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Performance Enhancement Through Joint Detection
of Cochannel Signals Using Diversity Arrays
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Abstract— Joint detection based on exploiting differences
among the channels employed by several users allows a receiver
to distinguish cochannel signals without reliance on spectrum
spreading. This paper makes a number of new contributions
to the topic: it provides an analytical expression for the union
bound on average symbol-error rate for an arbitrary number
of users and diversity antennas in a fading environment, for
both perfect and imperfect channel state information (CSI), and
it compares the performance of joint detection with diversity
antennas against classical minimum-mean-square-error (MMSE)
combining. The performance is remarkable. With accurate CSI,
several users can experience good performance with only a
single antenna; moreover, for perfect CSI, only a 2-dB penalty is
incurred for each additional user. With several antennas, many
more users than the number of antennas may be supported
with a slow degradation in performance for each additional
user. Furthermore, high accuracy is not required from the
channel estimation process. In all cases, the performance of
joint detection exceeds that of MMSE combining by orders
of magnitude.

Index Terms—Antenna arrays, cochannel interference, fading
channels, multidimensional signal detection, multiuser channels.

I. INTRODUCTION

JOINT detection is a method whereby the central receiver
in a communication system exploits differences among

several cochannel users’ signals in order to make a simul-
taneous decision on all of the users’ data. In this way, several
signals can occupy the same frequency and time slot, leading
to improved spectrum efficiency and system capacity.

Recently, much attention has been focused on joint detec-
tion in the context of code-division multiple-access (CDMA)
systems, since the central receiver has knowledge of all users’
orthogonal spreading sequences, which allows the signals to
be distinguished. One of the most referenced works in this
area is that by Verdu [1]. Subsequent works, e.g., [2] and
[3], focused on the development of suboptimal detectors, since
the computational complexity of the joint detection algorithm
increases exponentially with the number of users—a potential
problem for a CDMA system with many users.

An alternative method of distinguishing cochannel signals is
to exploit differences in the channels between each user and the
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receiver. This method does not rely on spectrum spreading and
it can, therefore, be applied to narrow-band systems, such as
frequency-division multiple access (FDMA) or time-division
multiple access (TDMA). Since the number of users sharing
the same slot is likely to be much less than in a CDMA system,
the computational complexity of the joint algorithm may not
be a significant issue.

Joint detection based solely on channel differences has
received only limited attention in the literature, e.g., [4]–[6].
In both [4] and [5] constant channels and perfect channel state
information (CSI) are assumed, although in [4] multichannel
reception is considered. In [6] deterministic channel estimation
offsets are investigated, but the channel and the estimation
errors are constant, and the receiver has only one channel
available.

The present paper makes a number of new contributions.
It appears to be the first to address multiuser detection based
on channel differences in the context of fading channels. It
provides an analytical expression for the union bound on
average symbol-error rate for an arbitrary number of users and
diversity antennas, and for both perfect and imperfect CSI.
In addition, it compares the performance of joint detection
with diversity antennas against minimum-mean-square-error
(MMSE) antenna combining—a classical approach for sup-
pressing cochannel interference when making single-user deci-
sions [7]. Although the model has been simplified by requiring
users to be synchronized by symbol, this study provides the
motivation for investigation of asynchronous performance.

The results are striking. With accurate CSI, several users
can experience good performance with only a single antenna.
With a few antennas, many more users than antennas can be
supported and the accuracy of the CSI can be quite lax. In all
cases, joint detection outperforms MMSE combining by many
decibels or orders of magnitude.

In Section II the system model is presented. In Section III
the metric for the maximum-likelihood joint detection receiver
is derived. In Section IV we derive an analytical expression for
the average bit-error rate (BER) for the joint detection receiver
and a quasi-analytical expression for BER for the MMSE
combining receiver. Section V presents results highlighting the
performance of joint detection and comparing it with MMSE
combining. Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

The system considered in this paper concerns the transmis-
sion of cochannel signals over frequency-flat Rayleigh-
fading channels. The signals are assumed to be-ary phase-
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Fig. 1. Model of joint detection receiver.

shift keying (PSK) modulated and synchronized by symbol.
-fold antenna diversity is employed at the receiver with the

antenna elements spaced far enough apart to ensure indepen-
dent fading. A model of the receiver is shown in Fig. 1.
A restriction is made to the symbol-synchronous case which
allows an illustrative vector/matrix description of the system,
leading to results that are easily interpreted and show the trends
that would likely occur in a more typical asynchronous system.

