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Abstract— Correct and efficient estimation of the Hurst pa-
rameter of long-range dependent (LRD) video traces is important
in traffic analysis. The low computational cost and the wavelets’
scale invariance make the wavelet transform suitable for analysis
of LRD processes. In this paper, we apply wavelet-based estima-
tion of the Hurst parameter to MPEG-1 and MPEG-4 encoded
video sequences. Frequency-domain estimators (periodogram and
wavelet-based) produce different Hurst parameters compared to
time-domain estimators (R/S and variance-time plot). Wavelet-
based estimators often produce Hurst parameters that are close
to or greater than one. Our analysis indicates that possible causes
for the unreliable performance of the wavelet-based estimators
are the non-stationarity of the scaling exponent and the existence
of both short-range and long-range dependent components in the
video traces.

I. INTRODUCTION

Long-range dependence (LRD) is often found in network
traffic aggregated from multiple sources [1]. Several studies
of the statistical properties of video sequences encoded using
MPEG-1, MPEG-4, H.263, and proprietary algorithms [2]—[4]
show that LRD is also present in variable bit-rate video traffic
sources, regardless of the employed encoding algorithm.

The Hurst parameter (H) is an important parameter that
characterizes the level of LRD. Its correct and efficient esti-
mation is important in statistical analysis. Known estimators
for H are based on either time-domain characteristics of long-
range dependent processes (R/S plot and variance-time plot)
or frequency spectrum characteristics (Whittle, periodogram,
and wavelet-based estimators [5], [6]).

Application of the wavelet-based estimator of H to network
traffic has been already reported [6]. The estimator has also
been used for video traces [4] and it often yielded non-
physical values of H > 1. In this paper, we revisit the issue
of the unreliable performance of the estimator when applied
to MPEG-1 and MPEG-4 video traffic traces. The graphical
outputs of the wavelet estimator indicate presence of LRD
over the coarser time scales. However, numerical estimates of
H often lead to H > 1. In this paper, we compare these
results with estimates obtained from R/S and periodogram
estimators. We investigate the possible causes of the unrelia-
bility of the wavelet-based estimator by testing the Gaussianity
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of the wavelet coefficients and the time constancy of the
scaling exponent «. Furthermore, we address the unreliable
performance of the wavelet-based Hurst parameter estimator
when applied to traces that possess both strong LRD and short-
range dependent (SRD) components [7].

In Section II, we define long-range dependence and describe
the fundamental properties of LRD processes. Video traffic
traces and analysis tools are described in Section III. We
present the analysis results in Section IV. Possible causes for
the unreliable estimates of the Hurst parameter are investigated
in Section V. We summarize our findings in Section VI.

II. LONG-RANGE DEPENDENCE

Let X(n), n =0,1,..., be a wide-sense stationary stochas-
tic process with an autocorrelation function r(k) with time
lag k. The process X (n) is called long-range dependent if the
sum of r(k) over all k’s is infinite [8]. For large lags k, r(k)
is modeled as a hyperbolically (power-law) decaying function:

r(k) = crkf(szH), k — oo, (D

where c, is a positive constant and H (0.5 < H < 1) is the
Hurst parameter. The power spectral density (PSD) f(v) of
X (n) satisfies

fW)=crlv|™, v| =0, 2)

where ¢y is a positive constant and « is the scaling expo-
nent [5]. For LRD processes, 0 < o < 1. The relationship
between H and « is linear:

H=0.5(1+a). 3)

The Hurst parameter measures the degree of LRD of a
process. For SRD processes, H = 0.5. Values of H ~ 1
indicate a process with strong LRD. For example, bursty
network traffic has a large H [1].

