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Abstract— Estimation of the channel impulse responses of multiple
cochannel users is a key requirement of all multiuser detection and in-
terference cancellation techniques, though little attention has been paid
to subject in the context of TDMA systems. This paper addresses a pilot-
based technique for multiuser channel estimation in a TDMA system, and
makes several new contributions: it allows for time variation of the chan-
nels within and between training sequences, it accounts for colouration
of the sampled noise sequence as well as correlation between the channel
taps, and and it considers users to be asynchronous resulting in a tech-
nique whereby explicit timing recovery is unnecessary. In addition, it ad-
dresses selection of appropriate training sequences.

I. INTRODUCTION

Multiuser detection and interference cancellation techniques
for both CDMA and TDMA systems [1]-[3] have received
much attention recently due to their potential for increasing
system capacity. One aspect common to all of the multiuser
detection and interference cancellation techniques, though, is
the necessity of having reliable channel estimates for all of the
cochannel users.

The use of pilot symbols is a well-known method for ob-
taining good channel impulse response estimates in single-user
systems, e.g., [4],[5]. For the case of multiuser systems, pilot-
based channel estimation has been studied extensively only for
CDMA, e.g., [6], where processing gain suppresses interfer-
ence in the channel estimator.

This paper addresses pilot-based techniques for estimating
the channel impulse responses of multiple cochannel users in
a TDMA system. In contrast to [7], it allows time variation of
the channels within and between the training sequences—an
essential feature even at moderate fading rates—and addresses
the selection of appropriate training sequences. Furthermore, it
accounts for colouration of the sampled noise sequence, as well
as correlation between the channel taps, thereby rendering the
channel estimates truly optimal. These effects have previously
been ignored, even in the most comprehensive study of channel
estimation for single-user systems [5].

II. SIGNAL AND CHANNEL MODELS

Fig. 1 shows a diagram of the transmission ofP cochan-
nel signals through independently fading, dispersive channels,
each represented by the time-variant channel impulse response
(CIR) jp +� > w, > where� denotes the memory of the impulse
response, andw denotes the time variation. Thepth user’s
transmitted signal is given by
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Fig. 1. Cochannel signal model.

wherefp +q, is a data or training symbol,W is the symbol
period,Sp is the power in the bandpass equivalent ofvp +w,,
andx +w, is the transmit pulse with deterministic autocorrela-
tion function{ +�, @

U
x +w,x� +w� �, gw= The relative delay

�p appears in (1) since, in general, the signals from the var-
ious users arrive asynchronously due to differing propagation
delays.

The received signal| +w, consists of the sum of theP ¿l-
tered cochannel signals and an additive white Gaussian noise
component} +w, with double-sided power spectral densityQr.
The output of the matched¿lter x� +�w,, using (1), is
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wherekp +� > w, is thepth user’s composite impulse response
given by
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and� denotes convolution. The autocorrelation function of the
¿ltered noise processq +w, is !q +�, @ Qr{ +�,. Notice that
the relative delay�p is considered part of the channel impulse
response.

MMSE estimation of the users’ channels requires knowl-
edge of the second order statistics ofkp +� > w, summarized by
the following correlation function:

Ukp +�4> �5> �, @
4

5
H ^kp +�4> w,k

�
p +�5> w� �,`

@ 5SpUjp +�, � (4)]
Sp +�,{ +�4 � �,{� +�5 � �, g�

whereSp +�, @ 4
5H

k
mjp +� � �p> 3,m5

l
andUjp +�, is the

normalized temporal autocorrelation function of the channel.



For isotropic scattering, Ujp +�, @ M3 +5�iGp�, whereiGp

is the maximum Doppler shift for userp. The latter equality
in (4) is a consequence of assuming a wide sense stationary un-
correlated scattering (WSSUS) channel as well as a separable
scattering function.

Denotingi +�p, as the probability density function (pdf) of
the relative delay�p andSjp +�, as the power delay pro¿le
of the channel (e.g. exponential with area�5

jp and RMS de-
lay spread�upvp), the functionSp +�, is given bySp +�, @U
Sjp +� � �p, i +�p, g�p, i.e. the convolution ofSjp +�,

andi +�p,. As can be seen, the calculation ofUkp +�4> �5> �,
does not depend on�p itself—only on its pdf. In other words,
explicit timing recovery is unnecessary� the relative delay�p
is simply estimated as part of the channel.