Note that throughout this paper the following conventions
are used: variables in italics are scalars, lowercase boldface
variables are vectors, and uppercase boldface variables are
matrices. Furthermore,and denote, respectively, the com-
plex conjugate transpose and regular transpose of a vector or
matrix, and denotes complex conjugate. Since all signals
are represented by their complex baseband equivalents, the
power (or variance) of the bandpass signal , with baseband
equivalent , is , where is the
expectation operator.

Each user’s transmitted signal is given by

(1)

where is the th user’s PSK data symbol during the
th signaling interval, normalized such that ,

is a root Nyquist pulse normalized to unit energy, i.e.,
, is the symbol period, and

, where is the average power in .
The channels between the multiple users and multiple

antennas are described by the channel gain matrix

...
...

. . .
...

(2)

where the zero-mean complex Gaussian random variable
is the gain of the channel between theth user and

th antenna. Due to independent fading across the antenna
array, the elements of the th column of , denoted
by the channel gain vector , are independent and are
assumed to have equal variance . Furthermore, the users
are assumed to be spaced far enough apart (a few wavelengths)
that the columns of are mutually independent.

The output of the antenna array is the signal plus noise
vector

(3)

where is the length- vector of transmitted signals.
The elements of the noise vector are independent white
Gaussian noise processes with double-sided power spectral
density . Upon reception, is passed through a bank of
matched filters each with impulse response and then
sampled every seconds to produce the vector

(4)

where the elements of and are zero mean with
variance and , respectively. With reference to (4), the
average per-branch signal-to-noise ratio (SNR) for userat
the input to the detector is defined as

(5)

To aid detection, the channel estimator provides the receiver
with estimates, denoted , of the channel gain matrix.
Consistent with previous notation, the channel estimate vector

denotes the th column of . To keep the treatment
general, we have not prescribed a specific channel estimation
scheme, although the estimates are typically obtained through
the use of embedded references such as pilot tones or pilot
symbols [8].

After matched filtering, the received vector along with
the channel estimates in are input to the detector, which
makes a joint decision on all users’ symbols using the metric
derived in Section III. The output of the detector is the
vector of symbol decisions , which is an estimate of the
transmitted data vector .

III. JOINT DETECTION METRIC

Let be the set of all possible
transmitted data vectors where the time dependence of all
variables has been dropped in the subsequent analysis for
convenience. For users and a PSK constellation size of,
the number of possible data vectors is . The joint detection
metric is derived starting from the observation that the maxi-
mum a posteriori (MAP) detector selects that vector from
the set for which thea posterioriprobability is
maximum. Under the assumption of equiprobable data vectors,
this is equivalent to maximizing the probability .

It is assumed in this study that theth user’s channel
estimate is a zero-mean complex Gaussian random vector
correlated with the true channel gain vector. As with ,
it is assumed that the elements of are independent and
have equal variance . Furthermore, it is assumed that the
correlation between and is described by the covariance
matrix

(6)
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where denotes the correlation coefficient between corre-
sponding elements of and , and is the identity
matrix. Implicit in this assumption is that is the same for
all antennas and that on one antenna is uncorrelated with

on a different antenna.
It is important to emphasize that the ’s (generally com-

plex quantities all with ) collectively reflect the
quality of channel estimation. For the limiting case of perfect
CSI, is equal to unity for all users. Note that in typi-
cal channel estimation schemes such as pilot-symbol-assisted
modulation (PSAM) [8], is expected to vary with SNR,
tending to unity with very large SNR. This will be discussed
in more detail in Section V-A.

