6. Design of | IR Filters

Reference: Sections 7.1 of Text

A digital filter, H (ejw), with infinite impulse response (IIR), can be
designed by first transforming it into a prototype analog filter H. (iW) and
then design this analog filter using a standard procedure. Once the analog
filter is properly designed, it is then mapped back to the discrete-time
domain to obtain adigital filter that meets the specifications.

The commonly used analog filters are

1. Butterworth filters—no ripples at all,

2. Chebychev filters - ripples in the passband OR in the stopband, and

3. Elliptical filters - ripplesin BOTH the pass and stop bands.

The design of these filters are well documented in the literature.

A disadvantage of IIR filters is that they usually have nonlinear phase.
Some minor signal distortion is a result.

There are two main techniques used to design IIR filters:

1. The Impulse Invariant method, and
2. The Bilinear transformation method.

6-1



6.1 The Impulse Invariant M ethod

In the impulse invariant method, the impulse response of the digital filter,
h[n], is made (approximately) equal to the impulse response of an analog

filter, h.(t), evaluated at t =nT;, where T, is an (abitrary) sampling period.
Specifically

hin] =T h.(nT,)

From our discussion in Chapter 2,

wy_ o @&w .2pko
H(e)=a Rl 15

and aliasing would occur if HC(JW) is not bandlimited to P /Ty (in rad/s).
If H.(iW) isbandlimitedto P /Ty, then
H(e")=H, (w/T,).

In this case, it is straight forward to specify the prototype analog filter.

However, all the commonly used prototype analog filters used in the
impulse invariant design method are indeed non-bandlimited. So there is
aliasing. However, the aliasing can be minimized if we over-design the
analog filter (especially in the stop band).

The picture below illustrates the design procedure. We first specify the
digital filter as shown in the first diagram. Then we map the digital
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frequency W onto the anadog frequency W=w/T;, and make

H, (jW)=H (eeru ) =. Notice from the diagram that we can only control

the magnitude of the responses because of the nature of the analog filters
used.

‘H (e" )‘ A
1
1-d,
%+ | 1
| | | > W
WP Ws p
Digital filter specifications
H, (W),
1
1-d,
d, |
— | > W
Wo Wy P
T Ty T,

Prototype analog filter
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Let H.(S) bethe Laplacetransform of h.(t), where the complex number
s=s +jW

is the Laplace domain variable. Assuming H.(s) has only single-order
poles s, then

Thisimplies

h(n] =T4h.(nT,)

N
=T, & Ae*™uln]
k=1
N

=8 AT, (™) uln]

and
Y

H(=a hnz"

¥ N
o)

=a é ATq (esde) z
n=0 k=1
N ¥ n
=a AT.a (Z_ e )
k=1 n=0

8 AT

-1,
k:]_l' Z eS(d
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It is observed that the pole s, =s, + jW, in the s-plane is mapped into the
pole

pk — eSde

= kTd ejWde

in the zplane. If all the S’s are on the left half of the s-plane, i.e.

s, <0, k=12,..., N, then al the Px’'s are within the unit-circle in the z
plane (i.e. |p|<1). This means that a stable analog filter always yields a
stable digital filter with the impulse invariant method.

It should be emphasized that

STd

z1l e

in general.

Example: Design a digital low pass IIR filter with the following
specificiations:

0.89125£|H ()| £1 0£w|£0.2p
‘H (ejw)‘ £0.17783, 0.3 £w £p

Use the impulse invariant technique and an analog Butterworth filter.
Assume Ty =1 and that thereis minimal aliasing.
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Solution

- with T, =1, thismeans W=w, and H. (jW) =H (ejW). Consequently, the
specifications of the analog prototype filter are

0.89125£ [H, (jW)|£1, 0£|WE 0.2p
H, (iW)| £0.17783, 0.3 £EW

Notice that we did not specify an upperlimit for the stopband frequency.

