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ABSTRACT

This paper proposes an optimal joint source-channel,maxi-
mum a posteriori, decoder for entropy coded Markov sources
transmitted over noisy channels. We introduce the concept
of incompleteandcompletestates to deal with the problem
of variable length source codes in the decoder. The pro-
posed decoder is sequential, there by making the expected
delay finite. When compared to the standard Huffman de-
coder, the proposed decoder shows a maximum improve-
ment, of about4dB in a modified signal to noise ratio and
an improvement of21:95% in percentage of bits that are re-
ceived in an out of synchronization condition, for a simple
test source.

1. INTRODUCTION

Shannon’s source-channel separation theorem [1] holds only
under asymptotic conditions where both codes are allowed
infinite length and complexity, which is not possible in prac-
tice. Hence, joint source-channel encoding and decoding
have been gaining considerable attention as viable alterna-
tives for achieving reliable communication of signals across
noisy channels. Joint source-channel encoders (JSCE) aim
at designing a single code that combines both the source and
the channel codes so as to minimize the average distortion
between the source and its reproduction, while joint source-
channel decoders (JSCD) use the knowledge of the channel
characteristics in the optimization of the decoder.

JSCD schemes have been well studied for sources which
are not entropy coded [2] [3]. Until recently, JSCDs for
entropy coded sources were not developed mainly because
handling error propagation in entropy codes is difficult. In
this paper, we propose the optimal decoder based on mini-
mizing the probability of error in the decoded sequence, or
in other words themaximum a posteriori(MAP) decoder,
for entropy coded Markov sources transmitted overbinary
symmetric channels(BSC). This is a generalization of the
work done by the authors [4] for memoryless sources. The

proposed decoder does not assume the knowledge of the
number of samples transmitted (as opposed to [5]) and we
circumvent the problems of complexity faced in the JSCD
developed in [6] by the use of the proposed state space struc-
ture. The following section states the MAP decoding prob-
lem and describes the proposed state space to tackle the
decoding complexity and the variable length nature of the
code.

2. THE STATE SPACE AND THE MAP PROBLEM

LetC denote the set of all possibleB-bit sequences of Huff-
man codewords. The�th such sequence is then denoted by
c
T
� = fc�;ig

T
i=1, wherec�;i is the codeword correspond-

ing to theith symbol in the transmitted stream andT is the
total number of codewords in the stream. Since there are
many ways in which to partition the received bit stream to
yield different index sequences, the problem is to find the
“best” possible index sequence, given the source and chan-
nel statistics. We note that the different partitions of the re-
ceived bit stream will, in general, lead to different number of
codewords in the index sequence. LetR denote the set of all
B-bit received streams and let the sequencer

n(j)
j represent

the jth stream, withn(j) being the number of codewords
in the stream. We also define the probability of the symbol
si to bePr(si) with Pr(sijsk) representing the probability
thatsi was transmitted immediately aftersk. If ĵ represents
the index of the most probable transmitted sequence, then
our problem is to determine

c
n(ĵ)

ĵ
= arg max

c
n(j)
j

n
Pr(cj;1)�

dH [cj;1;rj;1](1� �)
(l1�dH [cj;1;rj;1])

n(j)Y
k=2

[Pr(cj;kjcj;(k�1))�
dH [cj;k;rj;k](1� �)

(lk�dH [cj;k;rj;k])]

9=
;

wheredH [cj;k; rj;k] is the Hamming distance between the

kth transmitted codeword of a specific sequencec
n(j)
j and



the kth word of the received sequencern(j)j and lk is the
length of these words.

We propose a novel state space for the MAP decoder
(MAPD) consisting of two classes of states: thecomplete
and theincompletestates. We describe these states using an
example Huffman codebook:fA : 0; B : 10; C : 110; D :
111g. Let the first three bits of the transmitted bit stream
bef0; 1; 0g corresponding to the sequence A,B and the re-
ceived bit stream bef0; 1; 1g. We see that the bit stream
can be partitioned in seven ways as shown in Figure 1. The
dots connected by solid lines represent a single completely
received codeword, those connected by dotted lines denote
bits of a codeword that is only partially received and the
dark dots represent the one bit codeword. The first four
cases (cases 1, 2, 3a and 3b) represent the situations when
the received bits are completely partitioned into full code-
words and hence these cases correspond tocomplete states.
Cases 4, 5 and 6 correspond to situations when the received
bits cannot be completely partitioned into full codewords,
and hence they represent theincomplete states. The state
space thus consists of six states:4 degree0 states (one for
each codeword), a degree1 and a degree2 state.
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Figure 1: Degrees of Incompleteness in the State Space