Samples of the matched¿lter outputu +w, are taken at times
w @ nW@5 yielding the discrete-time sequence

u +n, @
P[

p@4

fWp +n,kp +n, . q +n, = (5)

The vectorkp +n, consists of samples ofkp +� > w, at W@5-
spaced delays evaluated at timew @ nW@5= It is assumed here
thatkp +� > w, is non-causal and of¿nite duration spanning the
range of delays� 5 �
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whereO4 � 3 and
O5 � 3= Consequently, bothkp +n, and the symbol vector
fWp +n, are of¿nite length5 +Of . 4, whereOf @ O5 � O4.
The vectorfp +n, contains the symbolsfp +en@5f � q, for
q 5 iO4> = = = > O5j interspersed with zeros. Forn even, the
zeros appear in the 1st, 3rd, 5th,= = = positions offp +n, > and
for n odd appear in the 0th, 2nd, 4th,= = = positions.

The autocorrelation matrix ofkp +n, is given byUkp +m, @
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where x> y 5 i5O4> = = = 3> = = = 5O5 . 4j = Evidently, the tap
gains (elements ofkp +n,) are correlated, in general, even
though we have assumed a WSSUS channel. This is due to the
convolution ofjp +� > w,with the pulse autocorrelation function
as shown in (3).

III. JOINT CHANNEL ESTIMATION

MMSE estimation of theP users’ channels relies upon
the periodic insertion of a unique training sequence into each
user’s data sequence, the choice of which will be discussed in
Section IV. It is assumed that all users’ training sequences are
inserted at the same time, although different propagation de-
lays make their arrivals asynchronous. The received samples
during the training periods are then used to derive estimates of
the channels which are interpolated between training periods.
In this way, time variation of the channels are tracked. The
frame structure, along with symbol and frame indexing con-
ventions used throughout this paper, is shown in Fig. 2. As can
be seen, the length of each frame isQ symbols, and the length
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Fig. 2. Frame structure and indexing conventions.

of each training sequence isQw symbols. Note thatq indexes
symbols, andn samples, so thatq @ en@5f.

Since the users’ channels are to be estimated jointly, we de-
¿ne the vectork +n, as the concatenation of theP users’ chan-
nel vectors:
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Since the users’ channels fade independently, the autocorrela-
tion matrix ofk +n, > denotedUk +m, > is block diagonal, with
thepth block given byUkp +m,.

Consider the MMSE estimation ofk +n, in the interval
e�Q@5f � O5 ? q � eQ@5f � O5 that is, mid-frame to mid-
frame either side of the training period in frame-0. The channel
estimator uses the received samples from the training blocks of
each of the5T . 4 frames centered about frame-0 to form its
estimate. These samples are contained in the vector
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where the vectoru +t, contains a subset of the received sam-
ples during thetth training block (called the usable samples in
Fig. 2). With use of this subset,u +t, depends only on training
symbols—not on unknown data symbols—due to the length-
O5 precursor and the length-mO4m postcursor inserted in each
training sequence.

Since} contains samples of a bandlimited process sampled
at a rate greater than the Nyquist rate, the covariance matrix
of }, given byU} @ 4

5E
�
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�
> becomes ill-conditioned as

Qw increases (due to an increasing number of users). This
suggests the use of rank reduction to remove dependencies
in } and avoid explicit inversion ofU}= Accordingly, we use
eigendecomposition to write the covariance matrix of} as
U} @ P�P|, whereP @^P4 P5` and� is a block diag-
onal matrix with diagonal blocks�4 and�5= �4 contains the



dominant eigenvalues of U}> and�5 contains those eigenval-
ues that fall below some very small threshold. The non-square
matricesP4 andP5 contain the eigenvectors (as columns)
corresponding to the eigenvalues in�4 and�5 respectively.
Now, we base the estimate ofk +n, on the reduced dimension-
ality vectorz @ P|

4} (instead of} itself) which has covari-
ance matrixUz @ P4

|U}P4 @ �4.
The optimal MMSE estimate ofk +n, based onz is given

by the conditional meany +n, @E^k +n, m z`. Sincek +n, and
z are jointly Gaussian, the conditional mean is linear inz,
and is given by
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latter quantity is recognized as the generalized pseudoinverse,
or Moore-Penrose generalized inverse, ofU} [8]. Note that
for short training sequences,U} may not be ill-conditioned� in
this case,U&