- The magnitude square response of a Butterword filter of order N is

H.(GW) =

n§|é =

—N

1+ (3]

where W, is the 3-dB frequency of the filter. It is observed that the
magnitude square response decreases monotonically with frequency.

The larger N is, the closer the Butterworth filter is to an ideal low pass
filter.

Theterm H_(jw) inthisfigureisthesameasour H_(jw)
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- The 3-dB frequency and the filter order N are solutions of the two
simultaneous equations:

W6 = 1 &
l+g - = -
EW 5 891255
.2N .2

&HPO _ax& 1 6
1+Q = = -
EW 5 &.17783%

The exact results are N =5.8858 and W, =.70474. After rounding, we
have N =6 and W, =.7032. This latter set of results means the passband

requirement is met exactly at W, =02p and met with margin at
w, = 0.3 . Specifically, |H.(j0.3p)|=0.1700 <0.17783.

- The next step isto find the poles of the Butterworth filter. Note that
1
Lo 2N
[+t

has 2N poles whose locations in the s-plane are depicted in the diagram
below.

H.(9H(-9 =
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Mathematically, these poles are
aPp _
r, =0.7032ex —+ +(k - k=1,2,....2N
p| Jg ( )12 %

Half of these poles are the poles of the Butterworth filter. Specifically
we choose those I,’s on the left-half s-plane to be the poles of H.(s).
Consegquently the poles of H.(s) are

-0.182+0.679j
- 0.497+ 0.497]
- 0.679+ 0.182]

The poles of the corresponding digital filter are

0.649+ 0.524 ]
0.535+0.290]
0.499+0.092]

- Thetransfer function of the Butterworth filter is

L 1 W
H.(59=0 SO=@( : |
k1 & SO O s- s,
& sp =

_ 0.12093

(52 +0.3640s + 0.4945) (32 +0.9945s + 0.4945) ( s? +1.3585s+ 0.4945)
_s A

21 S-S

wherethe A sarethe partial fraction expansion coefficients.
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- Thetransfer function of the digital filter H(z) is (remember 1, =1)

N
_s A
H(2) =
(2 211- Z 'e™

0.2871- 0.44667* L 2.1428+1.14557*
1- 1.2971z ' + 0.6949z %> 1- 1.0691z ' + 0.3699z *
,_ 1.8557- 0.6303z*
1- 0.99727 ' +0.2570Z 2

&
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If Matlab is used to design the above prototype analog filter, first set

Wp=0.2p =0.62832
Ws=0.3p =0.94248
Rp=20l0g,,(0.89125) =- 1
Rs=2010g10(0.17783) =- 15

Then issue the Matlab command

[N,Wn]=buttord(Wp,Ws,Rp,Rs,'s)

Matlab with return the filter order in N and its 3db frequency W, in the
variable Wn. The results | got is N=6, Wp=0.70866. The latter result is

dightly different from W, =0.7032

The poles of the corresponding Butterworth filter can be obtained by
Issuing the Matlab command

[Z,P,K]=butter(N,Wn,'s)

where the array Z contains the zeros, the array P contains all the poles,
and the variable K isthe gain. The poles | obtained for this example are

-6.8451e-001 +1.8341e-001i
-6.8451e-001 -1.8341e-001i
-5.0109e-001 +5.0109e-001i
-5.0109e-001 -5.0109e-001i
-1.8341e-001 +6.8451e-001i
-1.8341e-001 -6.8451e-001i

which are glightly different from those in the text.

Finally use the matlab command ‘impinvar” to convert the analog
prototype filter into a corresponding digital filter.
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Example: Repeat the last example using a Chebyshev filter.

