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Abstract— For sensor-based robot motion planning, view plan-
ning problem refers to planning the next sensing action to further
facilitate the motion planning task. In [24] C-space entropy was
introduced as a measure of knowledge of robot configuration
space, or C-space. The robot plans the next sensing action to
maximally reduce the expected C-space entropy, also called the
Maximal expected Entropy Reduction, or MER criterion. It was
shown that MER criterion resulted in much more efficient C-
space exploration performance than physical space based view
planning criteria, such as to maximize unknown physical volume
in each view. From a C-space perspective, MER criterion consists
of two important aspects: sensing actions are evaluated in C-space
(geometric aspect); these effects are evaluated in an information
theoretical sense (stochastic aspect). In this paper, we investigate
how much of this better performance is attributable to the
paradigmatic shift to evaluating the sensor action in C-space,
i.e., the pure geometric component of MER, and how much is
attributable to the stochastic aspect of MER. We propose C-space
based pure geometric criteria (which are essentially geometric
aspect of MER) for view planning and compare them with
the MER criterion. We empirically show that a great deal of
efficiency is attributable to the pure geometric aspect; however,
we also show that the stochastic aspect, despite being based on
simple assumptions, result in moderately more efficient C-space
exploration over the pure geometric component of MER. We
outline explanations for our findings.

I. INTRODUCTION

In this paper, we consider the sensor-based motion planning
and exploration problem for general robot-sensor systems,
where a range sensor is mounted on a robot with non-trivial
geometry and kinematics [1], [10], [12], [19], [21], [23], [24].
Fig. 1 shows an eye-in-hand system, a two link robot equipped
with a triangle field of view (FOV) range sensor on its end-
effector. The white region in the figure is the free part of the
physical space known to the robot; the light grey region is
free but still unknown; the dark grey regions are unknown
obstacles. The robot starts from its initial configuration, the
vertical line in the middle of the figure, and its task is to
explore its environment while avoiding collisions with the
obstacles, known or unknown. A key sub-problem here is view
planning [23], i.e. where the robot should sense next, and good
view planning strategies can result in efficient exploration
performance [19], [21], [24].

Unlike simple mobile robots, [2], [5], [7], [11], [17], [18],
(often modelled as a point, hence trivial geometry and kine-
matics [7], [11]), in which case where the sensor senses (the
physical space) and the natural space for motion planning
(the configuration space) are the same, for general robot-
sensor systems (where the robot has non-trivial geometry
and kinematics, such as the eye-in-hand system considered

Fig. 1. Example of an eye-in-hand system: a planar 2-link robot with a
triangle FOV range sensor.

here), where the robot can move (path planning) and what
it should sense (view planning), has a much more complex
relationship [23]. In this case, the robot must find additional
physical space to manoeuvre itself, taking into account its own
“size” and “shape” and not simply any additional physical
space. This implies that the effect of the sensing action,
which obviously senses physical space, must be (implicitly or
explicitly) transformed to and viewed from the configuration
space (C-space) of the robot.

Treating the unknown environment stochastically, the notion
of C-space entropy was introduced as a measure of the robot’s
(lack of) knowledge of C-space [24]. The next best view
is then the one that results in maximal (expected) entropy
reduction (MER criterion) or, equivalently maximal (expected)
information gain. In contrast, earlier approaches had simply
used pure physical space based criteria, such as to maximize
unknown physical space volume (MPV) in the sensor’s field
of view (FOV) [10]. A detailed presentation of other related
work on view planning is given in [24]. For instance, entropy
measures are used for physical space and object model re-
spectively in [13], [16], [18], [22] for designing autonomous
environment-exploration/object-model-construction strategies.
See [14] for a survey on view planning. See also [3] on sensor-
based path planning for a planar robot robot.

