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Abstract

We have recently introduced the concept of C-space
entropy as a measure of knowledge of C-space for
sensor-based path planning and exploration for gen-
eral robot-sensor systems [1, 2, 3, 5]. The robot plans
the next sensing action to maximally reduce the ex-
pected C-space entropy, also called the maximal ex-
pected entropy reduction, or MER criterion. The ex-
pected C-space entropy computation, however, made
two idealized assumptions. The first was that the
sensor field of view (FOV) is a point; and the second
was that no occlusion (or visibility) constraints are
taken into account, i.e., as if the obstacles are trans-
parent. We extend the expected C-space entropy for-
mulation where these two assumptions are relaxed,
and consider a generic range sensor with non-zero
volume FOV and occlusion constraints, thereby mod-
elling a real range sensor. Planar simulations show
that (i) MER criterion results in significantly more
efficient exploration than the naive physical space
based criterion (such as maximize the unknown phys-
ical space volume), (ii) the new formulation with
non-zero volume FOV results in further improvement
over the point FOV based MER formulation. Real
experimental results with the SFU eye-in-hand sys-
tem, a PUMA 560 equipped with a wrist mounted
range scanner [4] will be reported in the final version
of the paper.

1 Introduction
While most research in sensor-based path planning
and exploration has concerned itself with mobile
robots, our recent work has concentrated on general
robot-sensor systems, where the sensor is mounted
on a robot with non-trivial geometry and kinemat-
ics [1, 2, 3, 4, 5]. See also [6, 7, 8, 9, 10]. This
class of robots is broad and includes robots ranging
from a simple polygonal robot to articulated arms,
mobile-manipulator systems, and humanoid robots
[10]. The sensor is assumed to be an “eye” type sen-
sor that is capable of providing distances from a given

vantage point (actual implementation may be a laser
range scanner, passive stereo vision, etc.). Figure 1
shows a simple example of such a robot-sensor sys-
tem — an eye-in-hand system — an articulated arm
with a wrist mounted range sensor. The robot must
simultaneously plan paths and sense its environment
for obstacles. Unlike for a simple mobile robot (often
modelled as a point, see [11] for next best view plan-
ning for mobile robots), where the robot can move
(path planning) and what it should sense (view plan-
ning), has a much more complex relationship here [4].
“Where to move” is best posed and answered in con-
figuration space, the natural space for path planning.
In [1, 2, 5], we showed that the view planning prob-
lem is appropriately posed in the configuration space
of the robot — the next view should be planned to
give maximum knowledge or information (whether a
configuration is free or in collision with an obstacle)
of the C-space of the robot. What this implies is that
the sensing action, which obviously senses physical
space, must be (implicitly or explicitly) transformed
to the configuration space. Treating the unknown en-
vironment stochastically, we introduced the notion of
C-space entropy as a measure of the robot’s knowl-
edge of C-space. The next best view is then the
one that maximizes the expected entropy reduction
(MER criterion) or, equivalently expected informa-
tion gain. In contrast, earlier approaches had simply
used a naive criterion, such as maximize unknown
physical space volume (MPV) in the senor FOV, to
choose the next best view [6].

In [1, 3] we derived closed form expressions for ex-
pected C-space entropy reduction, or information
gain under a Poisson point process model of the en-
vironment [13]. However, two idealized assumptions
were made regarding the sensor in that paper: (i) the
sensor has a point field of view (FOV), i.e., it senses
a single point and (ii) no occlusion constraints were
taken into account, i.e., as if the sensor would “see”
(get range measurement) through the obstacles. The



Figure 1: An eye-in-hand system — a two-link robot

with a wrist mounted range sensor (with triangle FOV)

moving in an unknown environment. A key question (the

view planning problem) is: where should the robot sense

next?

next best view is planned using this formulation, i.e.,
the algorithm computes the point (say, xmax) which,
if sensed, would yield maximum expected informa-
tion gain and places the sensor so that the center of
the actual FOV (a cone) coincides with xmax. In [5],
this formulation was extended for a beam sensor –
the sensor FOV is a ray (beam) of finite length. In
other words, assumption (ii) above was relaxed, but
assumption (i), that sensor FOV has finite volume
was still there. zero volume FOV while respecting
occlusion constraints.