Since and are jointly Gaussian with independent
components, we can write

(7)

where is the coefficient for MMSE estima-
tion of from and, by the principle of orthogonality, the
channel estimation error vector is uncorrelated with .
The conditional mean and covariance matrix of are then

(8a)

(8b)

respectively. The estimation error variance is, in turn, given by

(9)

Note that in this paper is scaled, for convenience, such
that . Even with this magnitude normalization,

still occurs in subsequent equations since, in general, it
is a complex quantity with an associated angle. The above
equations clearly show that for perfect CSI from the channel
estimator, and .

From (4), conditioned on and is Gaussian. Use of
(8a) and (8b) gives its conditional mean and covariance matrix,
respectively, as

(10a)

(10b)

The probability density function (pdf) of, conditioned on
and , can now be written as

(11)

Neglecting hypothesis-independent terms, the appropriate
joint detection metric to be minimized is

(12)

Evidently, the receiver requires knowledge of the product
for every user. Fortunately, this quantity is gener-

ated explicitly in a pilot-based channel estimator. The other
required parameter is determined at design time; however,
if the true channel statistics differ from the design statistics, a
bias is introduced. We have assumed the bias to be zero and
focused the analysis on the random channel estimation errors.

It is interesting to note that for a single user, the metric de-
fined in (12) leads to the well-known maximal-ratio-combining
(MRC) receiver. For , after neglecting hypothesis
independent terms, (12) reduces to

(13)

Evidently, the receiver weights each antenna signalby ,
combines the signals, and derotates the sum by the various
symbol hypotheses to determine the most likely transmitted
symbol.

IV. ERROR PROBABILITY ANALYSIS

Section IV-A contains an analysis of the error performance
of joint detection based on the metric derived above. For
reference, Section IV-B contains an analysis of the error
performance of the well-known MMSE combining receiver
[7] with the addition of channel estimates. In contrast to joint
detection, which exploits the CSI from other users to make
a single joint decision, the MMSE combining receiver makes
separate decisions on each user’s symbol while attempting to
suppress the interference from other users.

A. Joint Detection

Here we determine an upper bound on the probability of
symbol error for user , denoted . First, let the trans-
mitted data vector be . According
to (12), the detector chooses the erroneous data vector

over if . The probability of
this pairwise error event is denoted , where

.
The union bound on the probability of symbol error for

user , given that is transmitted, is given by the sum
of the pairwise error probabilities over the subset of vectors
in that differ in their th position from . Assuming
equiprobable transmitted data vectors and noting that the
probability of error does not depend on which data vector
is actually transmitted, we have

(14)

where indexes the subset of vectors in that differ in
their th position from .
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The pairwise error probability is determined in the following
manner. First, using an alternative form of the metric defined
in (12), the random variable can be written as a sum of

Hermitian quadratic forms

(15)

where the length- vector is defined as

(16)

The Hermitian matrix is defined as

(17)

where the vectors and are given by

(18a)

(18b)

Next, observing (15), define the random variable
. Since is a Hermitian quadratic form in

zero-mean complex Gaussian random variates, according to
[9, eq. (B-3-21)] the two-sided Laplace transform of the pdf
of is

(19)

where the covariance matrix is given
in (20), shown at the bottom of the page. The region of
convergence of is the vertical strip enclosing the

axis bounded by the closest pole on either side. Due to
independent fading across the antenna array, the’s in (15)
are independent as are the ’s. Consequently, the two-sided
Laplace transform of the pdf of is simply
the product . Moreover, since is
independent of

(21a)

(21b)

where is the th eigenvalue of .

The inversion of (21b) is made easier by the fact that the
matrix has only two nonzero eigenvalues denoted
and (see Appendix). Thus, rearranging (21b)

(22)

where the convention is used that the pole
is in the left half-plane, and the pole is in
the right half-plane. Since (22) is similar in form to [10, eq.
(4B.7)], suitable modifications give the sought-after pairwise
error probability as

(23)

Finally, by substituting this expression into (14), the union
bound on the probability of error for user is given by

(24)

where, again, indexes all those vectors in that differ in
their th position from the transmitted vector .

