure for a FIR
linear phase system when M is an even integer.

• It is also possible to implement a linear phase FIR filter, with reduced
complexity, using the cascade form.


