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1 Problem A of part II

1.1 Problem definition

Imagine a situation where we have multiple robots to travel an itinerary. We want to plan a set of closed
paths1, or circles in short, each for every robot, such that the union of the paths will cover the iterary
and at the same time, the total distance, the sum of all the travelling distances of all the robots, is
minimized.

In the “Prolem A” of this situation, we assume that both the number of robots and their initial start
points/nodes, and hence their end points/nodes, in the graph are fixed.

Here we give the formal mathematical form of this problem.
A bi-directed graph G is defined as G = (V,E) in which V = {vi, 1 ≤ i ≤ n} is the set of all nodes in

the graph and E = {ei,j , 1 ≤ i �= j ≤ n} is the set of all edges. Each ei,j =< vi, vj > represents an arc
that the robot can travel either from node vi to vj or from node vj to vi. There is also a cost function
cost(ei,j) = ci,j defined on each edge ei,j as the distance travelled by the robot of the ei,j between nodes
vi and vj .

For a given graph G, we also define the set of m itinerary nodes, I = {I�,∞ ≤ � ≤ �}, as the
set of the nodes that have to be travelled by at least one robot at least once. Then a set of robots,
R = {rk, 1 ≤ k ≤ K}, (Robot rk starts and ends at node vk

p1
.) are given to travel the itinerary.

Given these settings, the Problem A addressed here is to find a set of closed paths or circles, pk,
1 ≤ k ≤ K, each pk is assigned to robot rk, where pk = (vpk
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make sure that each path pk for robot rk is also connected by the edges in E, we have the following
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such that the union of all the nodes in the paths is the superset of V ,
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1.2 Solution

(Please refer to the first part of our report for some discussion on related works on Travel Salesman
Problem (TSP).)

1“Closed” here means that the paths start and end at the same node.
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1.2.1 Transformation from problem A to TSP with r robots

Based on the observation that if we make the number of robots to be 1 and all the nodes in V to be the
itinerary nodes, our problem A is reduced to the “TSP with multiple visits (TSPM)”. Thus our problem
A is at least as hard as the TSPM. Inspired by this, our solution to problem A is first to transform it to
the TSPM with r robots.

The transformation is done by constructing a different graph G̃ = (Ṽ , Ẽ) and the cost function
defined on Ẽ), in which Ṽ is the union of the itinerary nodes and robot starting nodes, Ṽ = I, and the
edge ẽi,j =< ṽi, ṽj >∈ Ẽ exists if there exists a shortest path between them in the original graph G, and
the cost of this edge is the cost of this shortest path. We call the new graph G̃ the shortest path graph.

The algorithm of this tranformation is as follows,

Algorithm: Transformation from problem A to TSP with r robots

Ṽ = I % such that ṽi = Ii, 1 ≤ i ≤ m
Ẽ = φ
for 1 ≤ i �= j ≤ m

% using the shortest path algorithm
Compute the shortest path in G between Ii and Ij with distance length(Ii, Ij)
if length(Ii, Ij) < ∞

Ẽ = Ẽ ∪ ẽi,j

c̃i,j = cost(< ṽi, ṽj >) = length(Ii, Ij)
G̃ = (Ṽ , Ẽ)

The original problem now becomes the one to find circles, each for every robot that starts and ends
at its specific starting node, to travel all the nodes in Ṽ exactly once. We call this problem “Multi-
robot TSP”. After solving this “Multi-robot TSP”, we can easily transform this solution, a sequence
of itinerary nodes, back to the solution to the original prblem. This is done by adding between two
consecutive nodes in the solution all the edges that the robot has to travel to get this shortest distance.

In the following, we are going to discuss how to solve this “Multi-robot TSP”.

1.2.2 Solution to “Multi-robot TSP”

Again, we should re-emphasize here that the problem now is for all the robots to travel exactly once the
all the nodes in the shortest path graph, G̃.

We have done so far basically three solutions, one based on heuristics, one based on linear program-
ming (LP), and one based on the transformation of the problem to TSP of a different graph.

