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Abstract

In this paper, we introduce a generalized version of
the Watchman Route Problem (WRP) where the ob-
jective is to plan a continuous closed route in a poly-
gon (possibly with holes) and a set of discrete view-
points on the planned route. Each planned viewpoint
has some associated cost. The total cost to minimize
is a weighted sum of the view cost, proportional to the
number of viewpoints, and the travel cost, the total
length of the route. We call this problem the Gen-
eralized Watchman Route Problem or the GWRP in
short. We tackle a restricted nontrivial (it remains
NP-hard and log-inapproximable) version of GWRP
where each polygon edge is entirely visible from at
least one planned viewpoint. We call it Whole Edge
Covering GWRP. Our algorithm proposed first con-
structs a graph that connects O(n12) number of sam-
ple points in the polygon, where n is the number
of polygon vertices; and then solves the correspond-
ing View Planning Problem with Combined View and
Traveling Cost, using an LP-relaxation based algo-
rithm we introduced in [WKG06]. We show that our
algorithm has an approximation ratio in the order of
either the view frequency, defined as the maximum
number of sample points that cover a polygon edge,
or a polynomial of log n, whichever is smaller.

1 Introduction

The watchman route problem (WRP) refers to plan-
ning a closed curve, called a watchman route, in a
polygon (possibly with holes), with the shortest dis-
tance such that every point on the polygon boundary
is visible from at least one point on the route. Here
we consider the anchored version where a point on
the route, called the start position, denoted by S, is
given [LL86]. WRP combines elements of two NP-
hard problems, namely the Art Gallery Problem with
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Point Guards [LL86], denoted by Point AGP, and
the Euclidean Traveling Salesman Problem [Pap77],
denoted by Euclidean TSP. While for polygon with
holes WRP is NP-hard [CN88], for simple polygons
(i.e., without holes), it is solvable in polynomial time
[CN91,Tan04].

However, WRP makes impractical assumptions
that the watchman senses continuously along the
route (taking infinite number of viewpoints) and that
the sensing actions do not incur any cost. For in-
stance, in an environment inspection task by an au-
tonomous robot-sensor system, each sensing action
incurs a large overhead, corresponding to image ac-
quisition, feature extraction from the image, and inte-
gration with existing environment model [SRR03]. In
addition, often for better sensing qualities, the robot
has to stop its movements during image acquisitions.
We relax this continuous sensing assumption of WRP,
and introduce a view cost, in addition to the existing
path cost. We call the resulting problem, generalized
watchman route with discrete view cost, or GWRP in
short. It refers to planning both a route and a num-
ber of discrete points on it, called viewpoints, such
that every point on the polygon boundary is visi-
ble from at least one planned viewpoint; while the
cost incurred is minimized. The cost is a weighted
sum of both view cost, proportional to the number of
viewpoints planned, and the traveling cost, the total
length of the route planned. Note that GWRP is not
a simple extension to the WRP. First, for cases where
traveling cost is negligible, GWRP is reduced to Point
AGP. So unlike WRP, which is in P for simple poly-
gons, the GWRP is NP-hard. Second, as noticed
in [GB04], the optimal WRP solution may incur an
unbounded cost for the corresponding GWRP solu-
tion, i.e., infinite number of viewpoints are needed on
the route to cover the whole polygon boundary.

In this paper, we consider a nontrivial restricted
version of the GWRP, called the Whole Edge Cover-
ing GWRP, or WEC-GWRP in short, in which any
polygon edge is required to be entirely visible from
at least one planned viewpoint. The restriction arises
naturally in inspection tasks in robotic applications,
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where the “map” given to the robot is often a dis-
cretized boundary representation and during inspec-
tion tasks each small discretized boundary piece is
considered as inspected via one planned viewpoint if
and only if all the points on it are visible. Thus, by re-
garding each piece as a polygon edge, we have a whole
edge covering instance. The same restriction is also
used in the terrain guarding problem [Eid02]. WEC-
GWRP has the same NP-hardness and inapproxima-
bility as GWRP. The reductions used for establishing
the NP-hardness for Point AGP construct whole edge
covering Point AGP instances, for polygons without
holes [LL86] and polygons with holes [OS83] respec-
tively, from an arbitrary 3-Satisfiability instance. In
addition, the inapproximability result for Point AGP,
i.e., Point AGP is log-inapproximable for polygons
with holes, follows from the reduction from an arbi-
trary Set Covering Problem instance to a whole edge
covering Point AGP instance.