III. VIDEO TRAFFIC TRACES AND ANALYSIS TOOLS

We analyze publicly available video traces [9], [10] that
consist of sizes of video frames in bits. The duration of each
frame is 40 ms (25 frames per second). The length of the traces
varies between 15 min (22,498 frames) and 60 min (89,998
frames). A list of properties of each trace (video sequence,
encoding algorithm, number of frames, and duration) is given
in Table 1.
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TABLE I
PROPERTIES OF THE VIDEO TRACES AND ESTIMATES OF THE HURST PARAMETER.

Estimates of H
Trace Encoding | Length Duration Monofractal Multifractal Perio- RIS
(frames) (min) range | value | range | value dogram

MTV MPEG-1 40,000 26.67 4-12 | 0959 | 3-12 | 0.937 0.992 0.89
Jurassic park MPEG-1 40,000 26.67 5-12 1.096 | 4-12 1.012 1.191 0.88
Simpsons MPEG-1 40,000 26.67 5-12 | 0926 | 4-12 | 0.906 0.988 0.89
Mr. Bean MPEG-1 40,000 26.67 5-12 1.214 5-12 1.258 1.295 0.85
Silence of the lambs | MPEG-1 40,000 26.67 5-12 1.130 | 5-12 | 1.152 1.171 0.89
Talk show MPEG-1 40,000 26.67 5-12 1.084 5-12 1.132 1.174 0.89
ARD news MPEG-4 22,498 15.00 5-11 1.382 | 4-11 1.225 1.310 0.967
Diehard III MPEG-4 89,998 60.00 4-13 1.190 | 4-13 1.208 1.233 0.969
Formula 1 MPEG-4 44,998 30.00 4-12 1.189 | 4-12 | 1.169 1.216 0.867
Futurama MPEG-4 30,334 20.22 4-12 0.943 4-12 0.909 1.064 0.877
From dusk till dawn | MPEG-4 89,998 60.00 4-13 1.139 | 4-13 1.138 1.186 0.909
First contact MPEG-4 89,998 60.00 4-13 1.194 4-13 1.213 1.268 0.931
Mr. Bean MPEG-4 89,057 59.37 4-13 1.083 | 4-13 1.109 1.151 0.933
Jurassic park MPEG-4 89,998 60.00 4-13 1.222 4-13 1.247 1.293 0.973
VIVA video clips MPEG-4 89,998 60.00 2-13 1.000 | 2-13 1.120 1.119 0.961
N3 talk MPEG-4 89,998 60.00 4-13 1.079 | 4-13 1.131 1.188 0.882
Silence of the lambs | MPEG-4 89,998 60.00 4-13 1.277 | 4-13 1.260 1.337 1.007
Simpsons MPEG-4 30,334 20.22 4-12 0.964 4-12 0.941 1.061 0.889
Star Wars IV MPEG-4 89,998 60.00 4-13 1.013 | 4-13 1.051 1.138 0.903

A. Discrete Wavelet Transform

The discrete wavelet transform (DWT) represents a signal
X (t) as a weighted sum of basis functions called wavelets [5]:

X() =" d(, ks,

7=0 k=—oc0

4)

where d(j, k) is the wavelet coefficient at octave j and time
k and

¥ R(t) =279/29(279t — k) (5)

is the wavelet obtained from an adequately chosen mother
wavelet 1. The wavelet ;1 is a scaled (by a factor of 277)
and shifted (by k time units) version of the mother wavelet.

The DWT captures a signal at various time scales (levels of
aggregation). Due to the scale invariance of the basis functions,
it is suitable for analyzing properties that are present across
a range of time scales, such as LRD. The DWT may be
implemented by a filter-bank-based pyramidal algorithm. Its
low computational cost makes the DWT a popular tool for
signal analysis [11].

B. Wavelet-based Hurst Parameter Estimator

The wavelet-based Hurst parameter estimator is based on
the shape of the PSD function (2) of the LRD signal X (n). It
has been shown [5], [6] that when the PSD has a power-law
behavior, the relationship between the variance of the wavelet

coefficients on a given octave and the octave j is
E{d(j, k)*} = 27%¢;C, (6)

where the average is calculated for various k£ and C is a
constant that depends on the choice of the mother wavelet.