- The magnitude square response of a N-th order Chebyshev filter with a
ripple parameter of € is

1
1+eV; (&)

H.(jW)| =

where V, (x) isthe N-th order Chebysheve polynomial, defined as
V(X) = cos(N cos * x)
For example, V,(xX) =1, V,(X) =X, V,(X) =2x*- 1. In generd,

Vi (X) = 2V (X) - V.1 (X)

- Itisobserved that when X is between 0 and unity, V,(x) varies between
0 and unity. However, when X is greater than 1, cos ‘X is imaginary
and so V,(x) behaves like a hyperbolic cosine and consequently
increases monotonically for X greater than unity. Consequently, the
magnitude response of a Chebyshev filter looks like the following
(correction: replace 1- e by 1/1+e? )

§

6-11



- We will design a Chebyshev filter such that the passband requirement is
met exactly at W=0.2p . Consequently, W, =0.2p and

1
1+e

0.89125 =

or e=0.50885

2 1

- To determine the filter order N, we calculate [H.(0.3p) for different
valuesof N and pick the smallest N that exceeds the specification. Note

that the requirement is |H,(0.30)| £0.17783 or |H(0.3p)[* £0.031624. It can
be shown that

N=3 |H(0.3) =0.04551
N =4, |H (0.3p)|" = 0.00694

Consequently thefilter order is N=4.

- The poles of the Chebyshev filter lie on an ellipse in the s-plane with
minor axis aW, and major axis bW, , where

a==(a""-a ") =0.3646
> ,

bzl(a”N+a'”N):1.0644
> ,

a=el+1+e?2=41702

The equation of this ellipseis given by

and

s? W

+ =1
W W
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where S=s + JW is the complex s variable. In addition to the above
ellipse, we defined the major circle as the circle centered at s=0 and

with aradius bW,. Similarly, the minor circle is the circle centered at
s=0 and with aradius aW,

To locate the poles, we first identify the points on the major and minor
circles that are equally spaced in angle with a spacing of p/N and
arranged in such a way that the points are symmetrically located with
respect to the imaginary axis (but never fall on the imaginary axis) and a
point occursonthereal axisfor N odd but not for N even.

The poles of a Chebyshev filter fall on the above ellipse with the
ordinate specified by the points identified on the mgor circle and the
abscissa specified by the points identified on the minor circle.

The diagram below illustrates how the poles can be located for the case
N=3.

Gl XN
) ¥ i 5 \

! j \ \
i / 4 | i
) ’ \ %
. { , all, l |
T e——T
\ F b3, [
1 \ T Ill I
| ) |
"._ " /

X A
b &
= — = R

s -\-"‘-'“1._,_..:"{-"*

An examplefor finding the poles of a Chebyshev filter with N=3.

It should be emphasized that only poles on the left-half plane are used in
the transfer function of thefilter.
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- Onceadl the 4 poles, S;S:S;,S,, are found, the transfer function of the
Chebyshev filter can be written as (please verify)

A
e L Os 0.038286
c - 4 (2 2
1+e’ G s- 5) (s? +0.42335+0.1103) (s +0.1753s +0.3894)

k=1

The magnitude and phase of this transfer function are shown below

Mognitude

i ! — ~
0 0.2 04w CEw Q.8 T

o (dB)

Phase (degrees)

- 2000 L l
0 D2w % OB OB
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If you use Matlab to determine thisfilter, first set

Wp=0.2p =0.62832
Ws=0.3p =0.94248
Rp=20l0g,,(0.89125) =- 1
Rs=2010g10(0.17783) =- 15

and then issue the Matlab command
[N,Wn]=cheblord(Wp,Ws,Rp,Rs,'s)
Finally complete the filter design by issuing the command
[Z,P,K]=cheby1l(N,-Rp,Wn,’s’)

The zeros of the filter will be returned in the array Z, the poles stored in
P, and the gain stored in K. What | found for the poles were

-2.1166e-001 +2.5593e-001i
-2.1166e-001 -2.5593e-001i
-8.7673e-002 +6.1788e-001i
-8.767/3e-002 -6.1788e-001l

and the gain was K=0.038286. There are no zeros. These results agree
with those obtained through analysis.