Although a natural and nontrivial generalization to
both the AGP and the WRP, to the best of our knowl-
edge, there are few related works for the GWRP or
WEC-GWRP. In [GB97a,GB97b,CN99], the authors
consider a simpler problem of choosing a set of dis-
crete viewpoints on a given route, while maintaining
the visible polygon boundary the same as that by the
route. Since such a route is not available to (WEC-)
GWRP, this approach cannot be applied here.

In [WKG06], we consider a related problem, the
problem of view planning with combined view and
travel cost, or the Traveling VPP in short. Given a
number of discrete viewpoints connected via a graph,
Traveling VPP asks for a subset of the viewpoints
and a route connecting them such that the bound-
ary edges of a given object (can be the whole poly-
gon boundary as in this paper) are all covered, while
minimizing the cost, a weighted sum of both the
view cost, proportional to the viewpoints planned,
and the travel cost, the distance traveled to realize
the planned viewpoints. We gave an LP-relaxation
based rounding algorithm called Round and Connect
that first takes the LP optimal solution and choose
the viewpoints greedily according to their LP solu-
tion values, and then solves the Steiner tree problem
[Vaz01] to connect the chosen viewpoints. We show
that the approximation ratio of Round and Connect
is in the order of view frequency, defined as the maxi-
mum number of viewpoints that cover a single bound-
ary edge. In addition, we gave a reduction that, given
an arbitrary Traveling VPP instance, constructs a
Group Steiner Tree problem (GST) instance [GKR00]

in polynomial time. By calling the poly-log approx-
imation algorithm for GST in [GKR00] after the re-
duction, we can approximate the optimal solution of
Traveling VPP within a poly-log ratio. Thus, Trav-
eling VPP admits an approximation algorithm with
the approximation ratio of either the order of view
frequency or a poly-log function.

A key distinction between the Traveling VPP and
the WEC-GWRP is that while the former has a dis-
crete viewpoint set given in advance, for the latter,
we have to deal with the continuous polygon interior
and an infinite number of possible viewpoints. One
could either discretize up to a certain resolution or
randomly sample the polygon interior, and then call
the Traveling VPP solver. For example, in [EHP02],
the authors assume that a dense grid laid on the poly-
gon is available and viewpoints are restricted to be
grid vertices. In [GBL01], the authors propose to
randomly sample the polygon to get discrete view-
points. These approaches have an immediate draw-
back. If the polygon has a small kernel (the set of
viewpoints that sees the whole polygon boundary),
in which case a single point in this kernel becomes
the optimal solution, both methods are likely to fail:
the discretization method has to make the resolution
very fine; and to sample a point in the kernel becomes
a rare event for the randomized sampling method.

In this paper, we propose a novel sampling algo-
rithm that computes a finite number (O(n12), n be-
ing the number of polygon vertices) of discrete view-
points in the polygon. We show that if we restrict
the problem to choose planned viewpoints only from
these sample points, the optimal cost of such solu-
tions is at most a constant times the cost of the true
optimal WEC-GWRP solution. We then construct a
Traveling VPP instance using the sample viewpoints
and call the approximation algorithm in [WKG06] to
solve for a solution. This implies that the resulting
solution cost is at most the cost of the optimal so-
lution to WEC-GWRP times either the order of the
view frequency or a polynomial of log n, whichever is
smaller.

The sampling algorithm works in two steps: first it
reduces the viewpoint space from the polygon (2D) to
a bounded number of line segments (1D), and then
from these line segments (1D) to a bounded num-
ber of points. In the first step, we decompose the
polygon into visibility cells, computed via a partition
such that the same polygon edges are entirely vis-
ible from all points in each cell. We then restrict
the planned viewpoints to be on the visibility cell
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edges. The reason is as follows. First, we can eas-
ily check if all the polygon edges are entirely visible
from the start position S of the watchman route. If
so, S is the optimal WEC-GWRP solution. If it is
not the case, for any feasible WEC-GWRP solution,
any other planned viewpoint X cannot belong to the
same visibility cell as S, and the route connecting X
and S must cross some edge of the visibility cell that
X belongs to. After replacing X with the crossing
point, we have a feasible WEC-GWRP solution with
the same cost and all planned viewpoints are on the
visibility cell edges.

