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Abstract
The concept of C-space entropy was recently introduced
in [1, 2, 3], as a measure of knowledge of C-space for
sensor-based path planning and exploration for general
robot-sensor systems. The robot plans the next sensing
action to maximally reduce the expected C-space entropy,
also called the maximal expected entropy reduction, or
MER criterion. The expected C-space entropy computa-
tion, however, made two idealized assumptions. The first
was that the sensor field of view (FOV) is a point; and
the second was that no visibility (or occlusion) constraints
are taken into account, i.e., as if the obstacles are trans-
parent. We extend the expected C-space entropy formu-
lation where the sensor FOV is a beam and furthermore,
it is subject to visibility constraints, as is the case with
real range sensors. Planar simulations show that this new
formulation results in more efficient exploration.

1 Introduction
While most research in sensor-based path planning
and exploration has concerned itself with mobile
robots, our recent work has concentrated on general
robot-sensor systems, where the sensor is mounted
on a robot with non-trivial geometry and kinemat-
ics [1, 2, 3, 4]. See also [5, 6, 7, 8, 9]. This class of
robots is broad and includes robots ranging from a
simple polygonal robot to articulated arms, mobile-
manipulator systems, and humanoid robots [10]. Fig-
ure 1 shows a simple example of such a robot-sensor
system — an eye-in-hand system — an articulated
arm with a wrist mounted range sensor. The robot
must simultaneously plan paths and sense its envi-
ronment for obstacles. A key problem in such sensor-
based planning is therefore view-planning, i.e., where
should the robot sense next? Efficient sensing strate-
gies can drastically reduce the time used for a robot
to achieve a desired task. In the general robot-sensor
case, unlike for a simple mobile robot (modelled as
a point), where the robot can move and what it
should sense, has a much more complex relationship.
“Where to move” is best posed and answered in con-
figuration space, the natural space for path plan-
ning, whereas sensor senses in the physical space.
In [4] we proposed an incremental framework, which
consists of a model-based planner that plans paths
within the currently known environment1 and a view
planner that plans the next sensing action (view) to
explore. The two planners are interleaved. Subse-
quently, in [1, 2], we showed that for general robot-
sensor systems, the view planning problem is appro-
priately posed in the configuration space of the robot

1This ensures that at each iteration the robot will always
move within the currently known environment, and its motions
are guaranteed to be collision-free.

— the next view should be planned to give maximum
“knowledge” or “information” of the C-space of the
robot. Treating the unknown environment stochas-
tically, we introduced the notion of C-space entropy.
The next best view is then the one that maximizes
the expected entropy reduction (MER criterion) or,
equivalently expected information gain. We derived

Figure 1: An eye-in-hand system — a two-link robot
with a wrist mounted range sensor (with triangle FOV)
moving in an unknown environment. A key question (the
view planning problem) is: where should the robot sense
next?

closed form expressions for expected C-space entropy
reduction, or information gain under a Poisson model
of the environment. However, two idealized assump-
tions were made in that paper: (i) the sensor has a
point field of view (FOV), i.e., it senses a single point
and (ii) no visibility constraints were taken into ac-
count, i.e., as if the sensor would “see” (get range
measurement) through the obstacles. The next best
view is planned using this formulation, i.e., the al-
gorithm computes the point (say, xmax) which, if
sensed, would yield maximum expected information
gain and places the sensor so that the center of the
actual FOV (a cone) coincides with xmax.
In this paper, we relax the above two assumptions
and present the C-space entropy computation for a
beam sensor while respecting visibility constraints,
thereby modelling a real range sensor. This compu-
tation is valid for a Poisson model of the environ-
ment [11], admittedly a simplification, but the result-
ing closed form expressions give us insights and are
useful at least as approximations. We present simu-
lations that show clear improvement in the efficiency
of exploration with the new formulation. Our initial



