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Abstract— Outage probabllity in the presence of fading,
shadowing, and path loss is a useful measure of the ca-
pacity of a cellular mobile radio system. Due to the com-
plicated nature of the spatial average, though, previous
capacity studies have resorted to numerical techniques
such as Monte Carlo simulation. In this paper, we de-
velop a fully analytical and computationally straightfor-
ward technique for the computation of outage probability
through a simple, yet accurate, geometric approximation
in the spatial average. An attractive feature of the tech-
nique is that it does not rely upon a hexagonal cell layout,
thus enabling the study of more generalized systems in
which the cochannel cells are of arbitrary size and loca-
tion.

I. INTRODUCTION

In previous cellular -system capacity studies, out-
age probability has been determined through time-
consuming Monte Carlo simulation of outage events or
by a variety of numerical techniques aimed at generating
the distribution of the signal-to-interference ratio (SIR),
e.g. [1],[2],[3]. This is primarily due to the complicated
integrals involved in the spatial averaging of the interfer-
ing mobile’s position-dependent path loss. Furthermore,
these studies usually assumed a strict hexagonal cell lay-
out in order to simplify the spatial averaging process.

In contrast, this paper presents a fully analytical tech-
nique for the calculation of outage probability used for

the assessment of the uplink capacity of a general cellu- -

lar system in which the cochannel cells are of arbitrary
size and location. The system is assumed to be op-
erating in a flat Rayleigh fading/log-normal shadowing
environment with cochannel interference. The key fea-
ture of the technique is the analytical calculation of the
moments of the inverse of SIR, in which the spatial aver-
aging is performed analytically by making a simple ge-
ometric approximation which leads to a closed-form re-
sult. The technique is demonstrated for a typical cellular
system layout with 120° sectorization and a base station
employing diversity reception. Results comparing sim-
ulation and analysis show that the analytical technique
achieves very good accuracy.

II. SYSTEM MODEL

Fig. 1 shows a few cells of the general cellular sys-
tem studied in this paper. The central cell containing
the desired user is surrounded by an arbitrary number
of cochannel cells, each of radius R; and at distance
D;. Cell sectorization is easily modeled by considering
only those cochannel cells that fall within the angular
width of a particular sector. This model goes beyond
the rigid hexagonal cell layout used in previous capacity

studies [1],[2],[5] by modeling additional realism through
arbitrary R; and D;. Furthermore, the model, and the
resulting analysis in this paper, may easily be extended
to multiuser systems where several intracell users are
allowed to share the same time-frequency slot in order
increase capacity (see [4] in these proceedings).
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Fig. 1. Generalized cell layout. The distance D; between the base
stations of a particular cochannel cell and the central cell is
arbitrary, as are the cell radii R, and R;.

The received signal on a particular diversity branch
of the base station receiver in the central cell is given by

N
7 (t) = ro () + Z'r‘i (t) + 2 (t) 1)

where the first term is the signal received from the de-
sired user in the central cell, the second term is the sum
of the signals received from N interfering users in the
surrounding cochannel cells, and the third term is ad-
ditive white Gaussian noise with power spectral density
N,. All signals are represented by their complex base-
band equivalents. :

The transmitted signal from each mobile undergoes
three effects, namely log-normal shadowing, path loss,
and frequency-flat Rayleigh fading. The combined ef-
fects of log-normal shadowing and path loss are modeled
by an attenuation (gain) of z.dB superimposed on a path
loss of y10log; [d] dB. Here z is a zero mean Gaussian
random variable (RV) with standard deviation o, (in
units of dB), d is the distance from the mobile to the
central base, and 1y is the path loss coefficient. For typ-
ical cellular systems, o, is usually between 6 and 8 dB
[1], and 7 is between 3 and 4 [2]. Frequency-flat Rayleigh



fading is modeled by the zero mean complex Gaussian
random process ¢ () with variance ag. Accordingly, the
received signals from the desired and each interfering
user are, respectively,

ro (t) = 1070/ 20p; 0/2 g0 (£) 50 (2)
ri (t) = 10%/200 7% g, (t) s; (t — 73)

(2a)
(2b)

where g (t) and s; (t) are the corresponding transmitted
signals. The relative delay 7; is included to reflect the
fact that the interfering signals do not, in general, arrive
synchronously.