The MER based criteria have two important aspects: (1) the
effects of sensing actions are evaluated in C-space (geometric
aspect), (2) these effects are measured in an information
theoretic sense, e.g., using entropy (stochastic aspect). The
information theoretic perspective assumes a knowledge of
the obstacles’ distribution (in a stochastic sense) in the en-
vironment, e.g., in [19], [21], [24] a Poisson point process
model of the obstacle distribution is assumed. The closed form



expressions for maximal (expected) entropy reduction were
derived for a planned view. These results, when implemented
in a 2D simulator and on a six-dof eye-in-hand system, were
shown to lead to more efficient C-space exploration (number
of views needed to make a certain percentage of C-space
known) than physical space based view planning criteria, such
as MPV [10]. Please note that MPV and MER criteria do
have complementary aspects and that the two can be combined
to yield better exploration in both physical and configuration
space [8]. Our main focus here is C-space exploration.

It is then valid to ask how much of this better performance
is attributable to the paradigmatic shift to evaluating the sensor
action in C-space, i.e., the pure geometric component of MER,
and how much is attributable to the stochastic aspect of MER.
In this paper, we formulate (indeed these criteria naturally
suggest themselves, given the closed form expressions for
MER with the Poisson point process assumption for obstacle
distribution) C-space based pure geometric criteria (essentially
aspect (1) of MER) for view planning and empirically (via
2-dof planar simulations) compare it with MPV and MER
criterion for efficiency in C-space exploration. The MPV
criterion performs the worst1; the proposed C-space based
pure geometric criteria are significantly more efficient than
MPV, showing that a great deal of efficiency is attributable
to evaluating the sensor action in C-space, i.e., pure geo-
metric component of MER. However, MER criterion, despite
simplifying probabilistic assumptions, does result in moder-
ately more efficient C-space exploration than pure C-space
based geometric criteria. Intuitively, MER, notwithstanding
the underlying simple stochastic models, such as Poisson
point process, provides a means of addressing sensing actions’
partial effects on a configuration, i.e., one configuration is
“more (or less) known” than another configuration, while pure
geometric criteria do not account for such partial effects, i.e.,
they are a “binary” version of MER criterion.

In the rest of this paper, first we will briefly recapitulate
C-space entropy and MER criterion based on generic FOV
sensor model; then new pure geometric criteria in C-space
are formulated for view planning; the C-space exploration
efficiency of these criteria and MER criterion are compared
empirically.

II. BACKGROUND: C-SPACE ENTROPY AND MER
CRITERION

A. Notation

Let P denote the physical space. The robot is denoted by
A and its configuration space (C-space) by C. q ∈ C denotes a
robot configuration, and A(q) ∈ P denotes the physical space
occupied by the robot at q. Subscripts free and obs denote
the free space and obstacles in both physical and C-space.
For example, Pfree denotes the entire physical free space
and P = Pfree ∪Pobs . Subscripts u and known denote the
unknown and known quantities (in physical and C-space) and
superscript i denotes the iteration number, i.e., the number of
scans (or views) that the view planning algorithm has already

1Our main aim is to compare the geometric C-space criteria with MER;
we have included MPV as a baseline here. MPV criterion was already shown
to be significantly worse than MER for C-space exploration [19], [21], [24].

taken (i = 0, at the very start). Let P i
free,P i

obs, and P i
u denote

the known free physical space, known physical obstacles, and
unknown physical space after iteration i. (There is a slight
abuse of notation here for simplicity; we should really be using
subscripts “known-free” and “known-obs”, however, it makes
them too long.) Hence P i

known = {P i
free ∪ P i

obs}, and P =
{P i

known ∪ P i
u}. Furthermore, Ai

u(q) denotes the part of the
robot (at configuration q) lying in the unknown part of the
environment at iteration i, i.e., Ai

u(q) = A(q)∩P i
u. Similarly

Ai
known(q) = A(q) ∩ P i

known.
Ci

free, Ci
obs, and Ci

u, respectively denote the known free
C-space, known C-obstacles, and unknown C-space, after
iteration i. A configuration q is free, i.e., q ∈ Ci

