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“I coined fractal from the Latin adjective fractus. The corresponding 
Latin verb frangere means "to break" to create irregular fragments. It is 
therefore sensible - and how appropriate for our need ! - that, in 
addition to "fragmented" (as in fraction or refraction), fractus should 

also mean "irregular", both meanings being preserved in fragment. ”

Fractal Fractal –– ““broken, fragmented, irregularbroken, fragmented, irregular””

B. Mandelbrot : 

The fractal Geometry of Nature, 1982
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FractalsFractals inin naturenature

A naturally occurring fractal is one in which it’s pattern is 
found somewhere in nature.

A few examples where these recursive images are seen are 
trees, ferns, fault patterns, river tributary networks, coastlines, 
stalagmite, lightning,  mountains, clouds. 

Several of the examples just listed are also structures that are
mimicked in modern computer graphics.

http://classes.yale.edu/fractals/Panorama/Nature/NatFracGallery/Gallery/Stalagmite.gif

http://classes.yale.edu/fractals/Panorama/Nature/Rivers/Norway.gif

http://classes.yale.edu/fractals/Panorama/Nature/Rivers/Waterfall1.gif

http://classes.yale.edu/fractals/Panorama/Nature/NatFracGallery/Gallery/Stalagmite.gif
http://classes.yale.edu/fractals/Panorama/Nature/Rivers/Norway.gif
http://classes.yale.edu/fractals/Panorama/Nature/Rivers/Waterfall1.gif
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Fractal geometry: the language of natureFractal geometry: the language of nature

Euclid geometry: cold and dry
Nature: complex, irregular, fragmented

“Clouds are not spheres, mountains are not cones, 
coastlines are not circles, and bark is not smooth, 
nor does lightning travel in a straight line.”
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Practical measurementsPractical measurements

There is no formula for coastlines, or defined 
construction process.
The shape is the result of millions of years of 
tectonic activities and never stopping 
erosions, sedimentations, etc.

In practice we measure on a geographical 
map.

Measurement procedure:
– Take a compass, set at a distance s (in true 

units).
– Walk the compass along the coastline.
– Count the number of steps N.
– Note the scale of the map. For example, if the 

map is 1:1,000,000, then a compass step of 
1cm corresponds to 10km. So, s=10km.

– The coast length ≈ sN.

100km 50km
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The Hong Kong coastThe Hong Kong coast

Apply the procedure with different s.
Results:

– The measured length increases with 
decreasing s.

Compass step s Length u
2km 43.262km
1km 52.702km
0.5km 60.598km
0.1km 69.162km
0.02km 87.98km
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NotionNotion ofof lengthlength
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Answer: A Answer: A 
Spiral 1 is infinitely long but Spiral 2 isnSpiral 1 is infinitely long but Spiral 2 isn’’t.t.

Quarter circles of progressively decreasing radius.
s1 = πa1/2
s2 = πa2/2

Length =

If ai = 1, q, q2, q3, …, qi-1,…, then length is finite (right one, q=0.95).
If ai = 1, 1/2, 1/3, 1/4, …,1/i,…, then length is infinite (left one).

  

π
2
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i =1
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Euclid dimensionEuclid dimension

In Euclid geometry, dimensions of objects are 
defined by integer numbers. 
0 - A point 
1 - A curve or line 
2 - Triangles, circles or surfaces 
3 - Spheres, cubes and other solids
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LengthLength ofof thethe coastlinecoastline ofof BritainBritain
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For a square we have N^2 self-similar pieces for the
magnification factor of N

dimension=log(number of self-similar pieces) 
/log(magnification factor)

=log(N^2)/logN=2
For a cube we have N^3 self-similar pieces
dimension=log(number of self-similar pieces) 

/log(magnification factor)
=log(N^3)/logN=3

Sierpinski triangle consists of three self-similar pieces
with magnification factor 2 each
dimension=log3/log2=1.58
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DimensionDimension ofof a a twotwo dimensionaldimensional sqauresqaure
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Fractal dimensionFractal dimension

Fractal dimension can be non-integers
Intuitively, we can represent the fractal 
dimension as a measure of how much space 
the fractal occupies. 

