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Abstract— The concept of C-space entropy as a measure
of knowledge of C-space for sensor-based path planning and
exploration for general robot-sensor systems was recently in-
troduced in [4]. The robot plans the next sensing action to
maximally reduce the expected C-space entropy, also called
the maximal expected entropy reduction, or MER criterion.
The expected C-space entropy computation, however, made an
idealized assumption. The sensor was assumed to measure exact
data, i.e., it was not subject to noise. In this paper we extend
this approach by using a real noisy sensor model. Sensing
actions can then be compared on the basis of their uncertainty
models. This offers the ability for using more than one principle
sensor (multisensory exploration), because sensor readings can
be weighted by evaluating the expected measurement quality.
Additionally, it makes robot motion planning viable for tasks
such as object surface inspection, which require the robot to
come very close to the obstacles to achieve high sensing accuracy.

I. INTRODUCTION

Recent work at the Robotics Lab, Simon Fraser University,
Canada has focussed on sensor-based motion planning for
robots with non-trivial geometry and kinematics. 1 The prob-
lem here is to plan the next best view (NBV, or simply view
planning), in order to efficiently explore the robot’s initially
unknown environment. In order for the robot to be able to
manoeuvre itself, the sensing action must be viewed from
a configuration space (C-space) point of view, i.e., it must
efficiently explore (make known) the robot’s C-space. The
notion of C-space entropy was developed as a measure of
the ignorance of C-space. Then the NBV is chosen so as to
maximally reduce the expected C-space entropy. This is called
maximal expected entropy reduction, or MER, criterion [4].
Algorithms based on MER criterion were developed [4], [8]
and tested for both 2-D simulations and real experiments with
the SFU eye-in-hand system, a PUMA 560 with wrist mounted
range sensor. The results [10] showed great improvement over
previous physical space based view planning algorithms.

0This work was done while the first author was doing visiting PhD research
at School of Engineering Science, Simon Fraser University, Canada.

1For sensor-based motion planning problems, the requirement — that the
physical region has to be sensed free before the robot can actually occupy it
— raises some fundamental novel issues that do not arise in the model-based
case. See [7] for details.

However, in the above work, the sensor model used was
assumed to measure exact data while real sensors are subject
to noise. Therefore, more caution must be taken using results
from this ideal sensing process, e.g. a safety margin to
obstacles must be added.
At the Institute of Robotics and Mechatronics, Germany, a
hand-guided multi-sensory device has been developed [1].
It consists of four different types of sensors: a long range
but less accurate laser-stripe range sensor (lss), a short range
but highly accurate laser-range scanner (lrs), a passive stereo
vision sensor, and a texture sensor. The multi-sensory device
is shown by itself in Fig. 1; and mounted on a a passive 7-dof
robotic manipulator (a passive Eye-in-Hand system), in Fig. 2.
Experiences gained in the development of this passive Eye-in-
Hand System led to the idea of automating the execution of
inspection tasks, such as complete surface acquisition in 3-D
environments, via an active Eye-in-hand system with the same
multisensory device, but the passive 7-dof arm replaced by a 7-
dof robot manipulator. For such capabilities, on the one hand,
efficient algorithms are needed for the robot sensor system to
explore its manoeuvrable space, the C-space, especially that
corresponding to sensors’ positions around the object to be
inspected; on the other hand, the robot is required to safely
go very close to object for its “eye” to achieve high sensing
accuracy, a must for surface inspection tasks.

Fig. 1. Sensor principles integrated
in the DLR hand-guided device

Fig. 2. Experimental setup: Hand-
guided device mounted on a 7-Dof
passive manipulator

These requirements of the automated inspection task mo-



tivate the idea of modelling the sensor noise in the planning
stage to achieve much more accurate and reliable planning
results. This will enable the robot to safely go much closer to
the obstacles. Additionally, if we are using multiple sensors
for the exploration task (multisensory exploration), a noisy
statistical sensor model enables not only merging multiple
readings (sensor fusion) but also decisions such as where to
scan and which sensor to choose for view planning purpose,
thus providing one integrated framework.
In this paper, we incorporate noisy sensor models in the C-
space entropy computations for view planning. This serves as
a first step for integrating C-space based view planning with
surface inspection tasks. The computations of the noisy sensor
probability distributions are inspired by the theory of Occu-
pancy Grids (OC-Grids). This approach was developed for
sonar sensors (which have a high angular sensing uncertainty)
for creating maps of the environment of mobile robots [2]. The
resulting probability distributions are then incorporated in the
C-space entropy computations for view planning.
The paper is organized as follows. We first present a short
background on C-space entropy and MER criterion, and ex-
pected entropy reduction computation using ideal noiseless
sensor models. Then the noisy sensor model is presented,
followed by modified expected entropy reduction computation.
While emphasizing that the results are applicable to many
degree of freedom (dof) robotic exploration tasks, for pre-
sentation and visualization purpose, we present test results of
2-D simulations for NBV problems. We use 2-D simulations
mainly for ease of visualization and preliminary verification
before actual implementation on a real robot-sensor system,
currently under progress. Finally, the work is set in the context
of a robotic inspection task.