The transfer function of the corresponding digital IR filter is

H(y=_ 0083274002307 0.08327- 002467
1- 1565821 +0.6549z 2 1- 149347 ' +0.83927

It is interesting to point out the Chebyshev filter has a lower order than
the Butterworth filter in the last example.
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6.2 The Bilinear Transformation M ethod

In the impulse invariant method, aliasing occurs when the prototype analog
filter is transformed back into the digital filter. To reduce the distortion
introduced by aliasing, we start off by tightening the specifications on the
digital filter. This is somewhat cumbersome and may lead to several
iterations before the “ optimal” filter is found.

Aliasing occurs because points in the W axis separated by 2p /T, are
mapped into the same digital frequency W. In the Bilinear transformation
method, there is a one-to-one correspondence between W and W. So
aliasing is avoided in transforming the prototype analog filter back into the
digital filter.

Since W islimited to [- p,p] but W varies from -¥ to +¥, it becomes clear

that W must be compressed when it is mapped to W. In other word,
Bilinear transformation is non-linear in nature.

Let H.(s) be the transfer function of the protype analog filter. The transfer
function H(z) of the digital filter is obtained by substituting

1- z*

2
S=—
T, 1+7}

into the expression of H_(s). In other word

&2 1-7'0

H(z)=H ~— -
(2) “&T, 1+ 7%,
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- The Bilinear transformation can be written alterantively as:

(1+ z'l) ST, :2(1- z'l), or
ST, +Z'sT, =2- 2z, or
(2+sTy)z* =2- Ty, or
_2+sl,
Z= ’
2- S,
1+

T q_ STy
12

or

. If s=s + JW, where W isthe analog frequency, then

()i
(1- =) %
_ \/(1+ %)2 +(er)2 exp{ j arctan 8(%)/(“%)&
\/(1 %)2 +(Wr7)2exp{- jarctan§ %) /(1- %)3}
= |4 exp{ ja}
where
o) (2]
N o2y ()
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q= arctang%)/(h%)w arctan g%)/(l %)H

are respectively the magnitude and phase of Z.

Observations:

1. When s <0, |4<1. So |eft-plane poles of H,(s) will be mapped into

poles within the unit circle in the zplane. In other word, a stable
prototype analog filter will lead to a stable digital filter.

2. When s =0, |2=1. In other word, z lies on the unit circle and can be
written as
z=e" (whens =0)
where

W, ()
W°q:2arctani ¢y

N\

represents the digital frequency. Alternatively, we can express the
analaog frequency W interms of the digital frequency w as

2 awo

W=—tan -
€25

T

The figure below illustrates the relationship between W and W. It is
clear that compression occurs in the mapping process.

These results indicate that the entire left-half s-plane is mapped into a
disc of radius 1 in the z-plane.
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Digital Fregquency

=20 -15 =10 ] a ] 10 15 20
Analog Frequency AT,

Example: Design adigital low passfilter with the following specifications

089125 £ |H ()| £1 0£w|£0.2p
H ()| £ 017783, 0.3 £jw|£p

using the Bilinear transformation method and a Butterworth prototype
filter. Compare the results with those obtained through the impulse
invariant method.

Solution:;

For simplicity, set T,=1. So W=2tan(w/2). This means the digita
passband and stopband frequencies,
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w,=02p, w,=03p
are mapped into the analog passband and stopband frequencies

W, =2tan(w,/2) =0.64984,
W, = 2tan(w, / 2) =1.0191

The specifications of the prototype analog filter become

0.89125£ |H, (jW)[£1, O£ |W £0.64984
H, (iW)| £0.17783, 1.0191£ WE ¥

Next we define the following Matlab variables

Rp=2010g10(0.89125)=-1
Rs=2010g10(0.17783)=-15
Wp=0.64984

Ws=1.0191

and issue the command [N,Wn]=buttord(Wp,Ws,Rp,Rs,’s ). Matlab will
return the order of the Butterworth filter in the variable N and the 3-db
frequency in the variable Wn. It was found that