In this paper, we present the MER computation
for a generic range sensor that has a non-zero vol-
ume FOV and its sensing action is subject to occlu-
sion constraint, thereby modelling real range sensors.
This computation is valid for a Poisson point process
model of the environment, admittedly a simplifica-
tion, but the resulting closed form expressions give
us insights and are useful at least as approximations.
We present simulations that show clear improvement
in the efficiency of exploration with the new formu-
lation. Our initial simulations are planar for ease of
visualization. We emphasize that our formulations
and results are valid for 3D environments and are
currently being implemented on a real six-dof SFU
eye-in-hand system consisting of a PUMA 560 with a
wrist mounted area-scan laser range sensor that has
been developed in our lab and was reported in [4].
We expect to report these experimental results in the
final version of the paper.

2 Notation
Let A denote the robot and q denote a point in its
configuration space, C. A(q) then denotes the region
in physical space, P, occupied by the robot. Let S
denote a sensor attached to the robot. We attach a
coordinate frame to the sensor’s origin. Let s denote
the vector of parameters that completely determine
the sensor frame, i.e., sensor’s configuration. For in-

stance, assuming the sensor is attached to the end-
effector of the robot, for planar case, s = (x, y, θ);
for 3D case, s = (x, y, z, α, β, γ). The sensor con-
figuration space, denoted by Cs, is the space of all
possible sensor configurations. Let V(s) ∈ P denote
the region sensed (sensor FOV) by the sensor at con-
figuration s. Subscripts free, obs, and unk (or some-
times u) denote the known free, known obstacle and
unknown regions, respectively in physical and con-
figuration space. So, for example Pobs denotes the
known obstacles in physical space, Aunk(q) denotes
the part of robot lying in unknown physical space
at configuration q, and Cfree denotes the known free
configuration space.

3 Background: C-space Entropy and
IGF

We assume that the obstacles’ distribution in the
physical environment is modelled with an underly-
ing stochastic process (e.g., the Poisson model used
later). The kinematics and geometry of the robot,
embodied by function A(q) map the probability dis-
tribution in physical space to a probability distri-
bution over the C-space. Shannon’s Entropy then
provides a measure of the robot’s ignorance of the
status of C-space. For a generic range sensor, which
senses a region of non-zero volume, one can compute
the expected entropy reduction if a sensing action, s,
is taken, i.e., V(s) is sensed.
The information gain (IG) function captures this no-
tion and is defined as

IGC(s) = −E{�
s

H(C)}
where H(C) denotes the current C-space entropy,
E{�

s

H(C)} = E{H(C | V(s)}−H(C) denotes the expected
entropy change after V(s), the region to sense at the
sensor’s configuration, s, is sensed.
In order to get efficiency in computing, we neglect
the mutual entropy terms, essentially treating each
robot’s configuration as an independent random vari-
able, i.e., H̃(C) =

∑
q∈C

H(Q). In this equation, Q de-

notes the binary random variable (r.v.) correspond-
ing to configuration q being free (=0) or in collision
(=1); H(Q) denotes the entropy of r.v. Q, i.e.,

H(Q) = p(q) log(p(q)) + (1 − p(q)) log(1 − p(q)) (1)

where p(q) = Pr[q = free] is the marginal probabil-
ity that configuration q is collision-free, also called
the void probability of q. With this simplification
one can show that:

ĨGC(s) = −E{�
s

H̃(C)} =
∑
q∈C

igq(s)

where igq(s) is given by:
igq(s) = −E{�

s

H(Q)} (2)

When V(s) is sensed, the sensed information affects
the C-space entropy via each robot’s configuration
q. igq(s) is then the partial contribution to informa-
tion gain via configuration q, if a region V(s) were
to be sensed. Furthermore, igq(x) equals 0 when