We note that the number of degrees of incompleteness
and the number of transitions between the states are deter-
mined by the lengths of the codewords in the Huffman code-
book. For a Huffman codebook containingN codewords of
varying lengths belonging to the set,L = flmin; � � � ; lmaxg,
the maximum degree of incompleteness islmax � 1. State
transitions from the degreek � 1 state to the degreek state
(k > 0) are possible at every stage of the algorithm, how-
ever a transition from the degreek (k > 0) to one of the
degree0 states is possible only ifk = li � 1, whereli is the
length of the codeword represented by that degree0 state. A
trellis is used to show the evolution of the state space with
time (as bits are received). At each stage of the trellis there
are as many nodes as there are states; the state space and the
transitions from statei� 1 to i are depicted in Figure 2.
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Figure 2: MAPD State-Space and Trellis Diagram for Huff-
man Codebook :0; 10; 110; 111.

3. THE MAP DECODING ALGORITHM

The key feature of our algorithm is the use of complete and
incomplete states. Two operations take place at each stage
of the decoding algorithm. One consists of examining the
metrics of all the paths, entering each node (state-stage pair)
in the trellis and the other consists of looking for a merger of
the paths and the actual declaration of decoded codewords
(if there is a merge). For complete states, the path update
step involves finding the best metric path to the state and re-
taining it, whereas, for the incomplete states, we must retain
the metric values of all the paths back to the last complete
state.

Let v = (vx; vy) represent the node corresponding to
statevx at stagevy. The complete states are numbered from
1 to N corresponding to theN codewords in the codebook
and incomplete states are numbered fromN + 1 to N +
lmax � 1. Let ck denote the lengthdk Huffman codeword
corresponding to the complete statek and letbk;i be thedk
most recent received bits at node(k; i). M[k; i; cj ] gives
the metric increment associated with the path segment that
begins at node(j; (i�dk)) and terminates in the node(k; i)
(wherek andj are complete states). Thus, wheni > dk

M[k; i; cj ] = log10(Prfckjcjg) + dH [ck;bk;i] log10(�) + (dk � dH [ck;

Now, Mk;i is defined to be the metric value associated
with the maximum metric path terminating in(k; i), where
k 2 f1; 2; � � � ; Ng and for the incomplete states we de-
fine Mk;i(u) to be theuth element in the vector of met-
ric values that need to be remembered at(k; i), wherek 2
fN +1; N +2; � � � ; N + lmax�1g andu 2 f1; 2; � � � ; Ng.
Finally, letvp be the parent of the nodev, which is defined
as the penultimate node in the maximum metric path termi-
nating at nodev and letdvpx be the length of the codeword
corresponding to the parent node (which is complete).
We now state the algorithm as:

Initialize:
Input firstlmin � 1 bits



For i = 1; � � � ; lmin � 1,
Mk;i  0 8k 2 f1; 2; � � � ; Ng:
Mk;i(u)  0 8 u 2 f1; 2; � � � ; Ng; 8k 2 fN + 1; � � � ; N + lmax � 1g:

i  lmin

Fork 2 f1; 2; � � � ; Ng
v = (k; i)
v
p = � (no parents)

Input:
Input bit at theith stage

Update path metrics:
Forfk = 1; 2; � � � ; Ng

Mk;i  

8<
:

maxjfM(N+dk�1);(i�1)(j) + M[k; i; cj ]g; i > dk
log10(Prfckg) + dH [ck;bk;i] log10(�) + (dk � dH [ck;bk;i]) log10(1� �); i = dk
0 ; i < dk

Mk;i(u) 

�
Mu;(i�1) 8 u 2 f1; 2; � � � ; Ng; k = N + 1:
M(k�1);(i�1)(u) 8 u 2 f1; 2; � � � ; Ng; 8k 2 fN + 2; � � � ; N + lmax � 1g

j�k  arg maxjfM(N+dk�1);(i�1)(j) +M[k; i; cj ]g; 8k 2 f1; 2; � � � ; Ng:

We note that updatingMk;i(u) involves only a copy operation whereas updatingMk;i

involves some calculations.