Given a curve, we can transform it into 'n' 
parts (n actually represents the number of 
segments), and the whole being 's' times the 
length of each of the parts. The fractal 
dimension is then : 

d = log n / log s
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ScalingScaling//dimensiondimension ofof thethe von Koch von Koch curvecurve

Scale by 3 – need four
self-similar pieces
D=log4/log3=1.26
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mathematical fractal: mathematical fractal: KonchKonch SnowflakeSnowflake

Step One.
Start with a large equilateral triangle. 
Step Two.

Make a Star. 
1. Divide one side of the triangle into 

three parts and remove the middle section. 
2.  Replace it with two lines the same 

length as the section you removed. 
3.  Do this to all three sides of the triangle. 

Repeat this process infinitely.

The snowflake has a finite area bounded 
by a perimeter of infinite length! 
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Definition: SelfDefinition: Self--similaritysimilarity

– A geometric shape that has the property of self-similarity, that is, each 

part of the shape is a smaller version of the whole shape.

Examples:



Fractals - Maciej J. Ogorzałek

SelfSelf--similaritysimilarity revisitedrevisited

Self-similarity in the Koch curve
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Real world fractalsReal world fractals

A cloud, a mountain, a flower, a tree 
or a coastline…

The coastline of Britain
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In In naturenature –– snowsnow--flakesflakes
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Another example: Cantor SetAnother example: Cantor Set
The oldest, simplest, most famous fractal 

1 We begin with the closed interval [0,1]. 
2 Now we remove the open interval (1/3,2/3); 

leaving two closed intervals behind. 
3  We repeat the procedure, removing 

the "open middle third" of each 
of these intervals

4     And continue infinitely. 

Fractal dimension:
D = log 2 / log 3 = 0.63…
Uncountable points, zero length
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Cantor squareCantor square

Fractal dimension: d = log 4 / log 3 = 1.26 
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GeneratingGenerating fractalfractal geometicgeometic structuresstructures

Iterations
IFS (affine transforms)
Complex transforms (iterations)
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SierpiSierpińński Fractalsski Fractals

Named for Polish 
mathematician Waclaw
Sierpinski

Involve basic geometric 
polygons
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Sierpinski Chaos GameSierpinski Chaos Game

Starting Point

Vertex 2

Vertex 1

Vertex 3

Midpoint New Starting Point
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Sierpinski Chaos GameSierpinski Chaos Game

100 pts
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Sierpinski Chaos GameSierpinski Chaos Game

1000 pts
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Sierpinski Chaos GameSierpinski Chaos Game
Fractal dimension = 1.8175…

20000 pts
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SierpinskiSierpinski gasketgasket//carpetcarpet
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MengerMenger’’ss spongesponge
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IFS (IFS (IteratedIterated FunctionFunction SystemsSystems))

Here, (x,y) is a point on the image, 

(r,s) tells you how to scale and reflect the image at the various points,

(theta,phi) tells you how to rotate,

(e,f) tells you how to translate the image.

Various Fractal Images are produced by differences in these values,

or by several different groups of values.
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IFS (IFS (continuedcontinued))
Remember that matrix from the previous slide? Lets rewrite it as
a system of two equations :

x` = rcos(theta)x – ssin(phi)y + e 
y` = rsin(theta)x + scos(phi)y + f

(x,y) being the pair we are transforming, and (x`,y`) being the
point in the plane where the old (x,y) will be transformed to.

EVERY Transformation follow this pattern. So for file transmission, all 
we need

to include would be the constants from above : r,s,theta,phi,e,f, x,y
This greatly simplifies the Task parsing.