II. BACKGROUND: C-SPACE ENTROPY

For sensor based motion planning, we may view the obstacle
distribution in physical space as being derived from a spatial
stochastic process (for example, a Poisson Point Process).
This obstacle distribution in the physical space induces a
probability distribution of possible C-space instances (each
instance corresponds to one set of the statuses of all the
unknown robot configurations), thereby the obstacle distri-
bution in C-space would also be governed by a stochastic
process. A measure of the knowledge (strictly speaking, lack
of knowledge or ignorance), of this process is provided by
Shannon’s entropy, and is called the C-space entropy. The
NBV (or next best sensing action) is then chosen to gain
maximal expected knowledge of C-space, i.e., to maximally
reduce C-space entropy, also called MER criterion.
Here we briefly recapitulate the MER criterion after some
notations. The robot is denoted by A, the sensor by S. The
physical space is stated P , whereas the unknown part of the
physical space is denoted by Pu. A robot configuration, or
a point in the robot’s configuration space C, is denoted by
q. The kinematics and geometry of the robot are captured in
function A(q), which maps a point q in C-space to the region
in P occupied by the robot at q. The C-space entropy, H(C),

is given by:

H(C) = −
∑

Q1=0,1

...
∑

Qn=0,1

Pr[Q1, ..., Qn] log Pr[Q1, ..., Qn] (1)

Qi denotes the random variable corresponding to a configu-
ration qi being free (=0) or in collision (=1), while n is the
number of robot configurations in C-space, discretized with
an appropriate resolution. Pr[] denotes the probability of the
corresponding outcome. One can now compute the expected
information gain (or entropy reduction) �H(C) after sensing
a region V(s) ∈ P (obstacle/free). Here, we use s to denote
a sensor’s configuration that completely determines a sensing
action2; and V(s) is the region to sense at s. The expected
information gain (IG) is formulated as

IGC(s) = −E{�
s

H(C)} .

where E denotes the expectation operation. In [8], explicit
closed form expressions were derived for IGC(s) for an ideal
beam sensor, assuming a Poisson point process model [11]
for obstacles in the physical space3 and ignoring mutual
information terms (for simplicity of computations). A beam
sensor is characterized by a sensing ray of length L starting
from the sensor origin. it gives the distance of the closest
obstacle point (called hit point) along the beam. Fig. 3 shows

Fig. 3. The ideal beam sensor model without sensory noise.

the beam sensor model. Note that it has a zero volume field
of view (FoV), and hence we compute the information gain
density (IGD) [4], [6], [8]. The final expression of ĨGD, the
approximation of IGD that omits mutual information, for the
ideal beam sensor is given by

ĨGDC =
∑

q∈χu(s)

igdq(s) =
−λ

L
·

∑
q∈Xu(s)

len(A(q)∩Vu(s))·log(1−p(q))

(2)

where igdq(s) describes the information gain density due
to a configuration q; V(s) denotes the sensing beam; and
Vu(s) is the unknown part of V(s) that is in front of the
first known obstacle along the sensing direction. χu(s), the
unknown “C-zone” of the sensing beam s, is defined as the
set of configurations whose collision status is unknown and at

2s would be, in general, different than q
3The Poisson Point model is characterized by uniformly distributed points

(obstacles) in the physical space. Under this model, the probability of an
arbitrary set B ∈ P being free of obstacles can be described by p(B) =
Pr[B ⊆ Pfree] = e−λ·vol(B), where λ is a parameter representing the
spatial density of obstacles.



which the robot has intersection with Vu(s). p(q) denotes the
probability that configuration q is collision free, and is given
by

p(q) = e−λ·vol(Au(q)), (3)

where Au(q) is the unknown part of A(q).