Note that if traveling cost is ignored, it suffices to
sample one viewpoint arbitrarily on each visibility cell
edge. However, due to the view and travel tradeoff,
we do not know where on each cell edge the optimal
WEC-GWRP solution may choose as the viewpoint.
This motivates us to utilize the metric structure in
the problem to guide our sampling from 1D to points.
We define a local region of each visibility cell edge,
called domain, and compute a bounded number of
viewpoints inside the domains such that the optimal
WEC-GWRP solution can be approximated (within a
constant ratio) locally using these sample points. For
sampling inside each domain, intuitively, we would
like to impose an “ordering” on the cell edges, which
lets us exploit the weak “metric” between them. This
is achieved via dividing domains into strips using the
visibility cell vertices such that the cell edge ordering
remains the same within a strip. We also show the
optimal WEC-GWRP solution as a whole can be ap-
proximated within a constant ratio once all the local
approximations are chained together.

The rest of the paper is organized as follows. First,
we give notations and formulate the WEC-GWRP.
Second, we give the sampling algorithm. Third, we
analyze the approximation ratio of proposed algo-
rithm. Last, we conclude and discuss potential ap-
plications of the proposed sampling algorithm.

2 Problem definition

We now formally state the WEC-GWRP. Let P de-
note the given polygon (with or without holes), a
closed set. Let ∂P denote its boundary, including
the boundary of the holes. Let A = {A1, A2, . . . , An}
and E = {e1, e2, . . . , en} denote the set of polygon
vertices and the set of polygon edges, respectively.
Let Ar denote the set of reflex vertices of P (inter-
nal angle > 180 degrees). We use X1X2 to denote
the closed line segment between two points X1 and

X2. Under the line-of-sight assumption, the visibility
relation between two points X1 and X2, i.e., “X1 is
visible from X2” or “X2 is visible from X1”, denoted
by X1 ⋄ X2, is defined as:

X1 ⋄ X2 ⇔ X1X2 ⊆ P .

If X1 is a viewpoint, we say “X1 covers X2”. We also
say viewpoint X covers a polygon edge e, denoted by
X ⋄ e, if all points of e are visible from X , i.e.,

X ⋄ e ⇔ ∀X ′ ∈ e : X ⋄ X ′.

Let S ∈ P denote the start position of the watchman.
Let V ′ denote a subset of viewpoints, i.e., V ′ = {X :
X ∈ P} and route(V ′) denote a route connecting the
viewpoints in V ′ and S. Let wv and wp denote the
weights for the view and traveling costs, respectively.
Let |B| denote the cardinality of a discrete set B, and
let ‖φ‖ denote the length of route φ.

The WEC-GWRP is defined as follows:

min wv|V
′| + wp‖route(V ′)‖ (1)

Subject to ∀e ∈ E , ∃X ∈ V ′ : X ⋄ e

3 Sampling Algorithm

The sampling algorithm consists of two steps. It first
constructs the visibility cell decomposition and re-
stricts the planned viewpoints to be on the cell edges.
It then samples in the vicinity of each visibility cell
edge. We define a local (w.r.t. a visibility cell edge)
region called domain to quantify this vicinity concept.
The shape of the domains is so designed that the be-
havior (both view and travel) of any watchman route
is locally approximated within a constant ratio. In
the following, we give details of each step.

3.1 Visibility cell decomposition

First, we give some definitions and observations to
clarify the visibility cell decomposition. Our decom-
position is a “finer” version than that given in [ZG05],
i.e., each cell defined here is completely contained
in a single cell defined in [ZG05]. This implies that
the properties of the cells defined in [ZG05] are pre-
served here. Similar terminologies (not by exactly
the same names) and results can also be found in
[BLM92,GMR97].

Let V P (X) denote the visibility polygon of a point
X ∈ P , i.e., the set of points in P that is visible
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from X . V P (X) is a star-shaped simple polygon,
whose edges are either those contained in ∂P or are
constructed edges incident on reflex vertices. We call
these constructed edges the windows of point X . We
further extend each window in the direction from X
to the incident reflex vertex until it hits the poly-
gon boundary for the last time, and call it the ex-
tended window. An extended window is a single line
segment that may contain parts outside the polygon
P . For example, in Fig. 1, the visibility polygon of
vertex A1 consists of a window A5X1, and the corre-
sponding extended window is A5X3. We use W(X)
to denote the set of extended windows of point X .
The extended windows of the polygon vertices are
of particular interest here. We call them the criti-
cal extended windows, the set of which is denoted by
CW(P), i.e., CW(P) = ∪Ai∈AW(Ai). It is easy to
see |CW(P)| ≤ |Ar||A| = O(n2).