For the special case of a single user, binary PSK (BPSK)
signaling, and perfect CSI, (24) reduces to the result for the
exact probability of bit error (rather than the union bound)
for the MRC receiver. Since , the matrix is
only ; therefore, its eigenvalues can be found analytically
resulting in the pole ratio given by

(25)

where is the average per-branch SNR defined in (5). The
probability of bit error is then

(26)

which is equivalent to [10, eq. (7.4.15)].

...
...

...
. . .

...

(20)
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Fig. 2. Model of MMSE combining reciever for themth user.

B. MMSE Combining

Here a quasi-analytical expression for the bit-error proba-
bility of the MMSE combining receiver (Fig. 2) using channel
estimates is derived. For each individual user, the weight
vector is chosen to minimize the mean-squared value
of the error signal given by

(27)

where the time dependence has been dropped for convenience.
Note that the expectation in (27) is taken over the joint
ensemble of channel estimation errors, noise, and the
interfering users’ symbols. The output of the detector is the
symbol decision , which is chosen to be that symbol
closest in Euclidean distance to the combiner output .

The optimal weight vector for the th user is found by
expanding (27), differentiating with respect to , setting
the result to zero, and solving for . For the case of PSK
modulation, the result is

(28a)

(28b)

where, to avoid confusion later, the subscript is used
in all summations. Equation (28b) generalizes the weight
equation derived in [7] to include the case of imperfect channel
estimation. For the special case of perfect channel estimation
( and ) (28b) and [7, eq. (9)], are equivalent.

For the case of BPSK modulation, the probability of bit
error for the th user, denoted is

(29)

Unfortunately, the pdf of is difficult to obtain for
due to the matrix inversion in (28b). Thus, in order to

determine BER’s for arbitrary , simulation is required. For
, though, it can be shown that by using the matrix

inversion lemma [11], (28b) reduces to the weight vector for
the MRC receiver with bit-error probability given by (26).

Before resorting to simulation, some progress can be made
toward a quasi-analytical BER expression by recognizing that
the pdf of the random variable conditioned on both the

channel estimate matrix , and the symbol vector
is Gaussian. To see this, let

where, using (4) and (7)

(30)

(31)

Observing (28b), is deterministic for a given . Thus, for
a given , is deterministic as well, and is Gaussian since
both and are Gaussian. Furthermore,is zero-mean.
Therefore, given with and , the conditional
probability of error is the probability that the real part of
goes negative, given by

(32)

where is the Gaussian -function, and the variance of
is given by

(33)

The average probability of bit error for user follows by
substituting (30) and (33) in (32) and taking the expectation
over the joint ensemble of the channel estimates and the
interfering users’ symbols

(34)

where it is understood that . In this way, we
have increased the simulation accuracy by performing the
average over the noise and channel estimation error ensembles
analytically.

Using (34), the BER for user is determined through
simulation by the following method: at each iteration generate
an matrix of independent zero-mean complex
Gaussian random samples, with the elements in column
having variance , calculate the weight vector using
(28b) along with (9), and then average the-function in (34)
over all possible ’s with .

V. PERFORMANCE RESULTS

In this section we provide some numerical results that
follow from the analysis in Section IV. Specifically, the
results highlight the performance of the following: 1) joint
detection of equipower signals with a single antenna; 2)
joint detection of equipower signals compared to MMSE
combining for multiple antennas; and 3) joint detection of
nonequipower users. In all cases both perfect and imperfect
CSI are considered.
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Fig. 3. Performance of joint detection of equipower users with a single antenna. The lower set of curves is for perfect CSI; the upper set is for
imperfect CSI with �m = 0:999 for all users.

Although the analysis in Section IV applies to-ary PSK in
general, for simplicity, we limit the results in this section to the
case of BPSK modulation ( ). As discussed previously,
perfect CSI is modeled by setting the channel estimation
correlation coefficient for all users to unity; values of

less than unity imply imperfect CSI with estimation error
variance given by (9). For convenience, the channel gain
variance is set to 1/2 for all users so that the channels
do not alter the power of the transmitted signals, and the per-
branch SNR for user defined in (5) becomes .
In this way, different receive powers for each user are modeled
by assigning appropriate values to the ’s.