III. C-SPACE ENTROPY COMPUTATION USING SENSOR

UNCERTAINTY

A. Sensor Uncertainty Model

We now present the sensor uncertainty model to be used in
the context of C-space exploration. This model was developed
for the range sensors in the hand-guided multisensory data
acquisition device (mentioned in the introduction) at DLR [1].
The laser-range scanner(lrs) has a very limited sensing range
but high accuracy, while laser-stripe sensor(lss) has longer
range but lower accuracy. Without loss of generality, we will
limit our approach to these two different sensor uncertainty
models. A general sensor uncertainty model (omitting specular
reflections, because we deal with sensors based on triangula-
tion not on time-of-flight principle) characterizing both models
can be denoted as follows. We take the system view of this
sensor uncertainty model. That is, the input of this model
is processed by the model and the output is corrupted by
noises. Both input and output are related by the following
conditional probability density function (pdf). The conditional
pdf of a noisy output saying that the obstacle is at position
r = x,4 given the input saying that the obstacle is at position
xobs, (xobs ∈ [rmin, rmax] where rmax denotes the maximum
sensing range and rmin denotes the minimum range.), denoted
by r = xobs, is given by a Gaussian distribution whose mean
is xobs,

p(r = x|xobs) =
1√

2πσr(xobs)
e
− 1

2 (
(x−xobs)2

σ2
r(xobs)

)

=N(xobs, σr(xobs))

(4)

where the variable σr characterizes the radial variance of the
sensor and N(xobs, σr(xobs)) denotes a Gaussian distribution
with mean xobs and variance σr(xobs). (For now, because
of complexity, no angular variance is taken into account for
the laser-range scanner model, even though the sensor has an
angular uncertainty of 0.9◦.) Similarly, we have the conditional
pdf of a noisy output saying that the obstacle is at position
r = x, given that the input saying the beam is free of obstacles,
denoted by ¬xobs, as follows,

p(r = x|¬xobs) =
1√

2πσr(rmax)
e
− 1

2 (
(x−rmax)2

σ2
r(rmax)

)

=N(rmax, σr(rmax))

(5)

Both lrs and lss sensors are based on the triangulation princi-
ple, therefore, the uncertainty of the measurements (variance
σ in Eq. 4) is dependent on the obstacle’s real distance xobs. A
simple yet powerful model [1] to characterize this dependence
is given by,

σr(xobs) = k · (xobs)
i , (6)

4All the distances are computed with respect to the sensor’s origin.

As implied by this equation, the sensor will give more accurate
result (lower variance) when the obstacle is nearer. The
statistical analysis of the laser-range scanner [1] results in the
following numerical parameters for k and i:

klrs = 5.52 · 10−9/mm3 and ilrs = 4.01 ≈ 4

The laser-range scanner uncertain model is geometrically
illustrated in Fig. 4. It is derived in the local sensor coordinate
system CoSsensor. The variable ω denotes the angular velocity
of the laser-range scanner (See [1] for details), while αon and
αoff denote the angles at which the laser is turned on and
turned off respectively, limiting the FoV.

Fig. 4. Probability distribution given by a laser-range sensor uncertainty
model.

Using the same techniques, we gain a similar model as
in Eq. 4 for laser-stripe sensor, however it has a different
accuracy (variance over sensing distance) as a function of the
radial measurement. Admittedly, a more appropriate sensor
uncertainty model will be more complex. 5

B. C-space Entropy Computation Based on Beam Sensor
Model

Now we outline the derivation of the C-space entropy
computation applying the sensor uncertainty model described
above to a beam sensor. Note that there is key difference
here from the map building literature in mobile robots (For
further reading on this topic, we refer the reader to [3]).
There, after new sensory data is acquired, one could use Bayes
Rule or Dempster-Shafer theory for integrating these new mea-
surements, based on sensor uncertainty models, into existing
maps. These sensor uncertainty models deliver an estimation
for the probability of the state (obstacle/free) of a cell in the
environment, after obtaining an actual sensor reading. In view
planning, no actual sensor reading is made yet; one is trying
to plan where to view next, which entails determining the
expected outcome of a “potential” sensor reading based on
certain probabilistic assumptions about the environment (e.g.,
Poisson Point process model for obstacle distribution), a kind
of “inverse computation” to that of building a world map.
To clarify this approach, we first deal with the model for an
ideal beam sensor without noise, which can tell the obstacle’s

5The laser stripe sensor consists of a camera system, thus even though we
make use of rectified camera images, the accuracy is dependent not only on
the distance, but also on the angle relative to the center of the camera. Recent
work at DLR deals with the derivation of a more accurate model for the
laser-stripe sensor.