} @ U�4
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For the optimal channel estimatey +n,, the channel estima-
tion error at each position in the frame is denotedh +n, such
that

k +n, @ y +n, . h +n, (10)

wherey +n, andh +n, are uncorrelated. The estimation error
covariance matrix is, in turn, given by

Uh +n, @ Uk +3,�S +n,U&
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In this paper, the measure of channel estimation quality used
is the sum of tap error variances for userp normalized by the
sum of the tap variances for userp> that is

�5
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where Uhp +n, is the pth block of the main diagonal of
Uh +n, = Although this error measure depends directly onn>
we found very little variation across the frame.

We now examine the optimal estimator in (9) in more detail
to obtain the required matrices. It is convenient to¿rst intro-
duce the following data matrix:
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where mth row of Dp is
simply the symbol vectorfWp +m, (de¿ned in relation to (5)),
wherem 5 i3> 4> = = = > 5 +Qw � Of,� 4j = Due to the precursor
and postcursor in each training sequence,Dp consists only of
symbols from thepth user’s training sequence, and not on ad-
jacent data symbols. Using (5), (7), (13), themth component of
u +t, can be written as

u +5tQ . m, @ dmk +5tQ . m, . q +5tQ . m, (14)

wheredm is themth row of the data matrixD. With this expres-
sion in hand, the elements of the matricesS +n, andU} may
be easily determined.
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and assuming the noise and channel fading process are uncor-
related, themth column ofSt +n, is
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the (coloured) noise sequence. Observing (15) and (16), one
can see that the interpolation matrixS +n,U&

} depends only
on the channel autocorrelation matrixUk +m,, the data matrix
D, and the noise autocorrelation function, which are all known
at design time.

IV. CHOICE OF TRAINING SEQUENCES

Optimal choice of the users’ training sequences requires
testing all possible combinations ofP length-Qw symbol se-
quences in order to minimize each user’s channel estimation
error�5

hp +n, de¿ned in (12). For several users and practical
training sequence lengths, the resulting search space is pro-
hibitively large� furthermore, the amount of computation re-
quired to test each candidate sequence is high. In order to over-
come these dif¿culties, a simpli¿ed, suboptimal search strat-
egy is developed below which not only yields good training
sequences, but offers more insight than an exhaustive computer
search.

In the development of this suboptimal search strategy several
assumptions are made:¿rst, it is assumed that the users’ chan-
nels vary slowly enough that they may be considered constant
over the duration of each training period� second, the matrix
U} is assumed to be non-singular so thatU&

} @ U�4
} > and

third, the noise sequenceq +n, is assumed to be white. It must
be emphasized, though, that these assumptions are made for
the purposes of training sequence selection only. The result-
ing sequences are then used to calculate the optimal channel
estimatey +n, as in (9).

Using the above assumptions, it is shown in [9] thaty +n,
may be calculated by¿rst forming the least squares (LS) chan-
nel estimateekOV +t, @

�
D|D

��4
D|u +t, in each of the

5T . 4 training periods centered about frame-0, and then in-
terpolating the acquired LS estimates between training peri-
ods. The estimation error covariance matrix for the acquired
LS estimates is simplyUOV

h @ QrJ
�4 where the Gram ma-

trix J @ D|D.



This immediately suggests that the training sequences have
a minimum required length. In order to form the LS esti-
mates, the matrixJ must be non-singular. This occurs if the
5 +Qw � Of, � 5P +Of . 4, matrixD is of full column rank,
which can only occur if the number of rows ofD is greater
than or equal to the number of columns. Consequently, the
minimum training sequence length isQw @ P +Of . 4, .Of.

The LS formulation also suggests a simpli¿ed criterion for
choosing good training sequences. Rather than choosing the
sequences to minimize�5

hp +n, for each user (the optimal cri-
terion), in this paper the sequences are chosen to minimize the
trace ofJ — an easier task sinceJ depends only on the set of
training sequences. This is reasonable, since one would expect
that minimizing the error variance of the acquired LS estimates
during each training block would also lead to a low interpola-
tion error between training blocks.