A(q) does not intersect V(s). So we need only com-
pute the above summation over those q’s such that
V(s)∩Aunk(q) 
= 0. Set of configurations q’s such that
V(s) ∩ Aunk(q) 
= 0 is defined as the C-zone of s, de-
noted by χ(s). Therefore one can write:

IGC(s) =
∑

q∈χ(s)

igq(s)

4 Generic Sensor Model
We now consider a range sensor whose FOV has non-
zero volume, i.e., V(s) is an open set in R3 and the
the actual volume sensed is governed by occlusion
constraints. Most commercially available range sen-
sors that provide range images (such as the area
scan laser range sensors used in SFU eye-in-hand
system [4]) fall into this category. Fig. 2 shows a
schematic diagram as the sensor senses an unknown
region within its FOV. As before, let Vu(s) denote
the portion of the FOV that intersects Pu and is not
occluded by known obstacles. Note that Vu(s) might
be a multiply-connected set. In the figure, Vu(s) con-
sists of regions A, B, C and D (region E is excluded
from Vu(s) since it is occluded by a known obstacle.
After sensing, regions A, B and C become free; re-
gion D remains unknown because it is occluded by
the sensed obstacles (shown in dark). Of course, the
sensor also provides the distances from the sensor’s
origin to the sensed obstacles.

Figure 2: Illustration of a generic range sensor’s
FOV V(s). After this sensing action, regions A, B
and C become free, the black contour is a sensed ob-
stacle and region D, occluded by the sensed obstacle
remains unknown. Region E also remains unknown,
but it is occluded by an already known obstacle.

4.1 Environmental Model
Again, we are using Poisson point process to make a
simple model of the robot’s workspace. Poisson point
process is essentially characterized by uniformly dis-
tributed points in space [13]. In robot motion plan-
ning context, these points, denoted by pt, are obsta-
cles. Given the density parameter of this model, λ,
the void probability of an arbitrary set B ∈ P — the
probability that there is no point (obstacle) in B —
denoted by p(B), is given by

p(B) = Pr[no pt ∈ B] = e−λ·vol(B) (3)

This implies that p(q), the void probability of a robot
configuration q is given by

p(q) = Pr[no pt ∈ A(q)] = e−λ·vol(Aunk(q)) (4)

Because the sensing is subject to occlusion con-
straint, the sensor can only detect the very first point
obstacle along each sensing ray. This very first osta-
cle is called the hit point and is denoted by hitpt, .
The sensing action can therefore be easily visualized
as finding a bunch of new hit-points’ positions in the
workspace.

4.2 igq(s) Computation
For a given q, igq(s) is composed of sum of two com-
ponents, i.e., igq = (igq)1 + (igq)2. The first com-
ponent, (igq)1, corresponds to those outcomes where
the sensor would sense at least one hit point inside
A(q) ∩ Vu(s), i.e., hitpt ∈ A(q) ∩ Vu(s). Let this
set of outcomes be denoted event 1. After sens-
ing, the robot, were it to be placed at configura-
tion q, A(q), would be in collision with an obstacle
(the sensed hit point). So H(Q | event 1) = 0 and
�

event 1

H(Q) = H(Q | event 1) − H(Q) = −H(Q).

It turns out (not unexpectedly in the light of our
earlier beam sensor result reported in [5], however
several technical details need to be carefully worked
out) that the probability of event 1, Pr[∃hitpt ∈
A(q)∩Vu(s)], is the same as Pr[∃pt ∈ A(q)∩Vu(s)], as
if occlusion does not matter! Theorem 2 states this
result formally. But first we show an intermediate
result, that the probability of all the point obstacles
inside B to be occluded by point obstacles in front of
them is zero!
Theorem 1. Pr[all pts ∈ B are occluded] = 0 where B ⊆
Vu(s) is any open set and pt are point obstacles whose
distribution is governed by a Poisson point process.
Proof. We first discretize Vu(s) into M number of
nearly-identical cones, V1, V2, . . . , VM as shown in
Fig. 3. Consider a cone (with apex at sensor origin)
which contains V(s). Lay a discrete grid of size ε and
connect the boundary of these cells to the sensor’s
origin. Vu(s)’s functionality can then be captured by
these cones. As M approaches infinity, the discrete
model approaches the continuous model.

