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Abstract— Estimation of the channel impulse responses of multiple

cochannel users is a key requirement of all multiuser detection and in- 5,0

terference cancellation techniques, though little attention has been paid ®
to subject in the context of TDMA systems. This paper addresses a pilot- X0) —
based technique for multiuser channel estimation in a TDMA system, and t= kT2

makes several new contributions: it allows for time variation of the chan-

nels within and between training sequences, it accounts for colouration

of the sampled noise sequence as well as correlation between the channel Sy(D)
taps, and and it considers users to be asynchronous resulting in a tech-

nique whereby explicit timing recovery is unnecessary. In addition, it ad-

dresses selection of appropriate training sequences. Fig. 1. Cochannel signal model.

. INTRODUCTION wherec,, (n) is a data or training symbol]’ is the symbol

Multiuser detection and interference cancellation techniques  period, P, is the power in the bandpass equivalensgf(t),
for both CDMA and TDMA systems [1]-[3] have received andw (t) is the transmit pulse with deterministic autocorrela-
much attention recently due to their potential for increasingon functionz (o) = [ (t) u* (t — «) dt. The relative delay
system capacity. One aspect common to all of the multiusey, appears in (1) since, in general, the signals from the var-
detection and interference cancellation techniques, though,id&is users arrive asynchronously due to differing propagation
the necessity of having reliable channel estimates for all of traelays.
cochannel users. The received signaj (¢) consists of the sum of tha/ fil-

The use of pilot symbols is a well-known method for ob+tered cochannel signals and an additive white Gaussian noise
taining good channel impulse response estimates in single-usemponent (¢) with double-sided power spectral density.
systems, e.g., [4],[5]. For the case of multiuser systems, pilothe output of the matcheflter v* (—t), using (1), is
based channel estimation has been studied extensively only for u
CDMA, e.g., [6], where processing gain suppresses interfer-
ence in the channel estimator. r(t) = Z Z cm () hn (¢ = nT5t) +n(t)  (2)

This paper addresses pilot-based techniques for estimating m=Ln
the channel impulse responses of multiple cochannel userswiereh,,, (7;t) is themth user's composite impulse response
a TDMA system. In contrast to [7], it allows time variation of given by
the channels within and between the training sequences—an
essential feature even at moderate fading rates—and addresses B (T51) = /2P g (T — T3 1) ® 2 (1) 3
the selection of appropriate training sequences. Furthermore, it . ) .
accounts for colouration of the sampled noise sequence, as vidid® denotes convolution. The autocorrelation function of the
as correlation between the channel taps, thereby rendering fHi"ed noise process(t) is o, (o) = Nox (). Notice that
channel estimates truly optimal. These effects have previoudfy€ relative delay, is considered part of the channel impulse

been ignored, even in the most comprehensive study of chanfefPONse- , ,
estimation for single-user systems [5]. MMSE estimation of the users’ channels requires knowl-

edge of the second order statisticsif (7;¢) summarized by

Il. SIGNAL AND CHANNEL MODELS the following correlation function:
Fig. 1 shows a diagram of the transmissioniéfcochan- .
nel signals through independently fading, dispersive channels (r,m,0) = §E [ (7138) hy (7258 = )]
each represented by the time-variant channel impulse response = 2P,.R,, (a)- (4)
(CIR) g, (75t) , wherer denotes the memory of the impulse
response, and denotes the time variation. Theth user’s /Pm (r)a(r —7)a" (1o — 7)dr

transmitted signal is given by
2

1 P i
(0 = VLY e ult—nT—r,) (1) WNerePn () = 3P [lgm (7 in: 0) } and R, (o) s the
- normalized temporal autocorrelation function of the channel.



For isotropic scattering, R, (o) = Jo (27 fp,, ) Wherefp,
is the maximum Doppler shift for user. The latter equality
in (4) is a consequence of assuming a wide sense stationary un-

Length N frame

Length N, training
—

|
gg;rtila?itﬁg fi%i[ttiiw_]g (WSSUS) channel as well as a separable ‘ pata % bata % Data pata ‘
Denotingf (7,,,) as the probability density function (pdf) of / \
the relative delayr,,, and P, (7) as the power delay pfite Nt
of the channel (e.g. exponential with area and RMS de-  simeol (i [z |-t o ! ”vantz—l v,
lay spreadr,.,.s,,), the functionP,, (7) is given byP,, (1) = Symbol { ‘ T |
J Py, (T —7m) f (Tm) d7y,, i.€. the convolution of?, (7) I . L]
andf (7,,). As can be seen, the calculation®f (71,72, a) ! Pl o
does not depend on, itself—only on its pdf. In other words, v -
explicit timing recovery is unnecessatie relative delay,, sReeqCueeNneci{ %
is simply estimated as part of the channel. “ Usable received
Samples of the matchefdter outputr (¢) are taken at times e

Estimation interval

t = kT /2 yielding the discrete-time sequence

Frame 0

M
r(k) =" ¢l (k) hy, (k) +n (k). (5)

m=1

Fig. 2. Frame structure and indexing conventions.