As is shown in [10] for the case of a single user, trace
�
J�4

�
is minimized by choosing a single training sequence such that
J is diagonal. In the multiuser case, this implies that the
P different training sequences should be chosen such that
they have both perfect autocorrelation properties and perfect
crosscorrelation properties. This is generally very dif¿cult to
achieve for arbitraryP andOf. Consequently, in this paper,
BPSK training sequences are chosen such that the off-diagonal
elements ofJ all fall below a certain threshold, which is cho-
sen to be as low as possible for a givenP andOf. Since the
diagonal elements ofJ are all equal toQw�Of> this procedure
makesJ strongly diagonal. Because the number of combina-
tions ofP different sequences can be extremely large, a se-
quential search is used, rather than an exhaustive one, to build
up a set ofP training sequences one-by-one. Due to space
constraints, the resulting sequences are not listed here, but are
contained in [9].

V. DESIGN ISSUES AND PERFORMANCE

In this section, several design issues as well as the perfor-
mance of the joint channel estimation scheme are investigated.
Fig. 3 shows the effect of interpolator order, de¿ned as5T.4,
on the estimation error. As can be seen, the use of more than
about 9 training blocks (T @ 7) does not signi¿cantly de-
crease the channel estimation error variance. This behaviour
was found to be representative of a large variety of fading and
SNR conditions. Furthermore, it is consistent with that ob-
served in [4] for the case of a single user andÀat fading.

Fig. 4 shows the effect of frame lengthQ on the estima-
tion error. For a¿xed Doppler spread, asQ is increased be-
yond a critical value, the channel estimation error variance in-
creases sharply due to the fact that the fading channels are not
sampled often enough to allow proper interpolation. Clearly,
as the Doppler spread increases, the fading channels must be
sampled at a higher rate (shorter frame length): foriGpW @
3=3358> 3=338> and 0.01, the critical frame lengths are approx-
imately 180, 90, and 45 symbols respectively. These values
correspond closely to the inverse of the Nyquist rate5iGpW .
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Again, this behaviour is consistent with that observed in [4].
The transmission ef¿ciency, or throughput, experienced by

any user is given by the ratio of the number of data sym-
bols per frame to the frame length. As the number of users
increases, so does the required length of training sequence,
causing the user ef¿ciency to drop. Using the minimum train-
ing sequence length found earlier, the user ef¿ciency is�x @
+Q �P +Of . 4,� Of, @Q . Fig. 5 shows a plot of user ef¿-
ciency vs. number of users for the critical frame lengths found
in Fig. 4. This plot illustrates signi¿cantly reduced ef¿ciency
for short frame lengths and a large number of users. In the
extreme of fast fading (iGpW @ 3=34) with 4 users, and a
frame length ofQ @ 78> the user ef¿ciency drops from its
value of 80% corresponding to a single user to a value near
50%. Remember, though, that in the case of frequency reuse
within cell, system capacity is enhanced by allowing 4 users
to share the same frequency/time slot which offsets this reduc-
tion in user ef¿ciency. Therefore, we de¿ne system ef¿ciency
as�v @ P�x and plot in on Fig. 5, where an optimal value of
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P can be seen. This optimal value and the corresponding opti-
mal�v both increase for slower fading where the frame length
can be much greater than for fast fading.

Fig. 6 shows the effect of the number of users on estima-
tion error. As can be seen, the estimation error variance actu-
ally decreases with each additional user, which is due to longer
training sequences as each additional user is added. This plot
also shows that each user has a slightly different estimation er-
ror variance which is due to the fact that the users’ training
sequences have different autocorrelation properties and are not
mutually orthogonal. Furthermore, Fig. 6 illustrates that, as
expected, estimation error variance decreases as the inverse of
SNR.

VI. CONCLUSIONS

In this paper, we have developed a pilot-based technique
for jointly estimating the channels of multiple cochannel users
in a TDMA system that is useful for a variety of multiuser

detection and interference cancellation schemes. Several de-
sign issues are considered, including the selection of multi-
ple training sequences, choice of interpolator order, the choice
of frame length, and ef¿ciency. Results show that, although
the user throughput decreases with each additional user due to
increased training sequence length, the system ef¿ciency in-
creases, since multiple users are allowed to share the same fre-
quency/time slot. Furthermore, it is shown that the channel es-
timation error per user is inversely related to SNR, and actually
decreases with each additional user.
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