Note that B is also discretized by these Vi’s. We
label those discretized cones that have common part
with B by VB1, VB2, . . . , VBM ′ . We denote the
intersection of these VBi’s with every component of B
by B1, B2, . . . , BM ′′ respectively and use front(B)i
to denote the subset of VBi \ B, (“\′′ here denotes
the set minus operation), that is in front of Bi along
the sensing direction.1

We know that the set of outcomes denoted by
Event(all pts ∈ B are occluded) is a subset of
outcomes denoted by Event(∃occluded pt ∈ B),
i.e., at least one point, pt, inside B is occluded.
Hence, we have Pr[all pts ∈ B are occluded] ≤

1Note that B could be a multiple-connected set. So the
number of Bi’s, M ′′ could be greater than the number of dis-
cretized cones, M . And since the labelling sequence is irrele-
vant to our proof, we can arbitrarily label these Bi’s



Figure 3: Illustration of a possible way of discretiz-
ing Vu(s).

Pr[∃occluded pt ∈ B]. Furthermore, since
Event(all pts ∈ B are occluded) implies that at least
one point is inside the region Bi, and at least one
point is inside front(B)i. So we have

Pr[∃occluded pt ∈ B]

=

M′′∑
i=1

(Pr[∃pt ∈ Bi] · Pr[∃pt ∈ front(B)i])

−
M′′∑
i=1

M′′∑
j′ �=i∧BiBj′ /∈

the same cone

(Pr[∃pt ∈ Bi] · Pr[∃pt ∈ front(B)i]

· Pr[∃pt ∈ Bj′ ] · Pr[∃pt ∈ front(B)j′ ]) + . . .

≤
M′′∑
i=1

Pr[∃pt ∈ Bi] · Pr[∃pt ∈ front(B)i]

The reason for inequality sign above is as follows. We
regard Event(∃occluded pt ∈ B) as the summation
of the events that occlusion happens in any of the
Bi’s (the expression on the right side of inequality
sign) minus the “double counting” that occurs. This
“double counting” is essentially the probability of the
joint event that occlusion happens concurrently in
more than one Bi’s and hence it is always greater
than or equal to zero, and hence the inequality sign.2

In the above summation, for the term Pr[∃pt ∈
front(B)i], using Eq. (3), we have Pr[∃pt ∈
front(B)i] = 1−e−λ·vol(front(B)i). Since the volume
of front(B)i is less than or equal to the volume of
the biggest discretized cone, denoted by VBmax, we
will have Pr[∃pt ∈ front(B)i] ≤ 1− e−λ·vol(VBmax).
Now substituting the term Pr[∃pt ∈ front(B)i] by
1−e−λ·vol(VBmax) and taking it out of the summation,
we have,
Pr[∃occluded pt ∈ B] ≤ (1 − e−λ·vol(VBmax)) ·

M′∑
i=1

Pr[∃pt ∈ Bi]

For the term Pr[∃pt ∈ Bi], using Eq. (3) with only
first order expansion, we have,

Pr[∃pt ∈ Bi] = 1 − e−λ·vol(Bi) = λ · vol(Bi)

This approximation is reasonable since the volume,
vol(Bi), is small enough when the discretization res-
olution is small enough.
Therefore, we have,

Pr[all pts ∈ B are occluded] ≤ Pr[∃occluded pt ∈ B]

2This is nothing but a generalization of p(A) + p(B) ≥
p(A, B), where A and B are two random variables, and p()
denotes the probability.

≤ (1 − e−λ·vol(VBmax)) ·
M′∑
i=1

vol(Bi) · λ

= (1 − e−λ·vol(VBmax)) · vol(B ∩ Vu(s)) · λ

As M approaches infinity, vol(VBmax) approaches
zero and therefore (1 − e−λ·vol(VBmax)) approaches
zero. So Pr[∃occluded pt ∈ B] = 0, which implies
Pr[all pts ∈ B are occluded] = 0.
Theorem 2. Pr[∃hitpt∈B]=Pr[∃pt ∈ B]= 1−e−λ·vol(B)

Proof. The computation of Pr[∃hitpt ∈ B] is based
on the complement of this event, Event(no hitpt ∈
B), i.e., Pr[∃hitpt ∈ B] = 1 − Pr[no hitpt ∈ B].