real position within the sensing beam. (Again, we take the
system point of view.) There are two cases. First, suppose we
have an obstacle at position xobs (the input). The output of this
ideal sensor is a sensing result that the region in front of xobs

(seen from the sensor origin) is free, the position at xobs is an
obstacle, and the area behind xobs remains unknown. Consider
the world model of the beam as a continuous version of OC-
Grids, i.e., each position x on the beam can either be free or
obstacle. After sensing, the ideal sensor outputs a probability
function over this world model, i.e., the probability of each
position x being obstacle, under the condition that the obstacle
is at xobs, is given by, (We use δ in the following equation to
denote an ideal sensor model.)

Pr δ
world(r = x|xobs)(x) = δ(x − xobs) + 0.5u(x − xobs) (7)

In the above equation (x) denotes the probability is a function
of position of x and r = x denotes this is the world model at
position x. δ(x−xobs) denotes an impulse function at position
xobs and u(x − xobs) denotes a step function at xobs.
Otherwise, if there is no obstacle in the sensor range, the
sensory output tells that the beam is free. The probability
function over the world model under the condition that the
beam is free of obstacles is given by,

Pr δ
world(r = x|¬xobs)(x) = 0.5u(x − rmax) (8)

Again, the sensing range is rmin < x < rmax.
The noisy sensory data can be thought of as a blurring process,
where an ideal sensing is processed by a noisy system, given
in Sec. III-A. By basic signal and system theory [13], the result
is a convolution of the ideal sensor result with the Gaussian
distribution given in Eq. 4, whose mean is the position of the
actual obstacle. That is, given the condition that an obstacle is
at position xobs, the probability of the world model is given by,
(In the following equation, we use G to denote it is a sensor
with Gaussian noise.)

Pr G
world(r = x|xobs)(x)

=Pr δ
world(r = x|xobs)(x) ∗ N(0, σr(xobs))

=a(u(x − xobs) + δ(x − xobs)) ∗ N(0, σr(xobs))

In the above equation, a denotes the a priori probability for an
area being unknown; we assume a = 0.5 [2], using so called
non-informative priors.
If the whole beam is free, the conditional probability of the
world model is given by,

Pr G
world(r = x|¬xobs)(x)

= Pr δ
world(r = x|¬xobs) ∗ N(0, σr(rmax))

=a · u(x − rmax) ∗ N(0, σr(rmax))

Using the error-function erf(), which describes the integral
of a normal distribution, we have,

Pr G
world(r = x|xobs)(x) = a[

1√
2πσr(xobs)

e
− 1

2
(x−xobs)2

σ2
r(xobs)

+
1

2
(1 + erf(

√
2 · (x − xobs)

2 · σr(xobs)
))]

(9)

and

Pr G
world(r = x|¬xobs)(x) =

a

2
(1 + erf(

√
2 · (x − xobs)

2 · σr(xobs)
)) (10)

Fig. 5. Probability distribution assuming uncertain sensing

As stated at the beginning of this section, we still need a prob-
ability distribution assumption of the obstacles in the robotic
environment and again we use Poisson point process. For view
planning, we are interested in the “inverse computation”, the
conditional probability of having an obstacle at position xobs,
given the probability function of the world model given by
Eq. 9. By Bayes rule, we have,

Pr(xobs|world) =

∫ rmax

rmin

Pr(xobs) Pr G
world(r = x|xobs)(x)dx (11)

In the above equation, we use Pr(xobs) to denote the obstacle
probability given by Poisson point process. Similarly, we have
the conditional probability that the beam is free, given the
probability of the world model in Eq. 10 as follows,

Pr(¬xobs|world) =

∫ rmax

rmin

Pr(¬xobs) Pr G
world(r = x|¬xobs)(x)dx

(12)

Now we can compute the information gain using formulae
developed above. The information gain computation for the
blurred beam sensor can be divided into three events. First,
there is a hitpoint inside Au(q) ∩ V(s), the unknown part of
the robot at configuration q inside the unknown part of FoV
with sensing action s. Secondly, we have a hitpoint outside
Au(q)∩V(s) and finally we do not have a hitpoint within the
measurement range. The following equations formulate this
division of computing expected values of entropy reduction at
different cases and corresponding information gain densities.
(Details of this method for ideal noiseless sensor can be found
in [8])

EG{�H(Q)}
s

= E {�H(Q)}
xobs∈Au(q)