Assuming a linear modulation format, the transmit-
ted signal of the desired user is

s0(t) = /2Es, ) co (k) p(t —KT) (3)
k

where p (t) is a root-Nyquist pulse shape normalized to
unit energy with autocorrelation function ¢ {t) = p (t) ®
p* (—t) (® denotes convolution), T' is the symbol period,
E,, is the average transmitted energy per symbol, and
¢o (k) is the kth symbol drawn from the symbol sequence
co. For convenience, the data symbols are normalized

such that E [|c0 (k:)]z]

transmitted signals, the subscript ‘O’ in (3) is replaced
by ‘.

In this paper, perfect power control is assumed, and,
as in other capacity studies [2],[3], each mobile is as-
sumed to be power controlled by the geographically
closest base station, rather than by the base with the
strongest received pilot. Consequently, at all times,
ro < Rg and r; < R;. With perfect power control, the
base station in the central cell sets the average power in
the transmitted signal s (f) to exactly compensate for
shadowing and path loss such that the average power of
the received signal 1 (£) at the base station is constant
regardless of shadowing and mobile position. Thus,,
(2E30/T) 0.2 10z0/10 ~Yo —
received power. The base station in each cochannel cell
performs the same function, except that the path loss
is determined by the distance r; from the interfering
user to its own base rather than the distance to the
central base. Furthermore, the shadowing is described
by a different zero mean Gaussian random variable y;
(independent of z;) with standard deviation o,,. Con-
sequently, the power control law for interfering mobiles
is (2B, /T) 02,10%/107 % = P,

In this paper, the signal-to-interference-plus-noise ra-
tio (SINR) is defined at the output of the matched filter
as follows

‘: 1. For the interfering users’

1F [lvo (1)1
S 3B [0 )P + 1B [l )]

where yo (t) , ¥; (t) , and n (t) are given by the convolu-
tion of the matched filter response p* (—t) with 7 (£),
r; (), and 2 (t) respectively. In the case of the inter-
ference component, the expectation is taken over the

I'=

4)

= P, where F, is the constant

fading ensembles only. In the case of the desired com-
ponent, the expectation is taken over both the fading
and symbol ensembles. Recall, though, that yo (t) is a
cyclostationary process due to the linear modulation for-
mat. As a result, the power of the desired component
is periodic with period T thus, the numerator of (4)
should be interpreted as the peak power of yo (£) .

Performing the expectations in (4) and using the
power control laws discussed above gives the SINR as
r=1/ (I‘I_l +TI'y') where

Z 10w:/10 7"

t=1

‘Z ci(k)gt— kT — Tz)
(5)

is the interference-to-signal ratio (ISR), and I'y =
P,T/N, is the signal-to-noise ratio (SNR) It is assumed
here that the fading variance o2 = ag for all inter-
ferers. Note that, the shadowing RV in (5) is simply
w; = x; — y; with variance 02 =02 +0 . Although
T" is defined here as a power ratio at the output of the
matched filter, one can see that without interference,-
T is equivalent to the commonly defined energy ratio
E;/N,, where E; is, as usual, the average energy per
symbol in the received signal 7o (£).

III. OUTAGE PROBABILITY

As can be seen from above, the SINR T is a ran-
dom variable governed by the set of shadowing random
variables, mobile positions, symbol sequences, and rel-
ative delays of the interferers, that is {w;,r;,d;, ¢;, 7 }.
Consequently, the symbol error rate experienced by the
desired user in the central cell is also a random vari-
able. Outage probability is defined as the probability
that the random symbol error rate is greater than a cer-
tain threshold (typically 1072 or 10~3). Since the sym-
bol error rate typically decreases monotonically with in-
creasing I', outage probability is given by

Ppr=P[L<Ty|=P[[;'>T;' -T3'] (6)

where I'; is the SINR for which the symbol error rate is
equal to the threshold. The threshold SINR I'; depends
on the detection technique as well as the diversity order
of the system.