The vectorh,, (k) consists of samples df,, (7;t) at T'/2-
spaced delays evaluated at time- k7'/2. It is assumed here
thath,, (r;t) is non-causal and dfnite duration spanning the
range of delays € [L,T, (Ls + 3) T| whereL; < 0 and
L, > 0. Consequently, both,, (k) and the symbol vector

of each training sequence %, symbols. Note that indexes
symbols, and: samples, so that = | k/2].

Since the users’ channels are to be estimated jointly, we de-
fine the vectoh (k) as the concatenation of tii¢ users’ chan-

cl (k) are offinite length2 (L. + 1) whereL, = Ly — L. nel vectors:
The vectorc,, (k) contains the symbols,, (|k/2] —n) for h(k)=[ hl (k) bi(k) --- hi (k) ]T_ (7)
n € {Ly,..., Ly} interspersed with zeros. Féreven, the
zeros appear in the 1st, 3rd, 5th, positions ofc,, (k), and  Since the users’ channels fade independently, the autocorrela-
for k odd appear in the Oth, 2nd, 4th,. positions. tion matrix ofh (k) , denotedRy, (5), is block diagonal, with
The autocorrelation matrix af,,, (k) isgiven byRy, , (j) =  themth block given byRy,, (5).
$E[h,, (k) b, (k —j)] . Using (4), itsu, vth element is Consider the MMSE estimation df (k) in the interval
_ |—N/2] — Ly < n < |N/2| — Ly that is, mid-frame to mid-
(Ra. ()} = Ry (ﬂ, E, E) (6) frame either side of the training period in frame-0. The channel
" ey "2 2 2 estimator uses the received samples from the training blocks of

each of the2@ + 1 frames centered about frame-0 to form its

whereu,v € {2Ly,...0,...2L, +1}. Evidently, the tap estimate. These samples are contained in the vector

gains (elements oh,, (k)) are correlated, in general, even

though we have assumed a WSSUS channel. Thisis duetothe , _ [ vT(—Q) - rT(0) - rT(Q) ]T ®)
convolution ofg,, (7;t) with the pulse autocorrelation function
as shown in (3). where the vector (¢) contains a subset of the received sam-

ples during theth training block (called the usable samples in
Fig. 2). With use of this subset,(¢) depends only on training
MMSE estimation of theM users’ channels relies upon symbols—not on unknown data symbols—due to the length-
the periodic insertion of a unique training sequence into eadt, precursor and the lengtli- | postcursor inserted in each
user’s data sequence, the choice of which will be discussedtiaining sequence.
Section IV. Itis assumed that all users’ training sequences areSincez contains samples of a bandlimited process sampled
inserted at the same time, although different propagation dat a rate greater than the Nyquist rate, the covariance matrix
lays make their arrivals asynchronous. The received samplelSz, given byR, = %E[zz*] , becomes ill-conditioned as
during the training periods are then used to derive estimates 8% increases (due to an increasing number of users). This
the channels which are interpolated between training periodsuggests the use of rank reduction to remove dependencies
In this way, time variation of the channels are tracked. Thim z and avoid explicit inversion aR,. Accordingly, we use
frame structure, along with symbol and frame indexing coreigendecomposition to write the covariance matrixzofs
ventions used throughout this paper, is shown in Fig. 2. As ca®, = MAM!, whereM = [M; M,] andA is a block diag-
be seen, the length of each frameé\Missymbols, and the length onal matrix with diagonal blockd; andA>. A; contains the

IIl. JOINT CHANNEL ESTIMATION



dominant eigenvalues of R, and A, contains those eigenval- wherea; is thejth row of the data matrix. With this expres-

ues that fall below some very small threshold. The non-squas®n in hand, the elements of the matrid¢k) andR, may
matricesM; and M, contain the eigenvectors (as columns)e easily determined.

corresponding to the eigenvaluesAn and A, respectively. Using (8), thegth submatrix of P (k) is P, (k) =