1. Jiaping Algorithm
The first solution we got was contributed by Jiaping. We call it “Jiaping’s Algorithm”. “Jiaping’s

Algorithm” was based on the heuristic of one robot’s itinerary travelling solution. Intuitively, if one
robot can travel all the itinerary nodes by following the path p′ in reasonable time, a partition of p′ into
K parts, each for every robot to travel, would also be reasonably short intuitively.

Based on this, Jiaping’s algorithm is as follows. First, solve the TSP on G̃. We denote the solution
by p′ 2. Now as the third step, we partition p′ into r pieces, each assigned to every robot for it to travel.
The partition is done by cutting the longest edge between two consecutive nodes in p′. The itinerary
nodes connected to robot rk after cutting is assigned to the set of nodes designated to rk to travel. Then,
for each element of the partition, we solve the TSP using methods in Part I of our report.

This longest cost cutting heuristic may not give us the optimal solution as we can see in the simulation
results.

2. Solution based on Integar Linear Programming (IP)

2As we can easily see that the choice of r′ to start with does not affect the result, i.e., we will have the same p′ no
matter which robot is used.
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Another possible solution is to formulate the “Multi-robot TSP” into the standard Integer Linear
Programming (IP). In the IP formulation, we should define a set of binary variables x̃k

i,j , each < i, j >

runs for all the edges G̃ and k runs for all the robots, to denote whether the edge ẽi,j is travelled by
robot rk. If x̃k

i,j = 1, the robot rk will go through the edge ẽi,j ; x̃k
i,j = 0, the robot will not go through

the edge ẽi,j . Then, the IP for this problem is given by the following formulation.

min
n∑

i=1

n∑

j=1

ci,j x̃
k
i,j , where x̃k

ij ∈ {0, 1} (1)

x̃k
i,j means whether ẽi,j is in the kth robot’s path. (1 means to travel it; 0 means not.)

yk
i ∈ {0, 1} (2)

This indicates whether the kth robot travel ith node. And this could be thought of as a partition of the
nodes to each robot for it to travel.

∑
k yk

i ≥ 1 for each i
∑

k yk
i ≤ K, K is the number of robots

This guarantees that every node is traveled at least once by a robot.

x̃k
ij ≤ yk

i for each j

This guarantees that if the kth robot visits ith node, indicated by yk
i = 1, it travels along some adjacent

edge to this node.
Then we have to add subtour elimination constraints given as follows:
u(i, k) − u(j, k) + N · x̃k

ij ≤ N − 1, for i, j �= robot starting or ending nodes.
The u’s in the above equation are variables.

3. Transformation from “Multi-robot TSP” to TSP
This approach is proposed by Pengpeng, based on the following observation. If we break the circles

of the solution to Multi-robot TSP, and chain them together to make a single circle such that the end
of the previous piece is connected to the start of the next piece by a zero cost edge, the total cost of the
Multi-robot TSP solution will be the same as this single circle.

And the algorithm is as follows,

Algorithm: Transformation from Multi-robot TSP to TSP

Ṽ ′ = Ṽ
Ẽ′ = Ẽ
% Remember the robots’ starting nodes are called ṽk

1 , 1 ≤ k ≤ K
Make a copy of G′ ∩ R
Name the copy RV = rvk, 1 ≤ k ≤ K % the virtual node set
% Add virtual nodes to the original graph
Ṽ ′ = Ṽ ∪ RV

% Connect virtual nodes to its corresponding ṽk
1 nodes by 0-cost edge

Make edges < ṽk
1 , rvk >, 1 ≤ k ≤ K

Ẽ′ = Ẽ′ ∪ (∪k < ṽk
1 , rvk >)

cost(< ṽk
1 , rvk >) = 0, 1 ≤ k ≤ K

% Connect virtual nodes to the nodes that is connected to their corresponding nodes in G̃
if < ṽk