N=6
Wn=0.76627° W,

To complete the design of the protoype Butterworth filter, we next issue the

Matlab command [Z,P,K]=butter(N,Wn,’s'). The zeros of H.(S) will then
be returned in the array Z, the polesin the array P, and the filter gain (same

as W') inthevariable K. It was found that there are no zeros, the poles are
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-7.4016e-001 +1.9832e-001i
-7.4016e-001 -1.9832e-001i
-5.4183e-001 +5.4183e-001i
-5.4183e-001 -5.4183e-001i
-1.9832e-001 +7.4016e-001i
-1.9832e-001 -7.4016e-0011

and the gain is 0.20243. Denoting the poles as S.S,...+ &, the transfer
function of the Butterworth filter is

K

HC(S): ~ g
O, ., (s-5)

_ 0.20243
(s? +0.396655+0.58716) (* +1.0837s +0.58716 ) (s” +1.4803s + 0.58716)

This result is very close to that in Example 7.3 of the Text. Compared to

the result obtained under the impulse invariant method, we observe a
noticeable differencein H.(s).

Finally, the last step in the design exercise is to map the above transfer
function into adigital filter using Bilinear transformation, i.e.

0
H(z)=H. aezl z
& 1+771

This can be done by using the Matlab command
[Zd,Pd,Kd]=bilinear(Z,P,K,1)

where Z, P, and K are same as before, 1 corresponds to the sampling
frequency 1/T,, Zdisan array containing the zeros of H(z), Pd is the array
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storing the poles of H(z), and Kd is the gain of H(z). The results |
obtained are:

Kd=0.00073798

Zd=

4.5216e-001 +1.0510e-001i
4.5216e-001 -1.0510e-001i
5.0527e-001 +3.2087¢e-001i
5.0527e-001 -3.2087e-001i
6.3430e-001 +5.5026e-001i
6.3430e-001 -5.5026e-001I

Cdlling the 6 zeros as %,%,,..., Z; and the 6 polesas P., Py;---» Ps. Then the
transfer function of the digital filter H(z) can be written as

H(z) = Kd 9 ( A )
O ne)
] 0.00073798 (1+2°)’
-~ (1- 126867 " +0.705127 %) (1- 1.01057 * +0.358267°7)

1
(1- 0.90433z°1 +O.215502'2)

Theresult is once again close to that in Example 7-3 of the text.
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6.3 Frequency Transformation of L owpass | IR Filters

So far, we focus our discussion on the design of lowpass IR filters. How
about highpass, bandpass, and bandstop filters?

wq w3y w

Frequency responses of lowpass, highpass, bandpass, and bandstop filters.

The impulse invariant method will not be suitable for the highpass and
bandstop filters because of heavy aliasing.
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It is possible to get around the problem by first designing a digital
portotype lowpass filter and then perform an algebraic transformation on
the digital lowpass filter to obtain the desired frequency selective filter.

The tranfer function of the digital prototype low pass filter is denoted by
H, (p) where p playsthe sameroleas z, the conventional z-transform
variable.

The transfer function of the desired frequency selective filter is denoted by
H(z).

We want to find a relationship between p and z, denoted by

p-l — G(Z-l)
such that

H(Z):Hlp(p)

p =G (z' 1)

It should be emphasized that the transformation relates p* to z*, not p to
z Thisis due to the fact that H,,(p) is usually expressed as a function in
p* instead of p.

We want a stable, rational H,,(p) be mapped into a stable rational H(z).
Consequently, the requirements on the mapping function p'=G(z*) are:

1. G(z*') must be arational functionof z*.

2. The inside of the unit circle in the p-plane is mapped into the inside of
the unit circlein the z-plane.
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3. The unit circle in the p-plane is mapped into the unit circle in the z-
plane. Soif g and W are the frequency variablesin the p-plane and the
z-plane, then

e =G(e)
Consequently
‘G(e‘ jw)‘ =1
and
q=-£G(e’™).

The most general form of the function G(z') that satisfies all the above
requirementsis:

p'lzG(z'l)zié)z_;a_k' a,|<1

By choosing appropiate values for N and the &, ’s, a variety of mappings
can be obtained.