free if
Ai

u(q) = ∅ ∧ A(q)∩P i
obs = ∅. A configuration q is obstacle,

i.e., q ∈ Ci
obs if A(q)∩P i

obs �= ∅. A configuration q is unknown,
i.e., q ∈ Ci

u if Ai
u(q) �= ∅ ∧ A(q) ∩ P i

obs = ∅.
We attach a coordinate frame to the sensor’s origin. Let

s denote the vector of parameters that completely determine
the sensor’s frame, i.e., sensor’s configuration. For instance,
assuming the sensor is attached to the end-effector of the
robot, for planar case, s = (x, y, θ); for 3D case, s =
(x, y, z, α, β, γ). Let V(s) ∈ P denote the sensor’s field of
view (FOV) at configuration s. Finally, we use “\” to denote
the set difference operation, i.e. for two sets M and N ,
M\N = {x|x ∈ M ∧ x /∈ N}.

B. C-space entropy and MER criterion

Assume a stochastic model of the obstacle distribution in the
physical space. This assumption in turn induces a probability
distribution on C-space, i.e., every configuration has a certain
probability of being free according to the status of the physical
region the robot occupies at this configuration. The notion of
C-space entropy was introduced as an ignorance measure of
C-space [24]. Mathematically, the C-space could be viewed
as a collection of n random variables (r.v.), Qj , j = 1, . . . , n,
representing the status of each discretized (or randomly sam-
pled for high dimensional cases) robot configuration qj , being
free (Qj = 0) or in collision (Qj = 1). The entropy of this
joint distribution is called C-space entropy, H(C). It should
really be denoted by H(C|P i

known), the entropy conditional on
current known physical space. For notational brevity and since
it is obvious that probabilities and hence entropy computations
should be conditional on current state, in the following we will
neglect this condition in the notations. We have [4],

H(C) = −
∑

Q1=0,1

. . .
∑

Qn=0,1

Pr[Q1 . . . Qn] log Pr[Q1 . . . Qn] (1)

Let ERC(s) denote the expected C-space entropy reduction.
MER criterion states that the next best sensing action is the
one to maximize ERC(s), i.e.,

si+1
max = arg max

s
ERC(s) = arg max

s
E{H(C) − H(C|V(s))} (2)

The expectation computation above is carried over all pos-
sible sensing results.



C. MER for generic FOV sensor model

In [19], [21], a closed form expression for MER criterion
was given based on a generic non-zero volume FOV sensor
model as shown in Fig. 2. Most commercially available range
sensors that provides range images, e.g., the area scan laser
ranger finder used in SFU Eye-in-Hand system [23], fall into
this category. We recapitulate these results as follows.
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Fig. 2. A generic range sensor’s FOV V(s). After this sensing action, regions
A, B and C are known free, the black contour is a sensed obstacle and region
D, occluded by the sensed obstacle remains unknown. Region E also remains
unknown due to occlusion by an already known obstacle.

A simple probabilistic model was used for the obstacle
distribution in the physical space — the Poisson point process,
which is essentially characterized as uniformly independently
distributed point obstacles in space [15]. Indeed the Poisson
point process model is a simplifying assumption because
obstacles, in general, are not points in the real environments.
Nevertheless, it matches well our rather reasonable intuition
that the more the robot (at a given configuration) is in unknown
region, the less is the chance that it would be collision free.
It is an unbiased uniform distribution assuming no shape
information of the obstacles, and hence reasonable when no
a priori information is known about the environment. Above
all, Poisson point model allows one to derive efficiently com-
puted closed-form expression for expected C-space entropy
reduction, which gives insights into the MER criterion. Please
see Section II-D for further discussions on how Poisson
point assumption combines geometric and stochastic aspects
of MER in an elegant manner. The resulting algorithms, as
shown via simulations, drastically improve the efficiency of
C-space exploration when compared to pure physical space
based criteria, such as MPV.