A. Single Antenna

Fig. 3 shows the performance of joint detection of
equipower signals using single antenna for both perfect and
imperfect CSI; for the case of imperfect CSI, is set to
0.999 for all users. Note that the performance of each user is
identical since all signals are received at the same power level
and is the same for each user. With reference to the perfect
CSI curves, it can be seen that the performance degrades by
only about 2 dB for each additional user. This value decreases
to approximately 0.2 dB with four antennas. In the low-SNR
region the two sets of curves are coincident, implying that
noise, rather than channel estimation error, is the dominant
effect determining error rate; that is, in this region.
In contrast, in the high-SNR region, channel estimation error
dominates the performance, causing an irreducible error rate
similar to that observed in systems employing differential
detection. As can be seen, though, up to four users may be
supported while still maintaining an error rate below 10—a
striking result for only a single antenna.

Although these analytical results are for BPSK,-ary PSK
( ) shows a similar behavior: the BER curves are parallel,
with a degradation of about 4.8 dB for each additional user.
This latter result was determined by simulation of-ary PSK
with perfect CSI.

Our analytical results are quite general in that we have
assumed an arbitrary—but fixed— with no reference to the
actual channel estimation scheme used. In a typical single-
channel system employing PSAM [8], though, the channel
estimation error variance varies inversely with SNR over a
wide range, i.e., . The constant of proportionality

depends on various parameters of the PSAM scheme such as
interpolator order, pilot symbol spacing, and the Doppler fade
rate. is related to through (9); thus, the variation of

with SNR can be modeled as .
For illustrative purposes, we present results using this model

for assuming a 1% Doppler fade rate, an 11th-order
interpolator, and a pilot spacing of ten symbols ( ).
Fig. 4 compares the performance using the fixed and variable

models for the detection of equipower users.
A fixed of 0.999 for all users is chosen for comparison
since at the midpoint (20 dB) of the SNR
range considered. As might be expected, the consequences
of fixing are that the error rate is pessimistic in the
high-SNR region and somewhat optimistic in the low-SNR
region. Using the variable model, the error floor disappears
since in the high-SNR region. In the low-
SNR region the performance is degraded by approximately 2.5
dB. Moreover, the variable curve runs essentially parallel
to the perfect CSI curve with a performance degradation of
approximately 2.5 dB. This behavior is typical of what we
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Fig. 4. Comparison of fixed and variable�m models for the joint detection ofM = 4 equipower users with a single antenna (fixed�m is 0.999 for all users).

Fig. 5. Tightness of upper bound on BER for the joint detection of equipower users with a single antenna and perfect CSI.

have observed in other situations. We will return to modeling
the variation of with SNR in Section V-C. Until then, the
fixed model will be used for generality.

We also investigated tightness of the upper bound. Fig. 5,
which compares the bound to simulation values for perfect
CSI, shows that it is asymptotically tight with increasing
SNR. As the number of users increases, a given accuracy

of the bound requires a somewhat higher SNR; however,
the accuracy is quite satisfactory for normal values of BER.
As for increasing the number of constellation points, the
bound becomes loose, like the union bound for-ary PSK in
conventional single-user operation; however, in such cases a
better approximation can be obtained by considering only the
dominant error events.
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Fig. 6. Comparison of joint detection and MMSE combining withL = 2 antennas, equipower users, and perfect CSI.

Fig. 7. Comparison of joint detection and MMSE combining withL = 2 antennas, equipower users, and imperfect CSI (�m = 0:999 for all users).