Update paths:
Fork 2 f1; 2; � � � ; Ng
v = (k; i)
vpx = j�k ; vpy = i� dj�

k
;

Merge Check and Output:
A merge is declared when all nodes at stagei arise from a common ancestor. For
degree zero nodes, we trace back from the respective nodes at stagei; however, for
any incomplete statek, we trace back fromall of the complete states of stagei�
k +N . This is so because, at incomplete states no parent node can be discarded as
it may be the parent of some state at a later stage. In order to determine
if there are merges we define a set of nodesV = fv1;v2; � � � ;vNlmaxg and initialize
them to the nodes from which we need to trace back in order to determine a merge.
We needNlmax such nodes since each degree of incompleteness contributes toN nodes
and theN complete nodes contribute to one parent each.
V is formed according to
vm = (m�Nbm

N
c; i� bm

N
c); 8m 2 f1; 2; � � � ; Nlmaxg:

If (i � lmax + 1)
a: If (the parents of all the nodes inV are equal)

decide that the path terminating inv1 was indeed transmitted
and set the parent of all the nodes at this stage to be�.

Else
vm  v

p
m; 8m 2 f1; 2; � � � ; Nlmaxg

If (vpm 6= � 8m f1; 2; � � � ; Nlmaxg)
go toa.

If (end of sequence)
k�  arg maxk2f1;2;���;NgMk;i

Declare the path terminating at(k�; i) as the optimal path.

Else
i  i+ 1
go to Input .

4. EXPERIMENTAL RESULTS AND
CONCLUSIONS

We performed experiments on5000 samples of a zero mean,
first order, Gauss-Markov source with correlation coeffi-
cient� = 0:97, quantized with a50 level, uniform quantizer
with step size0:55. We pick a source with high correlation
coefficient, in order to allow the MAP decoder to exploit
the memory in the source. The symbols were then Huffman
encoded and corrupted by random bit error patterns repre-
senting the BSC. The results presented are an average of
six channel realizations. The performance of the MAPD is
compared to that of the Huffman decoder (HD) using two
parameters: the percentage of bits out of synchronization
and the modified signal to noise ratio (MSNR) of the de-
coded stream. The MSNR is defined so as to capture the
performance of the decoders in the portions where the de-
coded signal is in synchronization with the original signal
and the percentage of bits that are out of synchronization
demonstrates the efficacy of the decoder in controlling syn-
chronization losses. The MSNR is calculated by aligning
the synchronous segments of the transmitted and decoded
signals. The decoded segments are padded with zeros when
the number of decoded words are less than the number of
transmitted words and are truncated when there are more
words in the decoded segment than in the transmitted one.

Figure 3 shows the comparison of the decoded MSNR
for both the decoders. We note that at very low error rates,
the MSNRs of both the decoders are nearly the same; how-
ever, as the error rate increases the MAPD performs better
than the HD, reaching a maximum improvement of4dB.
As the error rates become very high, the HD shows better
MSNRs; however, the MSNR is negative and hence this re-
gion is not of much practical significance. We note here
that when the ordinary SNR is used as a performance mea-
sure, the maximum improvement is about6dB and there is
no qualitative difference in the results.

Figure 4 shows the average percentage of bits that are
out of synchronization in the decoded sequence, for both
the HD and MAPD. The trends in the relative performance
of the MAPD versus the HD is just as in the MSNR pro-
file, with the maximum improvement in percentage loss of
synchronization being21:95%.

Finally, Table 1 gives the statistics of synchronization
loss for selected error rates. Since we need a significant
number of synchronization loss events in order to calculate
the statistic, we used20; 000 source symbols in this case.
The results indicate that both the number and length of syn-
chronization losses are significantly lower in the MAP de-
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Figure 3: Comparison of the modified SNR of the MAPD with
the HD for an AR(1) source with� = 0:97, quantized toN =
50.
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Figure 4: Comparison of the percentage loss of synchroniza-
tion of MAP decoded sequence with that of the Huffman de-
coded sequence for an AR(1) source with� = 0:97, quantized
to N = 50.

coded sequence than in the Huffman decoded sequence.

Error MAP Decoded Huffman Decoded
Rate Sequence Sequence

log10(�) Number Length Number Length
Avg. Var. Avg. Var. Avg. Var. Avg. V

-0.5 2278.00 1437.67 38.83 1337.95 2187.50 37.58 31.27 701
-1.0 1237.00 249.00 27.04 444.62 1393.17 329.14 34.22 885
-1.5 304.83 84.81 22.44 254.85 685.00 90.00 35.98 105
-2.0 99.67 82.89 21.47 204.45 261.83 335.14 38.87 133
-2.5 41.50 2.58 20.21 166.21 87.17 95.81 37.86 108
-3.0 20.00 2.00 19.17 137.63 28.50 7.92 36.71 147

Table 1: Synchronization Loss Statistics

In summary, we have presented a new joint source-channel
MAP decoder for entropy coded sources using a new state
space structure for the decoder. Simulation results have
demonstrated that this decoder does better than the conven-
tional decoder significantly at low to medium channel error
rates and restricts both the number and the length of syn-
chronization losses in the decoded sequence.
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