Other more complex models do not lend themselves to such
closed form expressions and therefore would tremendously
increase computational cost of entropy computations. For
example, if we were to use occupancy grid maps [6] for
the physical space, the expectation computation in Eq. (2)
is to be carried out over all possible combinations of the
grid statuses, thus having an exponential (in the number of
unknown cells in the sensor FOV) computational complexity.
Existing exploration approaches (for exploring physical space)
for mobile robots ignore this complexity and do not compute
the true expectation. For example, some assume that the
unknown area to be sensed is completely free, i.e., only
one sensing result is possible [5], [18]. This is clearly an
oversimplifying assumption. Others use an ad-hocly defined
information function [16].

Further ignoring mutual entropy terms for efficiency in
computations 2, ERC(s), can be approximated by the sum of
the expected entropy reduction of each unknown configuration
q, the marginal expected entropy reduction erq(s), i.e.,

ERC(s) ≈ ẼR(s) =
∑

q∈χu(s)

erq(s) (3)

In the above equation, χu(s), the unknown C-zone of s,
is defined as the set of unknown configurations at which part
of the robot can be sensed. Further by defining Vu(s) as the
portion of the sensor FOV, V(s), that intersects P i

u and is
not occluded by known obstacles, we have χu(s) = {q ∈
Ci

u|Ai
u(q) ∩ Vu(s) �= φ}.

The marginal (expected) entropy reduction of q, erq(s), is
given by

erq(s) = E{H(Q) − H(Q|V(s))}
= H(Q) − e−λ|A(q)∩Vu(s)| · H(Q | A(q) ∩ Vu(s) free) (4)

where H(Q) is the entropy of q before sensing, i.e., H(Q) =
−p(q) log p(q) − (1 − p(q)) log(1 − p(q)) in which p(q), the
void probability of q, is defined as the probability of q being
not in collision with obstacle. By Poisson point assumption,
we have p(q) = e−λ|Ai

u(q)|, where λ is the density parameter.
In the implementation, one can simply assume a value for λ.
(See [20] for discussions on λ’s effects on planning results.)
The conditional in Eq. (4) refers to the event that the part of
the robot at q inside the unknown part of the sensor FOV is
free of obstacle, and the void probability (the probability of
being collision free) of q conditional on this event is given by:

p(q | A(q) ∩ Vu(s) free) = e−λ·|Ai
u(q)\Vu(s)|

H(Q | A(q) ∩ Vu(s) free) is then simply computed from
p(q | A(q) ∩ Vu(s) free) in the above formulation.

MER criterion then gives the next sensing action s to
maximize ER(s), i.e.,

smax = arg max
s

ẼR(s) = arg max
s

∑
q∈χu(s)

erq(s) (5)

This is pictorially illustrated by Fig. 3. A sensing action s
reduces the expected entropy associated with each unknown
configuration q, and the sum of these reductions (recall that we
ignore mutual entropy terms) approximates the whole C-space
entropy reduction. In view planning, we choose a sensing
action s that induces the maximal value. The corresponding
view planning algorithm is as follows:

Algorithm 1: MER Criterion
for every s /* according to a certain resolution */

determine Vu(s)
ẼR(s) = 0 /* initialize */
for every q

if (Ai
known(q) ∩P i

obs = φ ∧ Ai
u(q)∩Vu(s) �= φ)

compute erq(s) using Eq. (4)
ẼR(s) = ẼR(s) + erq(s)

smax = arg max
s

ẼR(s)

2Ignoring mutual entropy regards the statuses of two configurations inde-
pendent of each other.
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Fig. 3. A sensing action at configuration s. Assuming that the sensed region
becomes free, the knowledge of the three different robot configurations shown
are changed. q1 is known free while q2 and q2 are still unknown. The entropy
reduction (ignoring mutual entropy terms) provides a (expected) measure of
this knowledge gained for each q. These marginal terms, erqj (s), are totally
determined by geometries of robot volume and sensor FOV, under Poisson
point assumption. The expected C-space entropy reduction is simply a sum
of these marginal terms.