When a suitable mother wavelet is chosen [5], calculation of
E{d(j7 k)2} becomes a simple time average or sample mean
for all k’s:

E{d(j k)*} = ni S dii. k), ™)

7 k=1

where n; is the number of wavelet coefficients available at
octave j. Linear relationship with a slope a (0 < a < 1)
between log, E{d( 7 k)2} and j for a range of octaves, includ-
ing the coarsest, indicates presence of LRD. Therefore, o is
obtained by performing linear regression of log, E{d( Js kz)2}
over j in a range of octaves. H is calculated by using (3). We
employ publicly available MATLAB code [12] to compute
the estimates of log, E{d(j, k)?}, variances of the estimates,
and to perform weighted linear regression. The weights are
inversely proportional to the variances of the estimates of
log, E{d( 7, k)2} This estimator is called monofractal wavelet
estimator.

An extension to the basic monofractal wavelet estimator
is the multifractal estimator [13]. In addition to the second
moments (variances) of the wavelet coefficients, it also takes
into account moments of higher order:

n;

Sali) = - iy

J k=1

®)

It estimates the slope «, by performing linear regression
of log, S,(j) for a range of j’s. H is calculated using an
expression analogous to (3), by taking into account the order
of the moment:

H=0.5+a4/q. )
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Both monofractal and multifractal estimators are used to
produce diagrams of log, E{d(j, k)?} or log, S,(j) versus j,
with the corresponding confidence intervals. They are called
logscale diagrams. An example is shown in Fig. 1. The solid
line connects the estimates of log, E{d(j, k)?} and the dashed
line is the slope of the linear regression performed over
the range of octaves [4-13]. The vertical lines represent the
confidence intervals of the estimates of log, E{d(j, k)?}.

C. Test for Time Constancy of the Scaling Exponent o

LRD processes are wide-sense stationary. However, they
exhibit high burstiness and appear non-stationary [14]. We test
the time constancy of the scaling exponent « to determine
whether a process is wide-sense stationary with LRD or
inherently non-stationary.

The definition and the statistical properties of the test for
the constancy of a are given in [14]. The trace is divided
into m sub-traces and « is estimated for each sub-trace. The
estimates are then compared and a decision is made whether
or not o may be considered constant over the duration of the
entire trace. The test, implemented in MATLAB, is available
online [12].

IV. HURST PARAMETER ESTIMATION

We estimate the Hurst parameter of nineteen video traffic
traces using both monofractal and multifractal wavelet-based
estimators. We employ Daubechies’ wavelets of genus 3 (three
vanishing moments). The results are summarized in Table 1.
For each estimate of H, we report the range of octaves where
the linear regression is performed. These ranges are chosen by
visual inspection of the logscale diagrams and identification of
the linear region. For the multifractal estimator, we choose
the order of the moments ¢ = 3. Also shown in Table I
are estimates of H obtained from the periodogram-based
estimator [15] and R/S plots [3], [10].

Logscale diagrams of the analyzed traces have similar
shapes. A typical example is shown in Fig. 1. Logscale di-
agrams exhibit a linear relationship between log, E{d(j, k)? }
(logy Sq(7)) and j for the largest values of j (the coarsest
octaves or time scales). The linear region typically begins at
7 = 4 or 5. The lack of linearity for the finer octaves may
be attributed to artifacts of MPEG compression algorithms
or to a transition between short-term and long-term scaling
behavior [4].

Both monofractal and multifractal estimators of H produce
similar results, as indicated by Table I. They are in good
agreement with periodogram-based estimates. On the contrary,
a majority of wavelet and periodogram-based estimates are
greater than one and differ from R/S estimates. The linearity
of the logscale diagrams for the coarsest octaves and the
good match between wavelet-based and periodogram-based
estimates indicate that PSDs of the traces exhibit power-law
behavior close to the origin, with exponents o > 1. This
contradicts the LRD assumption because for LRD processes
a <l

2 4 6 8 10 12
Octave j

Fig. 1.
sequence.