L ow-passto L ow-pass transfor mation:

-1
1_Z'-a
1-az?

This meansthe relationship between g and W is

eW_a

e' ]q - i
1-ae
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or
w_ €1 +a
1+ae "
B (e‘ R +a)(1+aejq)
_(1+ae' jq)(1+ae"q)
! +(1+a2)cos(q)+ j(az- 1)sin(q)
1+a®+2a cos(q)

e

or

e (1-a2)sinq u
w = arctan & U
g2a +(1+a2)cosqp]

/2

For agiven pair of 4, and W, the parameter & is

Lo sing(qp - Wp)lzﬂ
singqp+wp)/28

It can be shown that the absolute value of @ islessthan 1.
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Transformations from LPto LP, HP, BP, and BS filters are shown below:

TABLE 7.1 TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPE OF

CUTOFF FREQUENCY 6,

Filter Type Transformation Associated Design Formulas
8 —w
. f Yp [
e sin| ——
o I Bl =8 (ﬂ, + m,)
sin
2
w, = desired cutoff frequency
P 8, + w,
) ' 4a 2
i e = —
s P= — %
2
w, = desired cutoff frequency
M k il l. mpz + mpl
-3 _ -1 cos| ———
- k1. TEFd - i;)
Bandpass P T 2ak s W, — @y
-2 _ | cos| ———
k+1 k+1 { 2
Wy — Wy o,
k= cul(—-z—)tan( 1)
w,, = desired lower cutoff requency
w,; = desired upper cutoff frequency
b 2a z_l+l—k 2 W,y + @y
- 1+ k 1+k N 2
Rendsiep P = 1 -k -3 22 _ = | o C Wpz = Wy
I+k-  T+k° 2

el

w,; = desired lower cutofl frequency
@,, = desired upper cutoff [requency

—

The corresponding definitions of filter cutoff frequencies are shown in the

next page.
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wy llJ' | it
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| Hie®} |
F,
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I —
1-8§, bz
5, IW Lz,
l | L1 !
Wy Wy Wy Wy Ld o
(e
| Hig™) |
1 +51W Ll
1-8, P m’
5} )
i i | | |
Wy Wy Wy Wy n w
di

(a)' low pass, (b) high pass, (¢) bandpass, (d) bandstop.
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Example: The prototype low pass filter

0.001836(1+ p™*)*
1- 1.5548 ™" +0.6493p ) (1- 1.4996p " +0.8482p™°

Hlp(p) :(

satisfies
089125£|H () £1,  O£fa|£0.2p
‘H (e” )‘ £0.17783, 0.3 £]q|£p
Determine the corresponding high pass filter that satisfies the requirements
0.89125£|H(e™) £1  0.6p £w|£p

Solution:

The passband frequency of the high pass filter is w,=0.6p and the
passband frequency of the digital prototype filter is d, =0.2p . So according
to the design formula,

COS(qp;Wp)
a= T =-0.38197
COS( P2 P)
This means
p'l _ z'+a _- z'+0.38197
l+az' 1-0.38197z*
Consequently,
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H(z)=H,(p)

p (- 2 1+0.38197)/(1- 0381977 )

B 0.02426(1- z*)’
~ (1- 1.04162* +0.40192°2) (1- 05661z * +0.76477 )

It should be pointed out that in actual design, the stopband frequency of the
digital prototype filter will be determined by the stopband frequency of the
high pass (or desired) filter. We assume in this example that the stop band

frequency of the high pass filter is mapped into d,=0.3p0 based on
a =-0.38197.

6.4 lmplementation Structuresfor IIR Filters

Reference: Section 6.3 of Text

The transfer function of an IR filter can always be expressed as a ratio of
two polynomials, i.e.

H(z):%’

where A(2) and B(2) are respectively polynomials of orders N and M
inz*.