Event(no hitpt ∈ B) can be divided into two events,
the event that there are no point obstacles in B and
the event that all the point obstacles inside B are
occluded, Event(all pts ∈ B are occluded).
Using Eq.(3), the probability of Event(no hitpt ∈ B)
will be,

Pr[no hitpt ∈ B] = p(B) + Pr[all pts ∈ B areoccluded]

Using Theorem 1, the second term is zero, and hence
we have, Pr[no hitpt ∈ B] = p(B). It then follows
that the probability of the complement event, i.e.,
Pr[∃hitpt ∈ B] = 1 − p(B) = 1 − e−λ·vol(B).
So we have

(igq)1 = Pr[hitpt ∈ A(q) ∩ Vu(s)] · H(Q)

= Pr[pt ∈ A(q) ∩ Vu(s)] · H(Q)

= (1 − e−λ·vol(A(q)∩Vu(s))) · H(Q) (5)

The second component, denoted by (igq)2, corre-
sponds to a set of outcomes in which there does not
exist any hit-point inside A(q) ∩ Vu(s). In this case,
the status of A(q) would either remain unknown,
albeit the unknown portion (volume) may have de-
creased, or it may become completely free; but it will
not be known to be in collision. Let us denote this set
of outcomes by event 2. Using the discretized FOV
as in Figure 3, let us denote the state of A(q)∩Vu(s)
after sensing by J . Event 2 then corresponds to the
set of outcomes {J : no hitpt ∈ A(q) ∩ Vu(s)}. By
definition, then we have

(igq)2 =
∑

J∈event 2

Pr[J ] · (H(Q) − H(Q | J)) (6)

where Pr[J ] is the probability of A(q) ∩ Vu(s) being
in state J after sensing.

We show that the above expectation turns out to be
that of the event (let us call it event 3) that there
does not exist any pt in A(q)∩Vu(s), or equivalently
that the region A(q)∩Vu(s) is free! This implies that
occlusion does not matter in the expectation compu-
tation! It is not entirely unexpected in the light of
beam sensor result, [5], however several technical de-
tails need to be worked out. Theorem 3 states this
result formally.

Theorem 3.∑
J∈event 2

Pr[J ] · H(Q | J) = Pr[event 3] · H(Q | event 3)

= e−λ·vol(A(q)∩Vu(s)) · H(Q | event 3) (7)



Proof. Omitted for lack of space.
Thus, expanding the summation in Eq. 6, we have,

(igq)2 = H(Q) ·
∑

J∈event 2

Pr[J ] −
∑

J∈event 2

Pr[J ] · H(Q | J) (8)

The first term (the first summation) above is 1 −
Pr[hitpt ∈ A(q) ∩ Vu(s)]. The expression for it is
given by Theorem 2 if we substitute A(q)∩Vu(s) forB. Furthermore, substituting from Theorem 3 for
the second term, we get

(igq)2 = H(Q) · Pr[event 3] − Pr[event 3] · H(Q | event 3)

= e−λ·vol(A(q)∩Vu(s)) · (H(Q) − H(Q | event 3)) (9)

So summing the two components together, and using
Eq. (5) and (9), we have

igq = (igq)1 + (igq)2

= H(Q) − e−λ·vol(A(q)∩Vu(s)) · H(Q | event 3) (10)

Both H(Q | event 3) and H(Q) in the above equation
are determined using Eq. (1) and that p(q | event 3) =
e−λ·vol(Au(q)\Vu(s)).

Note that this result reduces to the point FOV sen-
sor model [1], and to the beam FOV sensor model
[5], in the limit. The reduction can be shown in a
straightforward manner and is omitted for brevity.