Logscale diagram of the MPEG-4 encoded “Star Wars IV” video

V. INVESTIGATING THE SOURCES OF UNRELIABILITY OF
THE ESTIMATES

In order to investigate the possible sources of the unreli-
ability of the wavelet estimators, we test the Gaussianity of
the traces and the time constancy of the scaling exponent a.
We also address the performance of the monofractal wavelet-
based estimator in the presence of strong SRD and LRD
components [7].

A. Testing the Gaussianity of the Wavelet Coefficients

One of the idealizations assumed by the wavelet estimator
is that the analyzed process and its wavelet coefficients on
various octaves are Gaussian [5]. Therefore, we use g¢-g
plots [16] to examine how close the traces and their wavelet
coefficients are to a Gaussian distribution. A sample set of q-q
plots is shown in Fig. 2. The dashed line is the reference line
with a slope of one. The vertical lines mark the 10% and 90%
quantiles. The wavelet coefficients are approximately Gaussian
in the range of octaves where H is estimated.

B. Testing the Time Constancy of o

We examine the time constancy of « for each trace. We
perform a set of tests by varying the number of sub-traces (m)
between 3 and 15. The lower bound of the range of octaves
where o is estimated is set to the value given in Table I.
It varies between 2 and 5. The upper bound depends on m.
For larger m, the sub-traces are shorter and there are fewer
available octaves. In our experiments, the upper octave varies
between 8 and 12. A sample graphical output of the test for
m = 12 is shown in Fig. 3. The graph shows the overall value
of a (solid horizontal line), the average of the 12 estimates of
« (dashed horizontal line), and the confidence intervals of the
estimates. In this example, the test shows that the probability
of a being constant is 0%.

Our findings indicate that twelve traces fail the test for all
values of m, while others pass the test for certain values of m
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Fig. 2.  Q-Q plots of the wavelet coefficients for octaves 1-9 of the “Star
Wars IV” video sequence.
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Fig. 3. Test for time constancy of « for the MPEG-4 encoded “Star Wars

IV” video sequence.

and fail for others. MPEG-1 encoded “Simpsons” and MPEG-
4 encoded “ARD news” video sequences pass the test for over
50% of m’s. The remaining seven video traces pass the test
for less than 50% of m’s This indicates that « is not constant
and varies with time. Therefore, estimating o and H for the
entire trace may not produce reliable results.

C. Possible Causes of the Unreliable Estimates

Presented results show that the wavelet-based estimators
produce values of H > 1. The traces often fail the test for
time constancy of «. The linearity of the logscale diagrams
may be attributed to the averaging of the non-stationarities
that manifest as variability of the scaling exponent « across a
trace [14].

Estimates of H obtained from R/S plots are often greater
than 0.9, which indicates strong LRD component. We conjec-
ture that video traces also possess a strong SRD component.
Video sequences consist of various scenes. Video frames

representing a single scene are similar due to the identical
or similar background and objects present in the scene. This
implies similar sizes of the adjacent frames, which indicates
a strong positive correlation for small lags. It has been shown
that the monofractal wavelet-based estimator produces unre-
liable results when applied to processes with a strong SRD
component and a strong LRD component [7].

VI. CONCLUSION

We applied wavelet-based estimators of the Hurst param-
eter to MPEG-1 and MPEG-4 encoded video traces. Both
monofractal and multifractal estimators produced similar re-
sults. The estimates of the Hurst parameter were often greater
than one. We investigated the possible causes of the unreliable
results by examining the distribution of the wavelet coefficients
and the time constancy of the scaling exponent «. Our findings
indicated that the unreliable performance of the estimators may
be attributed to the variability of the exponent a across the
trace and to the presence of strong SRD and LRD components.
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