Determining quantities such as Ai
u(q), Vu(s) involves

straightforward geometrical computations. For instance, de-
termining Vu(s) corresponds to determining the intersection
of the sensor FOV with Pu while excluding portions of Pu

occluded by already known obstacles (before sensing action), a
relatively simple geometric computation. In case of complex
shaped robot and environments, this region can be approxi-
mated by discretized representation of the environment, e.g.,
discretized grids used in the simulations described later. erq(s)
for given s and q is therefore easily computed. The iteration
over q, i.e., summation over C-space of the robot to determine
ER(s), may be prohibitive for robots with many degree of
freedoms. In this case, the summation can be carried out over
a large enough set of random samples [24]. The iteration over
s, i.e., maximization over the sensor configuration space to
determine smax will be directly proportional to the number of
discretized sensing configurations.

D. Discussion of MER results

Eqs. (3), (4) clearly bring out the geometric and stochastic
aspects, mentioned earlier in the introduction, of MER cri-
terion. The effect of each sensing action s is essentially a
weighted summation over a C-space region, the unknown C-
zone of s, χu(s). The C-zone is totally determined by the
geometry and kinematics of the robot and its environment (see
χu(s) definition above). The weight for each configuration
q ∈ χu(s) is governed by the stochastic aspect, in fact
it is precisely the marginal entropy reduction. It essentially
depends on (i) the current knowledge about the configuration,
embodied in H(Q), which in turn depends on |Au(q)| under
Poisson point assumption via p(q), the void probability of
configuration q, and (ii) the expected knowledge about the

configuration after sensing, embodied in H(Q|V(s)), which
depends on E{Au(q)|V(s)}.

One can show some qualitative correspondences to our
intuition. For example, it can be shown [20] that if we fix
the known volume Ai

known(q), the higher is the portion of
unknown region, occupied by the robot at configuration q,
that can be potentially sensed, A(q)∩Vu(s), the higher is the
weight for that configuration. On the other hand, if we fix the
volume of A(q) ∩ Vu(s), those configurations at which the
robot has smaller unknown region, Au(q), and hence a better
chance of becoming fully known, would have higher weights:
these configurations would have a better chance of becoming
fully known, thus expanding the Cknown. For example, in the
top left figure of Fig. 3 (before scan), assuming the volumes
of Au(qj)∩Vu(s), j = 1, 2, 3 are the same, q1 would have the
highest weight followed by q2 and then q3, since q1 has the
smallest unknown volume Au(q1), followed by q2 and then q3.
This was shown in [24] for the simplified case of a point FOV
sensor and was called “boundary property”, i.e., configurations
close to the boundary of Ci

free and Ci
u have a higher weight.

We now show it for the general FOV case. Thus MER criterion
can take into account the cumulative build up of knowledge
through partial sensing actions, i.e., sensing actions that may
not make a robot configuration q completely known (free or
obstacle), yet they do provide additional knowledge about q.

III. GEOMETRIC CRITERIA IN C-SPACE FOR VIEW

PLANNING

A. Maximal C-zone Volume criterion

Analogous to the MPV criterion which maximizes the
volume of (unknown) physical space region within each view,
we propose to maximize the volume of unknown C-zone of
the physical space within each view, i.e., maximize |χu(s)|,
the volume of the C-space region affected by the view. We call
this “Maximal C-zone Volume” criterion, or MCZV in short.

smax = arg max
s

|χu(s)| = arg max
s

∑
q∈χu(s)

1 (6)

Compared with the MER criterion, Eq. (5), MCZV weighs
the effect of the sensing action s on all configurations q ∈
χu(s) equally. The current knowledge of the configuration
q, i.e., how much is known about it, does not matter at
all! Effectively the MCZV criterion is a special (unweighted)
case of the MER criterion. The corresponding algorithm is as
follows.