1 , ṽi′ >∈ Ẽ
Make edge < rvk

1 , ṽi′ >
Ẽ′ = Ẽ′∪ < rvk

1 , ṽi′ >
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cost(< rvk
1 , ṽi′ >) = 0

% Make the complete graph of robot starting nodes with zero-cost edges
for 1 ≤ k �= k′ ≤ K

Make edge < ṽk
1 , ṽk′

1 >
Ẽ′ = Ẽ′∪ < ṽk

1 , ṽk′
1 >

cost(< ṽk
1 , ṽk′

1 >) = 0

% Make the complete graph of robot starting nodes with zero-cost edges
for 1 ≤ k �= k′ ≤ K

Make edge < rvk
1 , rvk′

1 >
Ẽ′ = Ẽ′∪ < rvk

1 , rvk′
1 >

cost(< rvk
1 , rvk′

1 >) = 0

G̃′ = (Ṽ ′, Ẽ′)

Then we need to solve the TSP on G̃′ and transform the solution p′ back to the initial problem. The
algorithm is as follows. First, we collapse the virtual nodes and their corresponding robot starting nodes
together. Then there will be one circle at each robot starting node (Remember this is a TSP so the sum
of the numbers of visits at each robot starting node and its virtual node is exactly two.), if they are not
connected by a 0-cost edge. If a robot node and its virtual node are actually connected by a 0-cost edge,
our algorithm will make this robot stay there and not travel.

So we only consider how to provide paths for those travelling robots. First, these robots are scheduled
to travel its circle. Then, for two adjacent robot starting nodes on the collapsed version of p′, we can
pick either of the robots to tavel the piece on collapsed p′ between them and then go back by the shortest
path its starting nodes.

After discussions, we realized that the paths we got from this are not necessarily the optimal solution
to Multi-robot TSP. However, in some cases where there is no other node between two adjacent robot
starting nodes on the collapsed p′, the solution given above is optimal. The reason is as follows. For
the optimal solution of Multi-robot TSP, we can make virtual nodes and chain them by 0-cost edges as
mentioned before. The circle made then is a solution to the Multi-robot TSP. And at the same time, the
transformation mentioned above can make the optimal solution to the Multi-robot TSP to a solution to
TSP. So it must be optimal to TSP too.

But for cases where there are other nodes between two adjacent robot starting nodes on the collapsed
p′, the transformed solution we get is not optimal. However, we can say something on the solution. That
is, the solution is bounded by the cost of the optimal solution plus the sum of the shortest distances
between robot starting nodes. This can be intuitively explained by the fact that the sum of the cost of
the circles is less than or equal to the cost of the optimal solution. And for the robot to be able to travel
back to its starting node, the additional cost is at most the sum of the shortest distances between robot
starting nodes.

1.2.3 Heuristic solution to problem A

TSP is a NP-complete problem and well accepted that exponential computational time is needed to get
an optimal solution (unless “NP=P”). This is why for n > 100 we would compromise for a sub-optimal
solution for the sake of computation. Here we are going to talk about how to solve the problem by
heuristics. The issue here is to get a good solution reasonably fast, although the solution may not be
optimal.

The strategy we use is called the “Heuristic Partition”. Again, first we compute the shortest path
graph G̃. Then assign each itinerary node to its nearest robot. After the assignments of all the nodes,
we obtain a partition of the itinerary, one element of the partition for each robot. We can then solve the
problem by solving the single robot as discussed in Part I of our report.

Formally, the algorithm is as follows. (In the following, we denote the robot starting nodes as ṽk
1 , to

be consistent with our former nonmenclature.)

Algorithm: Heuristic Partition
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Figure 1: Single Robot planning result using algorithm in Part I. The robot starts at node 1, denoted
by square, travels as directed by the arrows, and ends at node 1.