+ E {�H(Q)}
xobs /∈Au(q)

+ E{�H(Q)}
∃no obs

⇔ (igdq) = (igdq)1 + (igdq)2 + (igdq)3

(13)

We present final expressions for each of the terms in Eq. 13
using Eq. 11 and Eq. 12. The derivation is omitted for lack of
space.
The first event corresponds to there is a hitpoint (the real
position of the obstacle) inside Au(q) ∩ V(s). So we know
for sure q is in collision after sensing. The entropy reduction
for this q will be its entropy H(Q), given by

H(Q) = −p(q) log(p(q)) − (1 − p(q)) log(1 − p(q)) (14)



The information gain density is given by:

(igdq)1 =
λH(Q)

Mobs

∫
x∈A(q)∩Vu(s)

∫ rmax

rmin

Pr G
world(r = x|xobs)(x)dxobsdx

(15)

and for normalization use, we have,

Mobs =

∫ rmax+2·σmax

0

∫ rmax

rmin

Pr G
world(r = x|xobs)(x)dxobsdx

(16)

The second event is when the hitpoint is outside Au(q)∩V(s),
but inside Vu(s). The entropy reduction is induced by the
addition free region sensed (the part of the Vu(s) in front of
hitpoint). The result is given by:

(igdq)2 = 0 (17)

Note that in this event, even if the entropy reduction density
(entropy reduction divided by the beam volume and compute
the limit when this volume approaches to zero) is not zero.
Poisson point assumption tells us the expectation (even after
being blurred by the sensory noise) is zero.

The last event is when the whole sensing beam is sensed
free. The result is given by:

(igdq)3 =
1

Mfree

dH(Q)

dV
·∫

x∈A(q)∩Vu(s)

∫ xmax

xmin

Pr G
world(r = x|¬xobs)(x)dxobsdx

(18)

and for normalization use, we have

Mfree =

∫ rmax+2·σmax

0

∫ xmax

xmin

Pr G
world(r = x|¬xobs)(x)dxobsdx .

(19)

The term dH(Q)
dV , using chain rule, is given by,

dH

dV
=

dH

dp

dp

dV
= (−log(p(q)) + log(1 − p(q)))︸ ︷︷ ︸

dH
dp

· (−λp(q))︸ ︷︷ ︸
dp
dV

(20)

By using all the above equations in the IGD computation in
Eq. 2, we can get the result of the information gain for each
sensing action s.
By comparing with the result given by ideal sensor model,
we can see the additional integral term (the inner integration)
over the range [rmin, rmax] in Eq. 15 and Eq. 18 induced by
noise (The outer integration is the expectation computation of
Poisson point process). This term depends on the accuracy of
sensing, i.e., variance σr. As implied by Eq. 6, this accuracy
is better for closer sensing range. This would imply that the
value of information gain density will be smaller if sensing
accuracy is lower, i.e., σr is higher. Therefore, the information
gain density will be low for sensing range farther away as
shown in Fig. 6. So in general, the view planning result will
be a tradeoff between sensing accuracy and information gain
density. As for view planning, the sensing action s will be
chosen according to smax = arg maxs IGD(s). The pseudo
code for the resulting algorithm is listed as follows,

FOR(all sensing action s)\% according to a certain resolution

{
IGD(s)=0 //Initialization
FOR(all unknown Configurations q) {

Compute unknown part of the robot at q, Au(q)
Compute unknown part of FoV, Vu(s)
IF(Au(q) intersects Vu(s)){

Compute H(Q) and dH(Q)/dV
Numerically compute (igdq)1, (igdq)2 and (igdq)3
Add information gain for q to IGD(s) i.e.

igdq = (igdq)1 + (igdq)3
IGD(s) += igdq

}
}

} Choose s_max=argmax IGD(s) as the view planning result

In this algorithm, the basic computations are simple geo-
metric ones: calculation of Vu(s) for each s, calculation of
Au(q) for each unknown configuration q, and the intersection
between them. Having computed these, the probability of con-
figuration q being free, and the corresponding entropy, H(q),
are easily calculated from Eq. 3 and Eq. 14. Pr G

world(r =
x|xobs)(x) and Pr G

world(r = x|¬xobs)(x) in equations,
Eq. 9 and Eq. 10, are computed numerically (because of
lack of closed form expression) using a MacLaurin series
expansion of the error function up to 6th order [14]. In the
implementation, these are stored in look-up tables, to allow
for fast computations. Having computed these basic entities,
(igdq)1 and (igdq)3 in Eq. 15 and Eq. 18, are computed
using numerical integration. We discretize both the inner and
outer integrations with a step size n = 5 · σmin, where
σmin = k · (rmin)i is the minimum variance.