Algorithm 2: MCZV Criterion
for every s /* according to a certain resolution */

determine Vu(s)
CzoneV (s) = 0 /* initialize */
for every q /* according to a certain resolution */

if (Ai
known(q) ∩Pobs = φ ∧ Ai

u(q)∩Vu(s) �= φ)
CzoneV (s) = CzoneV (s) + 1

smax = arg max
s

CzoneV (s)
In the above algorithm, since the two iteration terms are

the same as in Algorithm 1, the computational time of this
algorithm is in the same order as the one based on MER
criterion.



An interesting alternative explanation of MCZV criterion
is as follows. If we assume that the region to be sensed
is completely occupied by an obstacle (or a portion of an
obstacle), then the entire unknown C-zone will become a
C-obstacle! In other words, MCZV criterion could also be
interpreted as the one that maximizes the C-obstacle, if the
entire view were covered by an obstacle.

B. Maximal C-free Volume criterion

Motivated by the above alternative interpretation, one could
propose another complementary geometric criterion. Suppose
we assume that the region to be sensed is completely free
(of course, taking into account the visibility constraints w.r.t
already known obstacles), i.e. Vu(s) is assumed free. Further-
more taking a greedy approach, we only consider the effect
of a sensing action s on those configurations, whose collision
status becomes known free after sensing, one could choose the
sensing action that results in the maximal volume of additional
known free C-space. We call this “Maximal C-free Volume”
criterion, or MCFV in short. Formally, MCFV is given by,

smax = arg max
s

∑
q∈χu(s)

δ(Ai
u(q) ⊆ Vu(s)) (7)

where δ(e) is a Boolean function defined on e: δ(e) = 1, if e
is true; δ(e) = 0, otherwise.

The corresponding algorithm is as follows,
Algorithm 3: MCFV Criterion

for every s /* according to a certain resolution */
determine Vu(s)
CFV (s) = 0 /* initialize */
for every q /* according to a certain resolution */

if (Ai
known(q) ∩ P i

obs = φ ∧ Ai
u(q) ⊆ Vu(s))

CFV (s) = CFV (s) + 1
smax = arg max

s
CFV (s)

Again the computational complexity of this algorithm is
in the same order as MER and MCZV because of the same
iteration terms.

Note that it could be thought of as a “binary” version of
the MER criterion, i.e., only those unknown configurations
that would become free as a result of the free sensing are
counted. Thus it neglects the sensing actions’ partial effect on
still unknown configurations, i.e., more of the region occupied
by a configuration will become known, thereby reducing its
uncertainty. Intuitively, this is somewhat “greedy” in that it
neglects the cumulative effect of sensing, and would likely be
inefficient for cases where one single scan cannot adequately
cover entire unknown parts of robot at relevant unknown
configurations as we shall see in the simulation results.

One could also formulate more elaborate versions of MCFV
and MCZV such as “Maximal Expected Cfree(Czone) Vol-
ume”. These can be thought of weighted summation over
unknown C-zone where weights are the probabilities of each
configuration being sensed free/obsacle. Again, Poisson point
process can be used for these probability computations.

IV. SIMULATION RESULTS FOR EXPLORATION EFFICIENCY

COMPARISON

To compare the geometric criteria, MCZV and MCFV, with
the MER criterion, we conducted a series of experiments on

the simulated two-link eye-in-hand system shown in Figure 1.
It consists of a 2 dof planar robot and a range sensor
(triangle FOV) mounted on its end-effector. The sensor has an
additional dof that rotates 360 degree around the wrist. The
sensing angle (the angle between the two edge of the sensing
triangle) is 60 degree. The task for the robot is to explore its
environment, starting from pointing vertically downwards in
its initial configuration.

(1) (2)

(3) (4)

Fig. 4. The four different physical spaces used in the simulation: (1,2)
structured environment, (3,4) random generated environment.