5 Algorithm for View Planning
Now that we have computed an expression for IG
over sensor’s configuration space, we can use the
MER criterion to decide the next scan, i.e., choose
the sensor configuration smax such that smax =

max
s

{
∑

q∈Xu(s)

igq(s)}. The algorithm then is as follows:

for every s /* according to a certain resolution */
determine Vu(s)

ĨG(s) = 0 /* initialize */
for every q

if (Au(q) overlaps with Vu(s))
compute igq(s)

ĨG(s) = ĨG(s) + igq(s)

smax = maxs(ĨG(s))

Determining Vu(s) corresponds to determining the
intersection of the sensor FOV with Pu while ex-
cluding portions of Pu occluded by already known
obstacles (before sensing action), a simple geometric
computation. Note that iteration over q (C-space of
the robot) may be prohibitive for robots with many
degree of freedoms. In this case, the summation can
be carried out over a large enough set of random
samples.

6 Simulation Results
In order to test the effectiveness of our formulae,
we conducted a series of experiments on the simu-
lated two-link eye-in-hand preliminary system shown
in Figure 1. The task for the robot is to explore its
environment, strting from its initial configuration.
The overall planner used is SBIC-PRM (sensor-based
incremental construction of probabilistic road map)
reported in [3, 4]. Briefly, SBIC-PRM consists of an

incrementalized model-based PRM [14], that oper-
ates in the currently known environment; and a view
planner that decides a reachable configuration within
the currently known environment from which to take
the next view, chosen according to a criteron. The
two sub-planners operate in an interleaved manner.

We compare the results of four different view plan-
ning criteria for efficiency of exploration of the phys-
ical and configuration space. The first strategy, de-
noted by RV (random views), is to randomly choose
a viewpoint as the next scan. The second, denoted
by MPV (maximum unknown physical volume) is to
choose the next viewpoint so as to maximize the un-
known physical volume inside the scan [6]. The third
is to use point FOV based MER criterion for view-
planning [1, 2], and place the centre of the actual
FOV (the cone) at xmax, the single point that re-
sults in maximum entropy reduction. The fourth is
to use the generic non-zero volume FOV based MER
criterion derived in this paper. In all these cases, the
robot started off as in Figure 1.

As shown in the Figures 4, 5, 6, and 7, the first
two strategies expand the known C-space much less
than the last two MER criterion based strategy. Us-
ing RV gives us about 8% expansion of known C-
space in 5 scans, and the robot reached its goal in 36
scans. MPV results in C-space expansion by about
54% in 5 scans. The point FOV based MER criterion
gives much better results, resulting in about 73% ex-
pansion in 5 scans. The general FOV based MER
criterion is the best, better than point FOV based
MER. It made the C-space expand by about 82 % in
5 scans. For reader’s information, although not rele-
vant here, black dots in these figures are the nodes of
the probabilistic roadmap used for planning paths.

Figure 8 plots C-space vs. number of iterations for
the above four view-planning criteria. We can eas-
ily see that the generic range sensor based MER is
the most efficient one, which expanded C-space to
about 90% in 7 scans; point FOV based MER needed
11 scans; MPV needed 19 scans; and RV needed 33
scans.

Figure 4: Known Physical and C-space after 5 scans:

RV criterion



Figure 5: Known Physical and C-space after 5 scans:

MPV criterion

Figure 6: Known Physical and C-space after 5 scans:

Point FOV based MER criterion

7 Conclusions
We presented closed form solutions for computing
the expected C-space entropy reduction for a gen-
eral non-zero volume FOV range sensor extending
our previous results that applied to a point FOV sen-
sor and take into account the occlusion constraints
inherent in range sensors. Planar simulations show
that our new results lead to more efficient exploration
of the robot configuration space. Our next step is to
implement these results for a real six-dof eye-in-hand
system, a PUMA 560 with a wrist mounted area scan
laser range finder.

The current formulation assumes a Poisson point
process for obstacle distribution. It treats obstacles
as points. Extending our formulation for a Boolean
stochastic model [13] where geometric shape of ob-
stacles is taken into account would be the next step.
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