IV. EXPERIMENTS

We now present some preliminary 2-D simulation results
with a planar two-link robot equipped with a simulated laser
range scanner (lrs) and laser strip sensor (lss) and show how
the two different sensors perform for C-space exploration.

Fig. 7 shows a typical simulation environment. The task of
the robot is to start from the initial configuration (vertically
down), and to explore the region around it to get maximum
knowledge of the C-space. The white region surrounding the
initial robot configuration is assumed free, the light grey region
is unknown, and dark gray regions are obstacles unknown to
the robot. The range sensor FOV is the triangle shown in the
figure. Two types of sensors, one with shorter range but high
accuracy and one with longer range but low accuracy, are sim-
ulated for lrs and lss sensors respectively. The specifications
of both sensor are in Table I. Obstacles are detectable in the
range [rmin, rmax]. The simulation environment as well as its
data structures are similar to those described in detail in [12].

We use the tuple (α, β, θ) as the sensor’s configuration s,
where α denotes the first joint angle of the robot, β denotes
the second joint angle, and θ denotes the angle between the
medial axis of sensor FoV and the robot’s second link. The
view planning algorithm returns smax that gives the maximum
value of IGD(s). The medial axis of the sensor FoV is placed
along this smax for the next scan. Fig. 8 shows snapshots of the
physical space and C-space after 18 scans. Fig. 9 displays the
exploration rate comparison between these two sensor models.
It is interesting to see that the exploration rates are not too
bad comparing with that of ideal, noiseless sensor model as



V1(s)

unknown
P-space

V2(s)

Robot base

C1
C2

free
P-space

free
P-space

Fig. 6. Configurations C1 and
C2 will produce the same IDG
under ideal sensing. C2 will
be chosen since it leads more
sensing accuracy.

Fig. 7. An eye-in-hand system a two-
link robot with a wrist mounted range
sensor (with triangle FOV) moving in an
unknown environment.

TABLE I

SENSOR PROPERTIES

Sensor: rmin rmax α σ(rmin) σ(rmax)
Laser-range scanner 50 mm 300 mm 55 0.02 mm 4.73 mm
Laser-stripe sensor 80 mm 400 mm 30 0.05 mm 15.00 mm

in [8]. Intuitively, this is because the noise level in our current
simulations is small compared with resolution needed for gross
motion planning. For realistic inspection tasks, this would not
be the case. Our current efforts are to develop such test cases
and test our view planning algorithm on them.

(a) Laser-stripe sensor (b) Laser-range scanner
Fig. 8. Physical space and C-space after 18 iterations, P-space is idealized

Fig. 9. Comparison of Exploration results: known C-space percentage vs.
number of iterations

V. FRAMEWORK FOR AUTONOMOUS INSPECTION

Our ultimate goal is an autonomous robotic system that
is capable of multisensory surface inspection tasks. We will
implement the C-space exploration algorithm described in the
preceding sections in order to gain high manoeuvrability in the
context of an object inspection task. The general framework
of such a system is illustrated in Fig. 11 and a putative
representation or the data structure of the physical space in
the context of both C-space exploration and object inspection
is shown in Fig. 10. In this framework, a region of interest
(RoI), e.g., a sphere region with center cRoI and radius rRoI is
first identified. This region of interest could either be provided
by e.g. passive stereo vision based on edge detection, or, by
a priori information about the physical workspace. Assuming

that cRoI and rRoI thus roughly known, C-space exploration
will then be carried out.

Fig. 10. Future implementation: world
model for the C-space exploration on
the left, the closeup for the inspection
task on the right

Statistical sensor model
Poisson Point model

Defines a region of interest (RoI)
Surface model building process
NBV computation based on occlusion

Object inspection

Physical space model
C-space

exploration
goal

C-space exploration

Fig. 11. Framework for the
object inspection and C-space
exploration task

VI. CONCLUSION AND FUTURE WORK

In this paper, we used a sensor noise model to compute C-
space entropy in the context of C-space exploration. This work
was motivated by a need for completely automated inspection
tasks with multiple and noisy real range sensors. 2-D sim-
ulation shows promising results. We would like to integrate
these preliminary results into an integrated framework for
autonomous inspection and view planning. This will include
a many dof simulation and experiments on a real robot.
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