We use four different physical spaces as shown in Fig. 4 in
the simulation: (1) and (2) are two structured environments;
(3) and (4) are two unstructured environments where obstacles
are randomly generated, with Poisson distribution with density
parameters 0.02 and 0.2 respectively.

The sensor’s configuration s is the robot’s configuration
q = (α, β) plus an additional degree of freedom at the wrist,
denoted by θ, i.e., s = (q, θ) = (α, β, θ). (θ is the angle
between the last link of the robot and the medial axis of
the sensor FOV.) In the simulation, the data structures for the
physical space and the robot is similar to [1].3 The simulation
program, written in C++, runs on a Pentium III 800.

The overall sensor-based MP planner used is SBIC-
PRM (sensor-based incremental construction of probabilistic
roadmap) reported in [23]. It consists of an incrementalized
model-based PRM [9], that operates in the currently known
environment; and a view planner that decides a reachable
configuration within the currently known environment from
which to take the next view. The two sub-planners operate
in an interleaved manner, i.e., the robot uses the C-space
roadmap to move to the planned view configuration, takes a
scan from there, and updates the physical space and the C-
space roadmap. The updated physical space and the roadmap

3Briefly speaking, the physical space is represented by well structured
(30 ∗ 30 grids in this simulation) overlapping cells of radius r and the robot
is represented by a collection of cells of radius r/2. While doing collision
detection, all the physical space cells that have intersection with robot cells
are checked to determine the status of this robot configuration.



are then used to plan the next view, and the iteration repeats.

MER MCZV

MCFV MPV
Environment (1)

MER MCZV

MCFV MPV
Environment (2)

MER MCZV

MCFV MPV
Environment (3)

MER MCZV

MCFV MPV
Environment (4)

Fig. 5. Exploration in environments (1), (2), (3) and (4). The snapshots show
the known physical space and C-space after 7 scans. The planned view for
the 8th scan (the triangle) is also shown.

Fig. 5 shows snapshots of the simulation results after seven
scans and the planned eighth scan for the MER criterion,
MCZV criterion and MCFV criterion, respectively for environ-

ment (1), (2), (3) and (4). The view planning results for MPV
criterion are also shown as a baseline comparison with the
other three C-space based criteria. The left sub-image in each
snapshot shows the physical space, and the right sub-image
shows the C-space. In both physical and C-space, “grey” (or
“green” in colored version), “white”, and “dark” (or “blue” in
colored version) regions denote unknown part P i

u or Ci
u, free

part P i
free or Ci

free, and obstacles P i
obs or Ci

obs, respectively.
(The small dots in right subimages are the nodes of the PRM
used to plan paths in free C-space, P i

free.) For MER criterion,
we assumed λ, the density parameter of the underlying Poisson
point process, to be 0.5. Please note that, empirically, the view
planning results are not sensitive to the choice of λ value. See
[20] for detailed discussions.
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Fig. 6. Comparison of C-space exploration efficiency in environments (1),
(2), (3) and (4) for the three view planning criteria: MER, MCFV and MCZV.
The data shown are average performance for ten tests conducted.

Fig. 6 shows C-space exploration rates (average over ten
runs4) for the same three criteria, with MPV criterion as the
baseline. We can see that the C-space based geometric criteria
(MCZV and MCFV) significantly outperform the physical
space based MPV criterion. Of the two C-space based geo-
metric criteria, MCZV is better. The MER criterion further
moderately outperforms the C-space based geometric criteria.
Specifically, for environment (1), MER criterion uses 10 scans
to explore 98% of C-space while MCZV and MCFV perform
comparably and use 16 scans and 20 scans respectively, MPV
uses > 30 scans5; for environment (2), to expand 98% of
C-space, the numbers of iterations by MER, MCZV, MCFV
and MPV are 7, 13, > 30 and > 30; for environment (3), to
expand 98% of C-space, the numbers of iterations by MER,
MCZV, MCFV and MPV are 10, 14, 15 and > 30; and for
environment (4), to explore 88% of C-space, the number of
scans are 9, 13, > 30 and > 30 respectively.