B. Multiple Antennas

Fig. 6 shows the performance of joint detection of
equipower signals compared to MMSE combining for
antennas and perfect CSI; Fig. 7 is for imperfect CSI with

for all users. Clearly, joint detection outperforms
MMSE combining by a very large margin. Whereas for MMSE
combining the performance is unacceptable when the number

of users exceeds the number of antennas, the performance of
joint detection degrades gracefully with each additional user.
Note that if the variable model is used, a similar effect
to that observed in Fig. 4 occurs. That is, the joint detection
curves in Fig. 7 become essentially parallel to those for the
perfect CSI case, but shifted to the right by approximately 2
dB for and 4 dB for . In contrast, the MMSE
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Fig. 8. Comparison of joint detection and MMSE combining at a fixed SNR of 12 dB with equipower users and imperfect CSI (�m = 0:999 for all users).

Fig. 9. Channel estimation accuracy required to achieve error floor of 10�3 with equipower users.

combining curves are not significantly affected since the error
rate is approximately constant with SNR for .

Evidently, joint detection can support many more users than
the number of antennas. This fact is clearly illustrated in Fig.
8 in which the error performance of both joint detection and
MMSE combining are plotted against number of users at a
fixed SNR of 12 dB. For this plot, for all users—an

appropriate value at 12 dB. As can be seen, the performance
of joint detection degrades slowly and in a linear fashion as
the number of users increases. In contrast, the performance of
MMSE combining degrades very quickly and saturates at an
unacceptably high error rate for . For a large number of
users, the performance of joint detection is orders of magnitude
better than MMSE combining.
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Fig. 10. Performance of joint detection ofM = 4 nonequipower users withL = 2 antennas and perfect CSI. Case 1: three strong/one weak. Case
2: one strong/three weak.

To illustrate the channel estimation accuracy required to
achieve a given performance for various numbers of equipower
users and antennas, Fig. 9 shows the correlation coefficient

(same for all users) required to achieve an error floor
of 10 . As can be seen, the accuracy requirements relax as
each additional antenna is added. For example, for
antennas, the correlation coefficient must be no less than
about 0.995 for the detection of users. This results
in a relative channel estimation error variance, defined as

, of approximately 1%. For antennas, the
correlation coefficient must be no less than about 0.95, result-
ing in a relative estimation error variance of approximately
10%.

C. Nonequipower Users

Thus far, the performance results presented have applied
to the case of equipower users. It is interesting to investigate
the nonequipower case to see how an unequal distribution of
powers affects the performance of both the weak and strong
users. Two different power distributions are examined, each
for the detection of users: case 1 corresponds to
three strong users and one weak user; case 2 corresponds to
one strong user and three weak users. The power difference
between the weak and strong users in both cases is 10 dB.

Since the SNR for each user is different in the nonequipower
case, a convention must be adopted for plotting the various
users’ performance. Accordingly, in the following graphs
the BER of each user is plotted against itsown SNR. The
implication of this is that at a given SNR, the noise level ()
is different for each user: smaller for the weak users, larger
for the strong users.

Fig. 10 shows the performance of cases 1 and 2 for perfect
CSI compared to the case of equipower users. Due to the
different noise levels at a given SNR, the performance of the
weak users appears to be better than that of the strong users. To
compare the performance at the same noise level, i.e., under
the same operating conditions, one must mentally shift the
weak users’ curves to the right by an amount equivalent to
the power difference between the users (10 dB in this case).
Comparison under the same operating conditions reveals that
the performance of the strong users is better than that of the
weak users by about 7–8 dB. Moreover, the performance of
all users is degraded from the equipower case, indicating that
in an operational system some degree of power control may
be desirable to keep the distribution of powers more or less
uniform. Also evident from Fig. 10 is that the performance of
case 1 is approximately 2 dB better for both strong and weak
users than case 2, indicating that the larger the ratio of number
of strong users to weak users, the better the performance.

For the case of imperfect CSI, the strong users are expected
to have a larger than the weak users, since, as mentioned in
Section V-A, channel estimation accuracy typically improves
with increasing SNR. The relative values are determined as
follows. Using (9) and the fact that varies inversely with

for PSAM, the correlation coefficient for one user (with
SNR ) is related to that for a second user (with SNR) by

. For example, if the strong
users have and the SNR difference is 10 dB,
then the weak users have . Fig. 11 shows the
performance of cases 1 and 2 using these values of(fixed
across the SNR range considered).
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Fig. 11. Performance of joint detection ofM = 4 nonequipower users withL = 2 antennas and imperfect CSI (�m = 0:999 for strong users and
0:99 for weak users). Case 1: three strong/one weak. Case 2: one strong/three weak.