% The partition sets
Partk = φ, 1 ≤ k ≤ K
Compute the shortest path graph G = (V,E) with costs ci,j

For each ṽi ∈ Ṽ
% Choose the robot rk′ such that cost(< vk′

1 , vi >) is minimal
rk′ = arg minrk′ cost(< vk′

1 , vi >)
Partk′ = Partk′ ∪ rk′

% Solve the one-robot planning problem for each partition
for k = 1 . . . K

Solve one-robot planning problem for Partk

In solving the one-robot planning problem for each partition, we can also use some heuristics as
mentioned in Part I of our report.

If we use the exact solver in Part I to solve the one-robot planning problem, we know that our
solution is at least better than to use a single robot to travel all the itinerary nodes. However, the
overall performance will depend on the quality of the partition and we cannot say anything on this. One
more comment we would like to mention here is that this heuristic can be used to partition not only the
itinerary nodes but the other nodes in the original graph. This will be especially useful for cases where
we do not know what the itinerary nodes are a priori. The application situation would be for example in
exploration, we get the map in advance but the tasks of where to explore are given different from time
to time. This heuristic partition can then give us the same partition for different tasks and save a lot of
computational time.

1.3 Simulation results

To test the efficiency of the algorithms, we implemented them in Matlab on the problems as in Figure
Also, the single robot result is shown in Figure 1 for comparison with the multiple robot planning

cases.
The two problems above are based on the same graph with the same costs. However, the second one

is for three robots starting at nodes 1, 4 and 13. (The itinerary nodes are colored grey.)
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Figure 2: The result given by algorithms based on heuristic partition. Three robots start at specified
nodes, denoted by squares, travel as directed, and end at the their initial positions.

It is interesting to see that both of the heuristic partition based algorithms gave the same result as
in Figure 2.

The IP formulation implemented by the Matlab optimization toolbox gives the optimal solution as in
Figure 3. It is interesting to see that the optimal solution in this case has the robot at node 13 staying,
while the robots starting nodes 1 and 4 travel as in the figure.

2 Problem B of part II: fixed number of robots with choice of
their placement

2.1 Uniformly distributed version

Here we assume that in addition to the model considered in Part II A we can choose the positions of the
robots, based on the apriori information we have about the network. This situation is realistic and may
arise for example in lifesaving operations, where number of automated devises usually search an area in
order to minimize and guide the subsequent human effort - fires, earthquakes, avalanches, etc.

Therefore, we want to choose k nodes in the network of, as initial positions of the k robots, so that
this will give us an opportunity to efficiently carry out searches on any given itinerary. Thus, we do
not have any apriori information about the itinerary. One natural way to represent this problem is the
so-called k-median problem. Given n points p1, p2, . . . , pn, we want to choose k of them as centers. Then
we form clusters, assigning each of the remaining n-k points to the center that is closest to it. We want
to choose the k centers so that the total distance from the points to the k cluster centres is minimized.

If pij stands for the jth point assigned to the i-th center our goal is to

minimize
k∑

i=1

∑

ith cluster

d(pi, pij)

When k ≥ 3, the problem is NP-complete. We will use the approximation algorithm described in [1]
The algorithm uses 3-stage optimization based on LP to achieve 62

3 -approximation of the optimal, i.e.
the k cluster centers selected by this algorithm guarantee total distance of no more than 62

3 times the
optimal.
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Figure 3: The optimal solution given by IP formulation.

The algorithm runs in polynomial time, dominated by the time necessary to solve the LP instances
within. However, we cannot use this algorithm straightforwardly to solve our problem. In our network
the distances between pair of locations might not be known, as generally there will be multiple paths
connecting them, each path consisting of more than one edge. It is also possible that there will be no
path between a pair of locations. Thus, we have to compute shortest paths between all pairs of nodes in
our network and set the length of this shortest path as distance between these nodes for the purposes of
the algorithm [1]. In addition we have to set the lengths of the non-existing paths to a sufficiently large
number, say n times the length of the longest distance in the network. Now we are ready to run the
algorithm and we will obtain the k cluster centers. At this point the problem is identical to the one of
Part II A. Given an itinerary, we have our network subdivided in k clusters, we will identify the itinerary
nodes belonging to each clusters, the robots will visit their respective parts of the itinerary based on
shortest path computations done according to the single robot approach described in Part I.