Now, we base the estimate bf(k) on the reduced dimension- LE[h (k) ' (¢)], whereq € {-Q,...,Q}. Now using (14),

ality vectorw = MIz (instead ofz itself) which has covari- and assuming the noise and channel fading process are uncor-

ance matridR., = M R, M; = A;. related, thejith column ofP,, (k) is
The optimal MMSE estimate di (k) based onw is given

by the conditional meam (k) =E[h (k) | w]. Sinceh (k) and {Py (k)}; = Ru (k —2¢N —j) a}. (15)

w are jointly Gaussian, the conditional mean is lineamin ‘

and is given by Using (8) again, they, pth submatrix of R, is Ry,
1E[r (¢)rf (p)] . Using (14), the, jth element oR,, , is

1 _
v(k) = 5B Rk W] Rw) ' w=PHERfz () {R.,,},, = aRu@(@-p)N+i—jal+

whereP (k) = 3E[h(k)z!] andR¥ = M;A;{'M]. The
latter quantity is recognized as the generalized pseudoinverﬁ%re,% (j) = Nox iTY is the autocorrelation function of

das | (5
or Moore-P_enrose generalized inverse k [8]. Npte that the (coloured) noise sequence. Observing (15) and (16), one
for short training sequenceR,, may not be ill-conditionegdn hat the i lati () R d d |
this caseR} — R_ 1. can see that the interpolation matix(k) R¥ depends only

. . . on the channel autocorrelation mati, (j), the data matrix
. For the optimal Chaf‘?‘e' estlmate(k), the channel estima- A, and the noise autocorrelation function, which are all known
tion error at each position in the frame is denote@) such at design time

that
h (k) =v (k) +e(k) (10) IV. CHOICE OF TRAINING SEQUENCES
where_v (k) andg(_k) are unco_rrelated. The estimation error  Optimal choice of the users’ training sequences requires
covariance matrix is, in turn, given by testing all possible combinations af length-V; symbol se-
. guences in order to minimize each user’'s channel estimation
Re (k) =Ru (0) — P (k) R7PT (k) (11)  erroro2 (k) defined in (12). For several users and practical

_ o ) training sequence lengths, the resulting search space is pro-
_ Inthis paper, the measure of channel estimation quality usgghtively large furthermore, the amount of computation re-
is the sum of tap error variances for usemormalized by the  qjired to test each candidate sequence is high. In order to over-
sum of the tap variances for user that is come these difculties, a simplied, suboptimal search strat-
R, (k)] egy is developed below Wh_ich_ not only yields goqd training
o2 (k)= /=== (12) sequences, but offers more insight than an exhaustive computer
tr [Rn,, (0)] search.
In the development of this suboptimal search strategy several
R. (k). Although this error measure depends directlylon assumptions are madgrst, it is assumed that thg users’ chan-
we found very little variation across the frame. nels vary slowly enough that they may be considered constant
Wi . . . . . ver the duration of each training periosecond, the matrix
'e now examine the optimal estimator in (9) in more deta% is assumed to be non-singular so g — R-L; and
to obtain the required matrices. It is convenienfitst intro- thizrd the noise sequence(k) isgassumed o b;whife ’It must
duce the following data matrix: be emphasized, though, that these assumptions are made for

where Re,, (k) is the mth block of the main diagonal of

A — [ A, Ay - Ay ] (13) the purposes of training sequence selection only. The result-
ing sequences are then used to calculate the optimal channel
where jth row of A, is  estimatev (k) asin (9). o _
simply the symbol vectoe?, () (defined in relation to (5)),  USing the above assumptions, it is shown in [9] thak)
wherej € {0,1,...,2(N; — L.) — 1} . Due to the precursor May be calculated bfgrst forming the least squares (LS) chan-
and postcursor in each training sequenksg, consists only of nel estimateh, s (9) = (ATA)™ Afr(q) in each of the

symbols from thenth user’s training sequence, and not on ad2@) + 1 training periods centered about frame-0, and then in-
jacent data symbols. Using (5), (7), (13), thk component of terpolating the acquired LS estimates between training peri-
r (¢) can be written as ods. The estimation error covariance matrix for the acquired
LS estimates is simplR.® = N,G~! where the Gram ma-
r(2gN + j) = a;h (2gN + j) + n (2gN + j) (14) trix G = ATA.



This immediately suggests that the training sequences have | X108

a minimum required length. In order to form the LS esti- ' ' ' C = e

- User 2 | q

o
©
T

mates, the matriXa must be non-singular. This occurs if the
2(Ny — L.) x 2M (L. + 1) matrix A is of full column rank,
which can only occur if the number of rows &f is greater
than or equal to the number of columns. Consequently, the
minimum training sequence lengthA§ = M (L. + 1) + L.