It is the denominator polynomial that makes the impulse response of the
filter infinitely long.
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Different expressions for A(2),B(z), and H(2) lead to different
implementation structures. For example, if these two polynomias are
written as

N
A2 =1-gaz"
k=1

and
y
B(z=a hz",
k=0
then
H(z) = k:j;‘
1- aaz’

This means in the time domain, the input x[n] and the output y{n] of the
filter satisfies

yin]- & ayIn- kI= & bx{n- k],

k=1 k=0

which is simply alinear constant coefficient different equation.

A a possible computational structure for y[n] is shown in the signal flow

graph in the next page. There, a branch with a transmittance of z* is
equivalent to adelay of 1 sample, and a branch with atransmittance a (or

b,) impliesascaling of the signal at the originating node of that branch by
the constant & (or b;). Asin any signal flow graph, the signa at any node,

I.e. the node value, is the sum of products of the signal at an originating
node and the corresponding branch transmittance.

6-31



The above computational structure is called the Direct Form |
implementation of an IIR filter. Note that for simplicity, we assume that

the order of the numerator and denominator polynomials are identical, i.e.
N=M.

It is observed that the Direct Form | implementation structure requires
2N +1 multiplications, 2N additions, and 2N delay elements.

The number of delay elements can be reduced to N if we interchange the
two sections in the Direct Form | structure. This leads us to the Direct
FormIl structure shown below.
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It is also possible to express the transfer function of an [IR filter in product
form as

H(z)=C "E ’N;
91 1- ckz'l)gz)l (1- d .z 1)(1- d. z 1) ’

where C is a constant, the f, ‘s are the real zeros of the transfer function,
the g, ‘s are the complex zeros (which always exist in conjugate pairs), the

G 's are the real poles, and the d,’s are the complex poles (which always
exist in conjugate pairs).

Note that the products (1- g,z*)(1- g;z*) and (1- d,z*)(1- dz*) are 2™
order polynomiasin z* with real coefficients.
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For simplicity, we assume that N, =M, =2K (K an integer) and N, =M,.
This means we can combine pairs of real poles and combine pairs of real
zeros and rewrite H (z) as

H(z)= és) by +b,Z +b, 2"

-1 -2
w1 L1+ a.z +a,z

Ns
— Hk(z)’
k=1
where
+ -1+ 2
H, () = Rt B2+ B, Z
1+a,z" +a,z
and
N.=K+N,,

This expression for the transfer function enables us to visualize the |IR
filter as the serial concatentation of N, subsystems. Subsequently it leads
to the Cascade implementation structure; see for example the case of

N, =3 below.

Exercise: Draw the Cascade form of the high passfilter in Section 6-3.
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With the Cascade form implementation, the locations of the poles and zeros
will not change dramatically when the &;’s and the b;’s are quantized (as
in fixed point implementation). This is in contrast to the Direct form
implementation where the poles and zeros can change substantially because
of quantization. This issue will be discussed in details in Chapter 7 of the
lecture notes.

If we express the transfer function as a partial fraction expansion, then

N 1
_ o &k T 67
H(2) =
(Z) 211' alkz-l_ aZkZ_Z

Ns

= é. Gk(S),

k=1

where

_ e tez’
G =
k(S) 1- aikz-l- a2kz'2

and all the polynomial coefficients are real.

The transfer function suggests that the |IR filter can be viewed as a “large’
system comprising of N parallel subsystems. The input to all the
subsystemsis X[n] and the output of the IIR filter, y{n], is the sum of the
yi[n]’s, theindividual outputs of the subsystems.

The figure below shows this parallel form of the lIR filter.
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The parallel form offers robustness against quantization error for the poles.
The zeros, however, will be affected by the shifting of the poles in the
individual subsystems.

Exercise: While it is straight forward to incorporate any given initial
condition of an IIR filter in the Direct Form | structure, it is not clear how
this can be done in the other structures. |s this a matter of great concern? If
S0, suggest how a given initial condition can be incorporated into the Direct
Form 11, the Cascade form, and the Parallel form.
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