Clearly, an exact assessment of outage probability re-
quires knowledge of the complementary cumulative dis-
tribution function (ccdf) of the ISR I‘I_l. Unfortunately,
the expression for T’ ;1 involves the sum of weighted
log-normal variates for which the distribution is un-
known. As is common in many capacity studies, though,
the distribution is approximated by a convenient two-
parameter distribution, e.g. log-normal {1],[7],[8] or
Gaussian [2].

Assuming a log-normal distribution, outage probabil-
ity is approximated as follows. First, define a log-normal
random variable v = 10°/10, where z is Gaussian with
mean 4, and standard deviation o,. The pdf of v is
given by [§]

ez () ()

fv ()=

2mov



where p = 10#</1° and ¢ = [In(10) /10]0,. The com-
plementary cumulative distribution of v is then

ro=[ roa=efiu(2)] ®

where @ (v) is the Gaussian Q-function. Now make the
approximation 1"‘}“1 22 v which results in

P =Q [% In <£—-;—F—;V1>] . (9)

The two parameters p and ¢ may be obtained through
Wilkinson’s method [7], whereby the first two moments
of I“fl, denoted m; and ms, are matched with the first

two moments of v, given by E [v] = pe® /2 and E [v?] =
p2e2°” [8]. Solving for x and o then gives p = m2/\/mz
and 0 = +/In [mg/m?]. In the next section, closed-form
analytical expressions are developed for m, and ma.

IV. MOMENTS OF ISR

Observing (5) one can see that the ISR I'; ! is simply
the sum of NV independent random variables. Conse-
quently, the first and second moments of ISR may be
expressed as

N
E[r{'] = ZE 2] (10)

and

N N-1 N

E2 =Y E[#)+2) . > ERIE[] (1))

i=1 i=1 j=i+1

where z; is the ith term in the summation of (5). Clearly,
the calculation of the moments requires the calculation
of E [2F] for n = 1,2 for all interferers.

Due to the independence of the individual random
variables in 2;, one can see that E [2]] factors into three
separate expectations. The first, namely the expectation
over the shadowing ensemble, is easily performed using
the moments of a log-normal random variable discussed
previously. The result is

1 0 \?
E [10"'”1'/10} = exp [§n2 (1’;(1) ami) } . (12)

The two remaining averages are a spatial average, and
~ an average over the symbol and delay ensembles. These
are calculated in the following two subsections.

A. Spatial Average

~ Since spatial averaging is key to this and other capac-
ity studies, we define the following function which we
call the “position moment”

wee|(G)]

where R} = R;/D;. Fig. 2 shows the coordinate system
used to calculate the position moment. By definition,

(13)

the expectation is calculated by weighting the quantity
(ri/d;)* by the probability that a mobile occupies the
infinitesimal area dzdy at (x,y) and then adding up (in-
tegrating) the result over the whole cell. Assuming user
7 may be located at any point in the cell with equal
probability, the probability that the user occupies the
infinitesimal area is simply dzdy divided by the total
area of the cell.

B ) Kj Ri
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Fig. 2. Co-ordinate system used to calculate the position moment
1, (R}) -

In the coordinate system of Fig. 2, the distance be-
tween the interferer and its own base is 7; = /22 + y2,
and the distance between the interferer and the central

base is d; = {/(D; + x)2 +42. Consequently, the posi-
tion moment is given by

/ 1 R,  p/RE—u? u? + 02 2
I, (R) = —% —s—— | dvdu
TRE J_piJ- Rz \ (14 u)” +v2

(14)

where the transformation v = z/D; and v = y/D; is
employed to make all variables dimensionless quantities.
Furthermore, the transformation highlights the fact the
position moment is a function of the ratio R} = R;/D;
and not R; and D; individually. To the authors’ knowl-
edge, no closed form solution of (14) exists, which is
why, in previous capacity studies [1], [2], spatial aver-
aging has been performed by either numerical integra-
tion or time consuming Monte Carlo simulation. In this
paper, though, we make a simple, and virtually harm-
less, geometric approximation that allows us to derive
a closed form analytical solution of the double integral,
thereby avoiding long simulation runs.