On return you would only need to include the (x,y)->(x`,y`) 
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Julia setJulia set
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The Mandelbrot SetThe Mandelbrot Set
The Mandelbrot set is a connected set of points in the complex 
plane
Calculate: Z1 = Z0

2 + Z0, Z2 = Z1
2 + Z0, Z3 = Z2

2 + Z0

If the sequence Z0, Z1, Z2, Z3, ... remains within a distance of 2 
of the origin forever, then the point Z0 is said to be in the 
Mandelbrot set. 
If the sequence diverges from the origin, then the point is not in 
the set
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Colored Mandelbrot SetColored Mandelbrot Set

The colors are added to the points that are 
not inside the set. Then we just zoom in on it
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Are organisms fractal?Are organisms fractal?

M. Sernetz et al. (1985 paper in J. Theoretical Biology)
Contrary to common belief, metabolic rate is not proportional 
to body weight. Instead, it fits in a power law relationship.

m = cwα

Slope α ≈ 0.75
Metabolic rate Body weight

child lung
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Dimension of organismsDimension of organisms

We can deduce the fractal dimension from α
≈ 0.75.
Suppose r is the scaling factor (like s). Since 
weight is  r3, the power law can be modified 
to m = cr3α.
Thus, D = 3α ≈ 2.25.
The body is not a solid volume, it is 
rather a fractal (highly convoluted 
surface) of dimension 2.25!

– Would the dimension change when an 
organ malfunctions?

– Is the dimension different for different 
animals?

Horse kidney
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FractalsFractals inin biologybiology
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EssentialEssential propertiesproperties for for applicationsapplications::

Finite area – infinite perimeter !
Self-similarity (same properties and shapes at
different scales)
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Physical relations for capacitors

Both electrodes have a surface A (in m2) separated by 
distance d (in m). The applied voltage ΔU (in Volt) 
creates an electric field E = ΔU/d storing the electrical
energy. Capacitance C in Farad (F) and stored
energy J in Ws is:

where εr (e.g. 1 for vacuum or 81 for water) is the relative dielectric
constant which depends on the material placed between the two
electrodes and ε0 = 8.85·10-12 F/m is a fundamental constant.
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HowHow to to createcreate capacitorscapacitors withwith largerlarger C?C?

Create capacitors with very large areas A –
technologies to create fractal-type surfaces

Use designs taking advantage of lateral
capacitance in integrated circuits
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ElectrochemicallyElectrochemically modifiedmodified glassyglassy carboncarbon isis a a promisingpromising materialmaterial to be to be 
usedused inin electrochemicalelectrochemical capacitorscapacitors. . OxidationOxidation ofof thethe surfacesurface ofof a a glassyglassy

carboncarbon electrodeelectrode resultsresults inin a a porousporous layerlayer withwith veryvery largelarge capacitancecapacitance andand
fairlyfairly lowlow internalinternal resistanceresistance whenwhen usingusing anan aqueousaqueous electrolyteelectrolyte..