A1

A2

A3

A4

A5

X1

X2

X3

P

c ∈ C

Figure 1: Visibility cell decomposition of polygonal
P . The shaded region is a hole.

We use critical extended windows to partition the
polygon into visibility cells. See Fig. 1. It is easy to
see this partition is finer than the one used in [ZG05].
We use C to denote the set of all visibility cells and
use L to denote the set of all visibility cell edges.
This visibility cell decomposition is efficiently com-
puted by first computing the extended critical win-
dows, computing the arrangement of these windows
and the polygon edges, and then excluding part of
the arrangement that are outside the polygon. We
refer to [O’R98] for efficient arrangement algorithms.

And by the Zone Theorem [O’R98], the number of
visibility cells, |C|, and the number of visibility cell
edges, |L|, are bounded by O(n4).

Our visibility cell decomposition preserves the
property shown in [ZG05], and is stated as Lemma 1.

Lemma 1 All points in the same visibility cell have
the same polygon edges entirely visible from them.

3.2 Sampling visibility cell edge do-

main

For a visibility cell edge l, as shown in Fig. 2, we
draw a diamond shape consisting of two isosceles tri-
angles with l as the common base. The sides of each
triangle form an angle of α < 90 degrees with the
base. We will subsequently show how to determine α
in Section 4. We define the domain of the cell edge,
denoted by Dom(l), as the set of all points of polygon
P inside the diamond (including the diamond bound-
ary edges). In Fig. 2, Dom(l) is the set of points in
the diamond shape excluding the shaded area.

α

αα
α l

Dom(l)

polygon boundary

X1

X2

X3

Figure 2: Domain of cell edge l, Dom(l). Inside
Dom(l), we use vertical line segments from each vis-
ibility cell vertex, the dots X1, X2, and X3. The in-
tersection points between these vertical line segments,
other visible cell edges, the polygon boundaries, and
the domain boundaries are included in the viewpoint
sample set.

Lemma 2 states a simple, but crucial observation:

4



Lemma 2 For a visibility cell edge l, the slope (w.r.t.
l) of any other visibility cell edge that has intersec-
tions with Dom(l) is less than α, i.e.,

∀l′ : l′ ∩ Dom(l) 6= ∅, |∠l′l| ≤ α

Proof. Otherwise, the extended critical window
collinear with l′ intersects l and splits it into two
edges. This contradicts that l is a single visibility
cell edge.

See Fig. 2. Inside each visibility cell edge domain
Dom(l), we draw vertical (w.r.t. l) lines from all the
vertices of visibility cells. The segments of these verti-
cal lines contained in Dom(l), the other visibility cell
edges, the polygon boundaries, and the boundaries of
Dom(l) intersect each other. We call these intersec-
tion points sample points and denote the set of sample
points for all domains by Γ. The number of sample
points in each domain is the number of vertices in the
arrangements of the line segments described above,
and is bounded by (|L| + |L| + n + 4)2 = O(n8), ac-
cording to Zone Theorem [O’R98]. (The terms in the
brackets are the bounds on the number of vertical line
segments in each domain (bounded by the number of
visibility cell vertices), the number of other visibility
cell edges, the number of polygon edges, the num-
ber of domain boundaries, respectively.) Thus, Γ is
bounded:

|Γ| ≤ |L| · O(n8) = O(n12).

We construct the complete graph G on Γ where the
edge cost between two sample points is the shortest
path distance between them in P . This can be done
by constructing first the visibility graph of Γ; and then
the shortest path graph on the visibility graph. Note
that all the reflex vertices are included in Γ. Now we
have an induced Traveling VPP instance, with the set
of viewpoints and traveling graph given as Γ and G
respectively.

4 Sampling Algorithm Analysis

In this section, we show that the cost of the optimal
solution to the induced Traveling VPP is at most a
constant times that of the optimal solution to WEC-
GWRP.