Note that for environments (2) and (4), MCFV criterion did
not perform well. For environment (2), MCFV performed even
worse than MPV. Intuitively, these environments are cluttered
with obstacles and each sensing action has small scannable
region due to occlusions. This implies that many single scans
may not (in general) cover the entire unknown volume of robot
configurations. MCFV criterion ignores such scans and hence
misses out on their potential effects.

4The standard deviations of these trials for different criteria are all suffi-
ciently small (less than five percent of the average).

5In all the runs, MCFV failed to expand 88% of C-space within 30
iterations.



MER criterion evaluates the sensing actions’ (expected)
effects on both free and obstacle parts of Cu and thus provides
a nice tradeoff between Cfree and Cobs exploration. Moreover,
MER also takes into consideration the sensing actions’ “par-
tial” effects on configurations that will not result in knowing
the exact status of the configurations, but nevertheless reduce
the uncertainties. MER criterion therefore is able to account
for “cumulative” effects of sensor actions. This is intuitively
why MER criterion moderately outperforms the C-space based
geometric criteria. Recent preliminary experimental results
(obtained as this paper goes to print and therefore not included
here) on the SFU (six-dof) Eye-in-Hand system, the system
hardware same as in [21], show that the MER criterion
performs significantly better than pure geometric criteria. This
suggests that the stochastic aspect of the MER criterion may
play a significant role in more complex environment (3D) and
for high dof robots.

The average view planning time and average running time
per iteration are roughly the same for the above three algo-
rithms: 51 and 54 seconds respectively. Note that the view
planning time only counts for the view planner to plan the
next sensing action, while the running time per iteration refers
to the time for executing the whole sensor-based planner [23],
which includes not only the view planning time but time for
sensor scanning, known physical space and roadmap update,
roadmap searching, and the robot movements (this additional
time is roughly invariant with respect to the view planning
criteria).

V. CONCLUSION

The Maximal C-space Entropy Reduction (MER) criterion
for view panning was shown to significantly outperform the
pure physical space based view planning criteria in our earlier
papers [19], [21], [23], [24]. The criterion consists of two
important aspects, namely a geometric aspect in C-space,
and a stochastic aspect based on stochastic assumption of
the physical space. In this paper, we investigated how much
of this better performance is attributable to the paradigmatic
shift to evaluating the sensor action in C-space, i.e., the pure
geometric component of MER, and how much is attributable
to the stochastic aspect of MER. We formulated C-space
based pure geometric criteria (essentially aspect (1) of MER
criterion) for view planning and compared it with MPV and
MER criterion. We showed that a great deal of efficiency is
attributable to evaluating the sensor action in C-space, i.e., to
the pure geometric component of MER criterion. In particular,
MCZV performance is close to that of MER. MCFV, on
the other hand, works well only in relatively uncluttered
spaces. However, we also show that MER criterion, despite
simplifying probabilistic assumptions, does result in moder-
ately more efficient C-space exploration than the pure C-space
based geometric criterion MCZV. Intuitively, MER provides a
means of addressing sensing actions’ partial effects on a robot
configuration, i.e., one configuration is “more (or less) known”
than another configuration, while pure geometric criteria do
not account for such partial effects and are essentially an
unweighted (in case of MCZV) or binary weighted (in case
of MCFV) versions of the MER criterion. This suggests that
using more sophisticated (and complex) stochastic models than

the simple Poisson point process model of obstacle distribution
would result in even better performance for MER criterion.
A big problem, however, is that the resulting computational
cost would also increase, since closed form expressions for
such complex models are unlikely and brute force numerical
computations of quantities such as expected entropy reduction
would be prohibitively expensive.
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