The geometric approximation is based on the ob-
servation that for sufficiently small R] (distant cells),
d; =2 D; 4z which results in the following expression for
the approximate position moment after transformation
to dimensionless quantities:

1 (B du
IL, (R}) ~
P(Rz) 7I'R22 »/—R: (1+u)1’ _\/m

RZ w2
i p/2

(u? +v?)

(15)

A closed-form analytical solution of this double integral
for integer values of p is provided in the appendix. Note
that the restriction to integer values of p implies that
the path loss coefficient v, takes on integer values. For
non-integer values of 7;, the position moment may be
obtained by interpolation. In order to demonstrate the

dv.



validity of the geometric approximation, the exact and
approximate position moments are compared in Fig. 3.
As expected, the accuracy of the approximations im-
proves as R. decreases (increasingly distant cochannel
cells). More importantly though, even for R, = 05
(equal radius contiguous cochannel cells), the approx-
imations result in very good accuracy.

10’

Position moment

Exact
------ Approximate

Fig. 3. Comparison of exact and approximate position moments.

B. Data/Delay Average

The remaining average to be calculated is

2n

Ti(n)=E ||>_ci(k)q(t—kT —1i) (16)
k

First, (16) is expanded in a multiple summation, and
the average over the data ensemble is performed noting
that the sequence c¢; is white. Due to the complicated
nature of the full Nyquist pulse ¢ (t), the average over
the delay T; is then calculated by numerical integra-
tion. For BPSK modulation, pulse rolloff 3 = 0.5, and
7; uniformly distributed on {~7/2,T/2], the data/delay
averages for » = 1 and 2 are T;(1) = 0.8750 and
T; (2) = 1.0657 respectively. Note that there is no de-
pendence on ¢ because of the uniform distribution of
delay. Furthermore, (16) does not usually depend on ¢,
since all interferers likely use the same modulation for-
mat; consequently, the data/delay average need only be
computed once and stored for later use.

V. RESULTS

Fig. 4 illustrates the accuracy of the log-normal ap-
proximation and Wilkinson’s moment matching method
discussed in Section III. In this plot, the lognormal ccdf
Fy (v) is compared with the empirical ccdf of I'; ' gen-
erated via direct calculation of equation (5) in a Monte
Carlo simulation. Although our analytical technique for
the computation of the moments of the ISR is valid for
arbitrary R; and Dy, for familiarity, the results are gen-
erated for a layout of circular cells with cell centres iden-
tical to that of a standard hexagonal cell layout with
three tiers of cochannel cells. Furthermore, ideal 120°
antenna sectorization is assumed resulting in a total of
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Fig. 4. Complementary cumulative distribution function (cedf)

of the ISR I';! for y; = 4 Vi and 0w; = v2- 6 dB Vi. BPSK
modulation with pulse rolloff 8 = 0.5 is assumed. C is the
cluster size of the hexagonal cell layout. The empirical ccdf is
generated via Monte Carlo simulation with 108 points.

12 cochannel cells (2 in the first tier, 4 in the second,
and 6 in the third). The radius of each circular cell is
scaled such that its area is the same as the hexagonal
cell shape.

As can be seen in Fig. 4, the log-normal ccdf is a
very good approximation to the empirical cedf for outage
probabilities less than about 10%. The same accuracy .
was observed for several different combinations of path
loss coefficients in the range 3-4 and shadowing standard
deviations in the range 6-8 dB. This fortunate result
indicates that even though the expression for the ISR
I‘;l involves the sum of randomly weighted log-normal
random variables (see (5)), rather than pure log-normal
RVs as studied in [7], the sum is still closely log-normal.