The idea is as follows. Assume we have the op-
timal solution to the WEC-GWRP, we will find a

solution to the induced Traveling VPP, by first par-
titioning the optimal route into pieces, then replac-
ing each piece with a route passing through sample
points while keeping endpoints of the piece fixed, and
then moving the endpoints to sample points after
the pieces are chained together. The partition pro-
cess guarantees that the visibility cell edges that each
piece passes through are ordered. The slope lemma,
Lemma 2, then helps bound the length of the replac-
ing piece w.r.t. that of the original piece on the op-
timal route.

For the optimal WEC-GWRP solution, let V∗ de-
note the set of planned viewpoints, and let φ∗ denote
the shortest route connecting V∗. As discussed in
Section 1, we can assume all planned viewpoints are
on the visibility cell edges. We denote the subset of
visibility cell edges where the planned viewpoints are
located by L∗, i.e., L∗ = {l ∈ L : ∃X ∈ V∗, X ∈ L}.

4.1 Partition of φ∗

In the following, we partition φ∗ in two steps. First,
we partition it according to some visibility cell edge
domains. Then, inside each domain, we further par-
tition it using the vertical line segments incident on
the cell vertices.

4.1.1 Partition according to domains

To help define the partition, we first introduce a la-
beling of some (not all) edges in L∗. Note that all
the edges in L∗ are naturally ordered by the order
in which φ∗ intersects them. We start with the first
cell edge and label it l1. Skip the following cell edges
whose corresponding planned viewpoints (V∗) belong
to the currently labeled domain, Dom(l1). We then
label the next cell edge after φ∗ exits Dom(l1) by l2,
and continue in this fashion. Please see Fig. 3 for an
example.

We partition φ∗ according to the labeled visibility
cell edges. See Fig. 3. Let φ∗

k, k = 1, . . . , K denote
these parts. Thus, the start- and end-points of φ∗

k are
Sk and Sk+1, respectively. Also, Sk ∈ lk ⊂ Dom(lk)
and Sk+1 /∈ Dom(lk) by definition.

4.1.2 Partition inside a domain

See Fig. 4. The vertical line segments in a domain
partition a domain into vertical strips. The strips
are bounded by three types of boundaries: the poly-
gon boundary; the strip boundary that separates two
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S0 = S

φ∗
0

φ∗
1

φ∗
2

φ∗
k

φ∗

l2

S2

lk

S1l1

Sk

Dom(l1)

Dom(l2)

Dom(lk)

Figure 3: Partition of the optimal WEC-GWRP so-
lution according to the visibility cell edges and cor-
responding domains it crosses. Note that although
shown disjointed, the labeled domains may intersect
each other and planned viewpoints on φ∗

k may be con-
tained in previous labeled domains.

neighboring strips; and the domain boundary, the
boundary of the diamond shape defining a domain.

Note that all the visibility cell edges are ordered
inside a strip, since otherwise a vertical line at the in-
tersection point where the order changes would have
divided the strip into smaller strips. We order the
visibility cell edges in a strip according to their inter-
section point with the left strip or domain boundary.
The position relation between cell edges, above/below,
is thus well defined inside a strip.

We further partition each part of the optimal route,
φ∗

k, inside the domain Dom(lk) by its strips. For a
strip st, we denote the partitioned piece by φ∗

k(st) =
φ∗

k ∩ st. We denote the start- and end-points φ∗
k(st)

by Lst and Rst respectively, also called the entry and
exit points respectively in the following. We denote
the highest and lowest visibility cell edges that φ∗

k(st)
crosses (if applicable) by lhigh and llow respectively.

4.1.3 Categories and properties of φ∗
k(st)

φ∗
k(st) can be categorized into five cases, according

to whether its entry point is on the labeled visibility
cell edge or on the strip boundary and whether its
exit point is on the strip boundary or on the domain
boundary. φ∗

k(st) cannot enter or exit from the poly-
gon boundary. See Fig. 5 for illustrations. For cases
(Ia) and (Ib), φ∗

k(st) enters on lk (at point Sk, i.e.,
Lst = Sk), and exits either through the strip bound-

l

Dom(l)

a strip

a strip

strip

polygon
boundary

boundary

domain boundary

Figure 4: The vertical line segments from visi-
bility cell vertices partition a domain into strips,
bounded by domain boundary and/or polygon and
strip boundary.

ary, Case (Ia), or through the domain boundary, Case
(Ib). For cases (IIa), (IIb) and (IIc), φ∗

k(st) enters st
through a strip boundary and exits through either the
other strip boundary, Case (IIa), or the same strip
boundary, Case (IIb), or the domain boundary, Case
(IIb).