Formally, the algorithm can be described as follows:
1. Find the shortest path between all pairs of nodes (pi, pj) in the network as described in Part I.

Denote these lengths by c̃ij . If no path exists, then we set c̃ijMaxD, where MaxD is a sufficiently large
number.

2. Run the k-median algorithm on the initial network. The algorithm outputs a set of centres
(p1, p2, . . . , pk) and for each node in (pk+1, pk+2, . . . , pn) the assignment to its respective centre.

3. Place the k robots at the centres (p1, p2, . . . , pk) computed in step 2.
4. Given an itinerary I = (I1, I2, . . . , Im), subdivide into k disjoint itineraries I = Ĩ1 ∪ Ĩ2 ∪ · · · ∪ Ĩk,

s.t. Ĩi ∩ Ĩj = φ for i �= j. The nodes in Ĩi belong to the cluster of the i-th robot.
5. Run the algorithm of Part I for robot i for the itinerary Ĩi.

2.2 Weighted distances

In the formulation of the problem in the previous section we assumed that each node is equally probable
to become an itinerary node. In the real world we can imagine situations when we apriori know that
some locations are more probable as itinerary locations than others. For example, police patrol checks
in a city. Some streets, neighbourhoods or hot spots are checked more often, i.e. they are more probable
to be on the itinerary. The way to incorporate this into our model is to define a probability distribution
over the nodes of the network. Equivalently, we can assume that this distribution is normalized and each
network location has a weight wi assigned proportional to the initial probability for this node being an
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Figure 4: Clustering results for the unweighted network given by k-median algorithm. In the figure, all
the nodes are divided into three clusters, as specified by the bounding boxes. (For the colored version,
the clusters are denoted by “pink”, “yellow” and “blue”.) Each cluster is assigned to one robot starting
at the node circled.

itinerary node. We want to place the robots so that the itinerary is carried out efficiently. Again, this
can be done by clustering. In the literature this is known as the k-median problem with center costs.
The algorithm from [1] can be easily modified to achieve a factor of 10 approximation of the optimal
total distance. As one might expect, depending on the weights, the centers might not correspond to ones
chosen in the unweighted k-median problem. As it is clear from this discussion, the only step that will be
affected by this is step 2. Of course, we need some preprocessing, namely transforming the probability
distribution into weight assignment. This can be done in either step 1 (as it does not affect shortest
path computations) or in a separate step, before running the algorithm for the k-median problem with
center costs.

2.3 Simulation Result

We implemented the k-median algorithm, both unweighted version and weighted one, in Matlab. Fig-
ures 4, 5 show the clustering results. It is interesting to note that the clustering results for these two
networks that only differ by the weight of node 1 are the same, while the first robot starting position
differ, one in node 25 and the other in 18.

3 Problem C of part II: unknown number of robots

In Problem C, we are considering to decide the minimal number of robots needed to travel the itinerary
such that the total distance travelled by the robots are bounded by the value d. The strategy we are
proposing is to first consider the Problem B with i robot. (The value of i starts from 1.) After solving
this problem, we denote the total distance travelled corresponding to the solution, di. If di is less than
d, we know the number of robots needed is i then. Otherwise, we consider Problem with i + 1 robots.

Note that this algorithm will not run for ever, because if we assign the same number of robots as the
number of itinerary nodes, then we can simply put them on each node and let them not move at all.
The total distance travelled is 0 in this case.
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Figure 5: Clustering results for the weighted network given by k-median algorithm. The weights all
nodes are the same except that of node 1, which is as 10 times heavy as the other. In the figure, all the
nodes are divided into three clusters, as specified by the bounding boxes. (For the colored version, the
clusters are denoted by “pink”, “yellow” and “blue”.) Each cluster is assigned to one robot starting at
the node circled.
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