The LS formulation also suggests a sifiglil criterion for
choosing good training sequences. Rather than choosing the
sequences to minimize? (k) for each user (the optimal cri-
terion), in this paper the sequences are chosen to minimize the
trace ofG — an easier task sind@ depends only on the set of
training sequences. This is reasonable, since one would expect 0 5 10 15 20 2 3
that minimizing the error variance of the acquired LS estimates fterpoator Order, 2Q 1
during each training block would also lead to a low interpola-
tion error between training blocks. Fig. 3. Effect of interpolator order: 2 equipower USers, Trms,, /T = 0.2,

As is shown in [10] for the case of a single user, tigge' ] N = 2N, =28
is minimized by choosing a single training sequence such that
G is diagonal. In the multiuser case, this implies that the 001 —
M different training sequences should be chosen such that 0.009f -—— User2|q
they have both perfect autocorrelation properties and perfect
crosscorrelation properties. This is generally veryidiflt to
achieve for arbitraryV/ and L.. Consequently, in this paper,
BPSK training sequences are chosen such that the off-diagonal
elements ofG all fall below a certain threshold, which is cho-
sen to be as low as possible for a giviehand .. Since the
diagonal elements @& are all equal taV, — L., this procedure
makesG strongly diagonal. Because the number of combina- 0.002}
tions of M different sequences can be extremely large, a se- o.001|
guential search is used, rather than an exhaustive one, to build
up a set ofM training sequences one-by-one. Due to space
constraints, the resulting sequences are not listed here, but are
contained in [9].
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Fig. 4. Effect of framelength: 2 equipower users, 7rms,, /T = 0.2, Q = 4.
V. DESIGN ISSUES AND PERFORMANCE

In this section, several design issues as well as the perféxgain, this behaviour is consistent with that observed in [4].
mance of the joint channel estimation scheme are investigatedThe transmission &tiency, or throughput, experienced by
Fig. 3 shows the effect of interpolator orderfided aQ +1, any user is given by the ratio of the number of data sym-
on the estimation error. As can be seen, the use of more thgpls per frame to the frame length. As the number of users
about 9 training blocks@ = 4) does not sigricantly de- increases, so does the required length of training sequence,
crease the channel estimation error variance. This behaviat#tusing the user ffiency to drop. Using the minimum train-
was found to be representative of a large variety of fading andg sequence length found earlier, the uséiciicy isn, =
SNR conditions. Furthermore, it is consistent with that ob¢N — M (L. + 1) — L.) /N. Fig. 5 shows a plot of userfef
served in [4] for the case of a single user dad fading. ciency vs. number of users for the critical frame lengths found

Fig. 4 shows the effect of frame lengffi on the estima- in Fig. 4. This plot illustrates sigficantly reduced éfciency
tion error. For afixed Doppler spread, a¥ is increased be- for short frame lengths and a large number of users. In the
yond a critical value, the channel estimation error variance iextreme of fast fadingfip,, 7 = 0.01) with 4 users, and a
creases sharply due to the fact that the fading channels are frame length ofV = 45, the user diciency drops from its
sampled often enough to allow proper interpolation. Clearlyalue of 80% corresponding to a single user to a value near
as the Doppler spread increases, the fading channels mustS®86. Remember, though, that in the case of frequency reuse
sampled at a higher rate (shorter frame length): fior 7" =  within cell, system capacity is enhanced by allowing 4 users
0.0025,0.005, and 0.01, the critical frame lengths are approxto share the same frequency/time slot which offsets this reduc-
imately 180, 90, and 45 symbols respectively. These valuéisn in user eficiency. Therefore, we di@me system éiciency
correspond closely to the inverse of the Nyquist &g, 7. asn, = Mmn, and plot in on Fig. 5, where an optimal value of
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detection and interference cancellation schemes. Several de-
sign issues are considered, including the selection of multi-
ple training sequences, choice of interpolator order, the choice
of frame length, and étiency. Results show that, although
the user throughput decreases with each additional user due to
increased training sequence length, the systdiniatdcy in-
creases, since multiple users are allowed to share the same fre-
guency/time slot. Furthermore, it is shown that the channel es-
timation error per user is inversely related to SNR, and actually
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M can be seen. This optimal value and the corresponding opti-
maln, both increase for slower fading where the frame length
can be much greater than for fast fading.

Fig. 6 shows the effect of the number of users on estima-
tion error. As can be seen, the estimation error variance actu-
ally decreases with each additional user, which is due to longer
training sequences as each additional user is added. This plot
also shows that each user has a slightly different estimation er-
ror variance which is due to the fact that the users’ training
sequences have different autocorrelation properties and are not
mutually orthogonal. Furthermore, Fig. 6 illustrates that, as
expected, estimation error variance decreases as the inverse of
SNR.

V1. CONCLUSIONS

In this paper, we have developed a pilot-based technique
for jointly estimating the channels of multiple cochannel users
in a TDMA system that is useful for a variety of multiuser

decreases with each additional user.
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