We now give a simple observation that φ∗
k(st) con-

sists of at most three straight line segments:

Lemma 3 For the optimal WEC-GWRP solution
φ∗, φ∗

k(st), consists of at most three consecutive line
segments. If φ∗

k(st) consists of three segments, the
exit point must lie between the highest and lowest vis-
ibility cell edges φ∗

k(st) touches, lhigh and llow.

Proof. The proof is based on the following obser-
vation. If we can replace φ∗

k(st) by a strictly shorter
route in st with the same entry and exit points, which
crosses the same visibility cell edges as φ∗

k(st), then
φ∗ cannot be optimal. This is because we can replace
φ∗

k(st) by this shorter route and choose viewpoints
on the visibility cell edges that are collinear with the
viewpoints taken on φ∗

k(st) and reduce the solution
cost.
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st st

φ∗
k

φ∗
k

lk lk
Sk Sk

Dom(lk) Dom(lk)

Case (Ia) Case (Ib)

st

stst

φ∗
k

φ∗
k

φ∗
k lk

lklk

Dom(lk)

Dom(lk)Dom(lk)

Case (IIa) Case (IIb)

Case (IIc)

Figure 5: Five cases of φ∗
k(st). Case (Ia): φ∗

k(st)
starts at Sk and exits from the strip boundary. Case
(Ib): φ∗

k(st) starts at Sk and exits through the do-
main boundary. Case (IIa): φ∗

k(st) enters and exits
through different strip boundaries. Case (IIb): φ∗

k(st)
enters and exits through the same strip boundaries.
Case (IIc): φ∗

k(st) enters through the strip boundary
and exits through the domain boundary.

Wlog, suppose φ∗
k(st) goes upwards first after it

enters st at point Lst. When φ∗
k(st) changes direc-

tions, it has to go downwards. Otherwise, as shown
in Fig. 6(i), we can simply replace the two upwards
segments (solid line shown) by a single line segments
(dashed line shown) and the route is shorter. Since
this replacing single line segment visits all the edges
the two segments visit, it has exactly the same set
of entirely visible polygon edges. Similarly, φ∗

k(st)
cannot change direction when going downwards. We
can also easily show that if afterwards φ∗

k(st) goes
upwards again, it has to exit st. Otherwise, as shown
in Fig. 6(ii), we can replace it with a shorter route.

See Fig. 6(iii). If φ∗
k(st) consists of three segments,

and it exits the strip by intersecting the highest (low-
est) visibility cell edge, we can replace the first (last)
two segments by a single segment and reduce solu-
tion cost. So the exit point must lie between lhigh

(i) (ii) (iii)

LstLst Lst

φ∗
k(st)φ∗

k(st) φ∗
k(st)

Figure 6: φ∗
St consists of at most 3 line segments.

and llow.
Although Fig. 6 shows Lst is on the strip boundary,

it generalizes trivially to cases where Lst = Sk.

4.2 Approximating φ∗
k
(st) using a

route connecting sample points

We show, case by case, how to approximate φ∗
k(st)

using a route connecting sample points in Γ and the
start- and end-points of φ∗

k(st), denoted by φ′
k(st).

For lack of space, we only give the proof for Case
(Ia).

4.2.1 Approximation for Case (Ia)

This is the case where smaller α gives us better ap-
proximation ratio. See Fig. 7. We replace φ∗

k(st) by
φ′

k(st), the straight line segment between Sk and Rst

and two detours on the strip boundary from Rst, one
going upwards to lhigh and back to Rst, and the other
going downwards to llow and back to Rst.

Sk Sk

(a) (b)

lk
lk

φ∗
k(st) φ′

k(st)

llow
llow

lhigh lhigh

Rst Rst

st st

Figure 7: Approximate φ∗
k(st) for case (Ia). (a)

φ∗
k(st) reaches lhigh and llow and exits at point Rst.

(b) φ′
k(st) goes straight to Rst and detours to lhigh

and llow at Rst.

We now show that the alternative route can ap-
proximate the corresponding part of the optimal
WEC-GWRP solution within a constant ratio.
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Lemma 4 For case (Ia), φ′
k(st) can approximate

φ∗
k(st) within the constant ratio of 1 + 4

cos α
.

Proof. There are two possible sub-cases: first,
φ∗

k(st) consists of two segments; second, φ∗
k(st) con-

sists of three segments. One-segment case is true triv-
ially. For lack of space, here we give the proof of the
first sub-case.