As before, to compare the performance of the weak and
strong users at the same noise level, the weak users’ curves
must be shifted to the right by 10 dB. In contrast to case of
perfect CSI, the difference in performance between the weak
and strong users depends strongly on SNR. In the low-SNR
region, where the effect of noise dominates that of channel
estimation errors ( ), the difference is similar to the
perfect CSI case. However, in the high-SNR region, where the
effect of channel estimation errors dominates that of noise,
the difference—due to the different ’s—becomes much
larger. Like before, if the more realistic variable model
is incorporated into the above, the curves become essentially
parallel to those for the perfect CSI case, but shifted to the
right by approximately 4 dB for both cases 1 and 2, and the
error floor disappears.

VI. CONCLUSIONS

In this paper we have considered the joint detection of
multiple cochannel symbol-synchronous PSK signals using a
diversity antenna array in a system with channel estimates
available at the receiver. A closed-form analytical expression
has been derived, giving the union bound on error performance
of the joint detection scheme, and is compared to the perfor-
mance, obtained by simulation, of classical MMSE combining.
The analysis applies to both perfect and imperfect channel
estimation and is general in the sense that it is not focused on
any particular channel estimation scheme.

The presented results show that the performance is very
good: with joint detection it is possible to reliably detect
multiple cochannel signals using only a single antenna. For
perfect CSI, only a 2-dB penalty is incurred for each additional

user. In the case of -ary PSK, the penalty is about 4.8 dB. For
imperfect CSI, an error floor is introduced; however, within the
limits of achievable channel estimation accuracy, it is shown
that several users may still be supported while maintaining
the error floor below 10 —a commonly accepted threshold
value.

In the case of diversity reception, many more users than the
number of antennas may be supported with a slow degrada-
tion in performance with each additional user. This contrasts
sharply with the performance of classical MMSE combining
which degrades quickly and saturates at an unacceptable level
when the number of users equals and then exceeds the number
of antennas. Furthermore, for all combinations of numbers of
users and antennas, joint detection shows orders of magnitude
improvement over MMSE combining.

The upper bound on BER for a single antenna and perfect
CSI is compared with results from simulation and it is found to
be asymptotically tight with increasing SNR. As the number
of users increases, a given accuracy of the bound requires
a somewhat higher SNR; however, the accuracy is quite
satisfactory in the useful BER range.

Useful bounds are presented which indicate the channel
estimation accuracy required in order to achieve a given level
of performance for arbitrary numbers of users and antennas.
Generally, the accuracy requirements of channel estimation
relax significantly as the number of antennas is increased.
These results should prove useful for those designing channel
estimation schemes appropriate for multiuser receivers.

Unequal power distributions are investigated and it is found
that both the weak and strong users’ performance is degraded
from the equipower case, indicating that in a practical system,
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power control may be desirable. Furthermore, it is found that
performance depends on the ratio of number of strong users
to weak users and improves as this ratio increases.

APPENDIX

RANK OF

Here it is shown that the matrix has only two nonzero
eigenvalues, which allows the characteristic function of
to be simplified from its form in (21b) to that in (22). First,
recall that the dimension of both and is . Since
the covariance matrix is generally full rank, any limit on
the rank of the product is imposed by that of . The
rank of can be determined by looking at its null space,
i.e., the solutions to the equation

(35)

Substituting (17) into this expression and rearranging gives

(36)

For and linearly independent, which is indeed the case
for different and , (36) is satisfied only for both
and . In other words, solutions to (36) lie in the

-dimensional subspace orthogonal to bothand .
Since the nullity of is and the dimension of is

, the rank of is thus two. Consequently, the rank of
the product is a maximum of two for all , implying
that has only two nonzero eigenvalues.
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