Paul Scherrer Institute in Villigen, Switzerland - Rüdiger Kötz and his group have
developed an electrode in collaboration with the Swiss company Montena
(Maxwell). 
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a) Micrograph of a cross section through a supercapacitor electrode.The white
stripe is a part of the 30 µm thick metallic carrier-foil (total foil is 0.1 m wide, 2 m 
long). On both sides carbon particles provide a complex fractal surface
responsible for the high capacity.The space taken by the green resin used to fix
the delicate carbon structure before cutting and to provide a good contrast for 
imaging is normally filled with the electrolyte (an organic solvent containing salt 
ions).
b) Borderline of the cross section through the electrode surface in (a) to be 
analyzed by the box-counting procedure, illustrated for a tiling with 128 squares:M
= 56 squares (filled with light blue colour) are necessary to cover the
borderline.Their side lengths are N = 11.3 (square root of 128) times smaller than
the length scale of the whole picture.
c) The box-counting procedure is repeated with a computer program for different
N.The average fractal dimension of the borderline is the gradient of the straight
line approximating the measured points in this Log(M) over Log(N) plot, giving
D 1.6.This same dimension was measured in the lengthinterval covering nearly 3 
decades between 0.6 mm (length of micrograph in Figs 2a, b) and about 1 µm (fine
structure in Fig. 2d).
d) Carbon particles as seen with an electron microscope show roughness also in
the 1 µm scale. It is assumed that the above indicated fractal dimension D holds
over the entire range of 8 decades between the macroscopic scale (i.e. the
geometric size of the order of 0.1 m) and the microscopic scale (i.e. the
micropores in the order of 1 nm = 1·10–9 m).The electrode surface is therefore
multiplied by 108*0.6 or about 60’000 when compared to the normal two-
dimensional surface of 0.2 m2. 
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800 F boostcap by montena SA utilizing PSI electrode.
Capacitor module with 2 x 24 capacitors resulting in 60 V , 60 F 
with an overall internal resistance of < 20 mOhm. 
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Supercapacitor module for HY-LIGHT.
Capacitance: 29 F
Power: 30 - 45 kW for 20 - 15 sec ;  Weight: 53 kg
HY-LIGHT accelerates to 100km/h in 12 seconds
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Manhattan Manhattan capacitorcapacitor structuresstructures
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CapacitanceCapacitance densitydensity comparisoncomparison
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AntennaAntenna propertiesproperties

Radiation pattern variation for a linear
antenna with changing frequency – antennas
are narrow-band devices!
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fractal antenna is an antenna that uses a self-similar 
design to maximize the length, or increase the 
perimeter (on inside sections or the outer structure), of 
material that can receive or transmit electromagnetic 
signals within a given total surface area. For this 
reason, fractal antennas are very compact, are 
multiband or wideband, and have useful applications 
in cellular telephone and microwave communications.
Fractal antenna response differs markedly from 
traditional antenna designs, in that it is capable of 
operating optimally at many different frequencies 
simultaneously. Normally standard antennae have to 
be "cut" for the frequency for which they are to be 
used—and thus the standard antennae only optimally 
work at that frequency. This makes the fractal antenna 
an excellent design for wideband applications.

http://en.wikipedia.org/wiki/Antenna_%28electronics%29
http://en.wikipedia.org/wiki/Cellular_telephone
http://en.wikipedia.org/wiki/Microwave
http://en.wikipedia.org/wiki/Wideband
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The first fractal antennas were arrays, and 
not recognized initially as having self 
similarity as their attribute. Log-periodic 
antennas are arrays, around since the 1950's 
(invented by Isbell and DuHamel), that are 
such fractal antennas. They are a common 
form used in TV antennas, and are arrow-
head in shape. Antenna elements made from 
self similar shapes were first done by Nathan 
Cohen, a professor at Boston University, in 
1988. Most allusions to fractal antennas 
make reference to these 'fractal element 
antennas'.

http://en.wikipedia.org/wiki/Log-periodic_antenna
http://en.wikipedia.org/wiki/Log-periodic_antenna
http://en.wikipedia.org/wiki/Log-periodic_antenna
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John John GianvittorioGianvittorio -- UCLAUCLA
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FractalFractal antennaantenna designdesign
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Fractal antennas have superior multiband
performance and are typically two-to-four times 
smaller than traditional aerials.
Fractal antennas are the unique wideband enabler—
one antenna replaces many.
Multiband performance is at non-harmonic 
frequencies, and at higher frequencies the FEA is 
naturally broadband. Polarization and phasing of 
FEAs also are possible. Fractal Antenna  
Practical shrinkage of 2-4 times are realizable for 
acceptable performance. 
Smaller, but even better performance
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Visualization of antenna (the brown
layer) integrated on a package
substrate

AiP integrated on Bluetooth® adapter
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