See Fig. 8. φ∗
k(st) consists of two segments, a and

b; φ′
k(st) consists of the segment c and a detour con-

sisting of segments d1 and d2.

β1

β2

d1

d2a b

c

d

Sk Rst

st

Figure 8: Approximate φ∗
k(st) for case (Ia) when

φ∗
k(st) consists of two segments.

We have the following relations:

‖c‖ ≤ ‖a‖ + ‖b‖

‖d1‖ = ‖d‖ · tan β1 = ‖b‖ cosβ2 tanβ1

‖d2‖ = ‖b‖ sinβ2

Since β1 ≤ α < π/2, cosβ1 6= 0, we have,

‖d1‖ + ‖d2‖ = ‖b‖(cosβ2 tan β1 + sin β2)

=
‖b‖

cosβ1
sin(β1 + β2)

≤
‖b‖

cosβ1
≤

‖a‖ + ‖b‖

cosβ1
≤

‖a‖ + ‖b‖

cosα
.

So we have,

‖φ′
k(st)‖ = ‖c‖ + 2(‖d1‖ + ‖d2‖)

≤ (‖a‖ + ‖b‖)(1 +
2

cosα
)

= ‖φ∗
k(st)‖(1 +

2

cosα
),

i.e.,
‖φ′

k
(st)‖

‖φ∗

k
(st)‖ ≤ (1 + 2

cos α
).

The case for the equality occurs when β1 = α and
β2 = π/2 − α, shown in Fig. 9.

For the second sub-case where φ∗
k(st) consists of

three segments, we can similarly show ‖φ′
k(st)‖ is at

most ‖φ∗
k(st)‖ times 1 + 4

cos α
.

Sk

lk

α
π
2 − α

φ∗
k(st)

lhigh

Rst

st

Figure 9: The worst case of the approximation of case
(Ia). Sk is arbitrarily close to lhigh; lhigh is parallel
to the domain boundary, i.e. its slope is α; and the
line segment connecting Rst is π

2 − α, i.e, it is per-
pendicular to lhigh.

To summarize, for both sub-cases where φ′
k(st)

consists of two or three segments respectively,
‖φ′

k(st)‖ is at most 1 + 4
cos α

times ‖φ∗
k(st)‖.

4.2.2 Approximation for Case (Ib)

This is the case where bigger α gives us better approx-
imation ratio. Wlog, here we only consider the case
where φ∗

k(st) exits from the top left domain boundary.
First, by Lemma 3, if φ∗

k(st) has three segments, the
exit point must lie between the highest and the low-
est visibility cell edges φ∗

k(st) touches. Since we know
the exit point is on the domain boundary, higher than
lhigh, φ∗

k(st) consists of at most two segments. Here
we illustrate only the single segment sub-case.

See Fig. 10. We approximate φ∗
k(st) using the

straight line segment connecting Sk and the top-left
strip boundary vertex, Vst, and a detour on the strip
boundary, if necessary, from Vst to reach llow and
back to Vst. In Lemma 5, we show the approxima-
tion ratio using the left domain vertex on strip st.
For lack of space, the proof of Lemma 5 is skipped.
Intuitively, since the angle θ is at least α, the length
of route(SkVstSk+1) is at most a constant times that
of SkSk+1.

Lemma 5 For case (Ib), φ′
k(st) can approximate

φ∗
k(st) within the constant ratio of 1

sin α

2

+ 2
cos α

.

Similarly, for cases (IIa), (IIb), (IIc), we can find a
φ′

k(st) whose length is at most that of φ∗
k(st) times

1 + 4
cos α

or 1
sin α

2

+ 2
cos α

.
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θ

Sk Sklk lk

Vst

φ∗
k(st)

Rst Rst

st st
(a) (b)

Sk+1 Sk+1

φ′
k(st)

Figure 10: Approximate φ∗
k(st) for case (Ib): one-

segment sub-case. (a) φ∗
k(st) consists of a line seg-

ment SkSk+1. (b) φ′
k(st) consists of two segments

SkVst and VstSk+1 and a detour from Vst to reach l
and back.