In Fig. 5, outage probability calculated via (9) is plot-
ted versus cluster size assuming coherent detection of
BPSK with L diversity antennas. The threshold SINR
T'; is calculated for each value of L using the results of
[9] assuming a threshold BER of 1072. The SNR T'y is
arbitrarily chosen to be that corresponding to a BER
of 1073. For L = 1,2,3, and 4, the threshold ISRs in
(9), ie. I‘t-l — I‘]_vl, are given by -14.3, -6.84, -4.13, and
-2.53 dB respectively. As can be seen, the analytical
calculation of outage probability results in values very
close to that from Monte Carlo simulation. As expected,
increasing the number of antennas reduces the outage
probability dramatically. Equivalently, for a fixed out-
age probability, increasing the number of antennas al-
lows the use of a smaller cluster sizes, hence increasing
spectrum efficiency.

VI. CONCLUSIONS

In this paper, a new, fully analytical technique has
been presented for the calculation of outage probability
for a general cellular mobile radio system. The tech-
nique is based on the analytical calculation of the mo-
ments of the interference-to-signal ratio (ISR). The key
contribution is the closed-form geometric approxima-
tion for the spatial average of the interfering mobile’s
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Fig. 5. Outage probability for the coherent detection of BPSK
with L diversity antennas. System parameters are the same
as in Fig. 2.

position dependent path loss which we term the “po-
sition moment.” The moments of ISR are used with
Wilkinson’s moment matching method to approximate
the complementary cumulative distribution function of
the ISR which is used to calculate outage probability
directly. This approximation along with the geometric
approximation in the position moment is shown to result
in very good accuracy for typical system parameters.
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APPENDIX
CALCULATION OF APPROXIMATE POSITION MOMENT

In this appendix, an analytical solution is provided
for the approximate position moment

1 R du RZ—u? 2 2 p/2
2/ p/ (v +0°)" " dv
TR | p +w)' S e
(17)

where R < 1 and p is an integer. For the case of p even,
the solution of the inner integral [10], denoted f (u), is

I, (R) =

p/2 p/2

fu)=2vR? - u2z2k+)1 P2k (R? — ) (18)

Expanding the term (R2 - 2)k in a binomial series and
substituting the result into (17) gives

p/2 (p/Z)
T (R) = R222k+1 Z( ( )
'RQ(k_m)¢p—2(k—m),p (R) (19)
where
R ., m R2 _ 42
b (R) = /_ W‘W

- S ()i

and

(21)

The latter equality in (20) is found by making the
substitution w = 1 + « and then expanding the term
™ = (w—1)" in the numerator in a binomial series.
Note that in (20), m < n, so that in (21), j > 0.
The solution of I; (R) for j > 0 is given by the differ-
ence equation [10]

I (R) = (2;__15) <1_1R2> Ij-1(R)
+ (%) (T——I—R?) Ij—2(R) (22)

with initial conditions

1+R 4 /R? — (w — 1)
I;(R) = / . dw.
1-R w’

Ib(R) = %sz (23a)
L(R) = 7r(1—\/1—R2). (23b)

Thus, starting with I (R) and I (R) , the integral I; (R)
may be found in a recursive manner for any j.

For the case of p odd, the solution of the inner inte-
gral of (17) involves a complicated logarithmic function.
Consequently, the complete solution of (17) for p odd is
analytically intractable. Fortunately, though, numerical
evaluation of (17) shows that the position moment for
p odd is approximated very well by the geometric mean
of the position moments for p — 1 and p + 1; that is,

I, (R) & /Tl 1 (B) Thps1 (R).

Consequently, the solution of I, (R) for p even, given
in (19), is sufficient for calculating the position moment
for all p, whether even or odd.

(24)
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