4.3 Chaining together the partitions

By its construction, φ′
k(st)’s chained together form

a continuous route, a sequence of line segments with
loops at their endpoints, Fig. 11. However, the start-
and end-points of φ′

k(st) may not belong to the sam-

ple point set Γ. We construct a solution φ̂ from φ′ as
follows. For endpoints inside their loops, e.g. point
V in Fig. 11, we move them to the nearest sample
point inside the loops. By the triangular inequality,
we loose at most an additional constant (2) approxi-
mation ratio. For Sk and endpoints without detours,
e.g. point W and Sk in Fig. 11, we can simply ig-
nore it, since it is taken care of by the endpoints of
its previous and next strips. For example, in Fig. 11,
let U and V denote the planned viewpoints that are
immediately before and immediate after Sk on φ′ re-
spectively. We can bypass Sk and connect directly U
and V , (the dotted line segment).

It is clear that φ̂ is a solution to the induced Travel-
ing VPP, i.e., all the planned viewpoints are from the
sample point set. Using this solution, we can bound
the cost of the optimal solution to the induced Travel-
ing VPP w.r.t. the true optimal to the WEC-GWRP.

Theorem 1 The cost of the optimal solution to the
induced Traveling VPP is at most 11.657 times that
of the optimal solution to the WEC-GWRP.

Proof. By summarizing cases (Ia), (Ib), (IIa), (IIb)
and (IIc), the length of φ′

k(st) is at most that of φ∗
k(st)

times max(1+ 4
cos α

, 1
sin α

2

+ 2
cos α

). After chaining and

W

U

V

Sk

lk

Dom(lk)

Figure 11: The approximation solution within a do-
main Dom(lk), after chaining together φ′

k(st) for the
strips φ∗ crosses.

moving the entry and exit points, the length of φ̂ is
at most twice that of φ′

k(st). Since φ̂ is a feasible
solution to the induced Traveling VPP, its cost is a
lower bound on the optimal solution to the induced
Traveling VPP. Thus, the cost of the optimal solution
to the induced Traveling VPP is at most 2 max(1 +

4
cos α

, 1
sin α

2

+ 2
cos α

) times the cost of the true optimal

solution to the WEC-GWRP.
Now we choose the α value to minimize this ratio,

i.e., to solve min
α

2 max(1 + 4
cos α

, 1
sin α

2

+ 2
cos α

). And

the solution is approximately 11.657, when α ≈ 34o

(via numerical minimization using Matlab).
After constructing the induced Traveling VPP us-

ing the sample points, we call the approximation
algorithm in [WKG06] to get a solution. The ap-
proximation ratio result of this Traveling VPP solver
[WKG06] and Theorem 1 implies that the cost of the
solution is at most the cost of the optimal WEC-
GWRP solution times either the order of the view fre-
quency or a polynomial of log n, whichever is smaller.

5 Conclusion

In this paper, we introduce the generalized watchman
route problem of planning a continuous route and a
set of discrete viewpoints on the route such that ev-
ery polygon edge is entirely visible from at least one
planned viewpoint, while minimizing a (weighted)
sum of view cost and travel cost. The problem is
NP-hard and log-inapproximable. We propose an ap-
proximation algorithm that consists of two steps. The
first step is a novel sampling method that, for any
given WEC-GWRP instance, produces a polynomial
number of discrete viewpoints in the polygon. We

9



then restrict the planned viewpoints to be from these
sample points and construct a corresponding Trav-
eling VPP instance. The second step uses the ap-
proximation algorithm in [WKG06] to solve the con-
structed Traveling VPP instance. We show that the
optimal solution cost to the Traveling VPP instance
is at most a constant times the optimal solution cost
of the WEC-GWRP instance. As a result, the ap-
proximation ratio of our algorithm is in the order of
the view frequency or a poly-log function of the input
size, whichever is smaller.

We believe that the sampling algorithm proposed
here is a general technique and can also be used for
other shortest route problems where one would like to
get an approximation algorithm by first reducing the
infinite input space to a discrete sample point set, and
then solving the resulting discrete problem. For ex-
ample, the algorithm can be applied to a generalized
version of the 2.5D terrain guarding problem [Eid02]
with additional travel cost in the objective function.
We can then first apply the cell decomposition to re-
duce the input space to a set of line segments, the
cell edges, (same decomposition was used in [Eid02]),
then use the sampling algorithm proposed in this pa-
per to reduce it to a Traveling VPP instance, and
then call the Traveling VPP solver [WKG06]. The
resulting algorithm has an approximation ratio of the
order of the view frequency or a poly-log function of
the input size, whichever is smaller.
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