simulations are planar for ease of visualization. We
emphasize that our formulations and results are valid
for 3D environments and are currently being imple-
mented on a real six-dof eye-in-hand system consist-
ing of a PUMA 560 with a wrist mounted area-scan
laser range sensor that has been developed in our lab
and was reported in [4].
2 Notation
Let A denote the robot and q denote a point in its
configuration space, C. A(q) then denotes the region
in physical space, P, occupied by the robot. Let S
denote a sensor attached to the robot. We attach a
coordinate frame to the sensor’s origin. Let s denote
the vector of parameters that completely determine
the sensor frame, i.e., sensor’s configuration. For in-
stance, assuming the sensor is attached to the end-
effector of the robot, for planar case, s = (x, y, θ);
for 3D case, s = (x, y, z, α, β, γ). Let V(s) ∈ P de-
note the region sensed (sensor FOV) by the sensor
at configuration s. Subscripts free, obs, 2 and unk
(or sometimes u) denote the known free, known ob-
stacle and unknown regions, respectively in physical
and configuration space. So, for example, Pobs de-
notes the known obstacles in physical space, Aunk(q)
denotes the part of robot lying in unknown physical
space at configuration q, and Cfree denotes the known
free configuration space.
3 Background:C-space Entropy and IGDF
We assume that the obstacles’ distribution in the
physical environment is modelled with an underly-
ing stochastic process (e.g., the Poisson model used
later). The kinematics and geometry of the robot,
embodied by function A(q) map the probability dis-
tribution in physical space to a probability distribu-
tion over the C-space. Shannon’s Entropy then pro-
vides a measure of the robot’s ignorance of the sta-
tus of C-space, [2]. For a point FOV sensor model,
which only senses a point (or an infinitesimal ball) in
physical space, one can then compute the expected
entropy reduction (or, equivalently, expected infor-
mation gain) per unit volume if a point x ∈ P was
sensed (obstacle/free). The information gain density
(IGD) function captures this notion and is defined as

IGDC(x) = lim
vol(B(x))→0

−E{ �
B(x)

H(C)}

vol(B(x))
where H(C) denotes the current C-space entropy,
E{ �

B(x)

H(C)} = E{H(C|B(x))} − H(C) denotes the ex-

pected entropy change after B(x), a ball centered at
point x, is sensed.
In order to get efficiency in computing, we neglect the
mutual entropy terms, essentially treating each con-
figuration as an independent random variable, i.e.,
H̃(C) =

∑
qi∈C

H(Qi). In this equation, Qi denotes the bi-

nary random variable (r.v.) corresponding to config-
uration qi being free (=0) or in collision (=1); H(Qi)
denotes the entropy of r.v. Qi, i.e.,

H(Qi) = p(qi) log(p(qi)) + (1− p(qi)) log(1− p(qi)) (1)

where p(qi) = Pr[qi = free] is the marginal probabil-
ity that configuration qi is collision-free, also called

2Ideally, these subscripts should be known-free and known-
obs. But we omit known for brevity.

the void probability of qi. With this simplification
one can show that:
ĨGDC(x) = lim

vol(B(x))→0

−E{ �
B(x)

H̃(C)}

vol(B(x)) =
∑
q∈C

igdq(x)

where igdq(x) is given by:

igdq(x) = lim
vol(B(x))→0

−E{ �
B(x)

H(Q)}

vol(B(x)) (2)

When B(x) is sensed, the sensed information affects
the C-space entropy via each configuration q. igdq(x)
is then the marginal contribution to information gain
density via configuration q, if a point x ∈ P were
to be sensed. Furthermore, igdq(x) equals 0 when
A(q) does not contain x. So we need only com-
pute the above summation over those q’s such that
x ∈ Aunk(q), also called the C-zone of x [2, 3], and
denoted by χ(x).3 Therefore one can write:

ĨGDC(x) =
∑

q∈χ(x)

igdq(x)

For the more general case, when a region V(s) is being
sensed, the IGD function is now defined over the space
of all sensor configurations. For each sensor config-
uration, s, it assigns a real value that corresponds
to the expected information gain per unit volume of
sensed region with the sensor placed at configuration
s. Using the same simplifications as above (i.e., ig-
noring mutual entropy terms),

ĨGDC(s) = lim
vol(V(s))→0

E{�
s

H̃(C)}

vol(V(s)) =
∑
q∈C

igdq(s)

where one can write:

igdq(s) = lim
vol(V(s))→0

−E{�
s

H(Q)

vol(V(s)) (3)

As before, igdq(s) is the marginal contribution to
IGD via configuration q when the sensor senses at
configuration s. Similar to the point FOV sensor,
the contribution of those configurations such that
V(s) ∩A(q) 	= φ will contribute zero, hence the sum-
mation can be restricted to the C-zone of V(s), de-
noted by χ(s), and defined as the set of q’s such that
A(q) ∩ V(s) 	= φ. 4 Therefore, we can also write:

ĨGDC(s) =
∑

q∈χ(s)

igdq(s)

4 Beam Sensor Model
The beam sensor, as the name implies, senses along
a beam (ray) of finite length, L, emanating from the
sensor origin (See Figure 2). It returns the distance of
the first hit point (obstacle) along the beam. Points
along the beam that are in front of the hit point
(i.e., closer to the origin than the hit point) are in
free space. Points along the beam behind the hit
point (i.e., farther from origin than the hit point) are
deemed to be un-sensible (by occlusion constraints) in
this particular sensing action and their status (obsta-
cle/free/unknown) remains the same. Therefore, for
a particular sensing action, a point along the beam

3Intuitively, C-zone of x is the set of configurations such
that the robot when placed in such a configuration contains
point x. One could think of this as a generalization of inverse
kinematics which applies only to the end-effector rather than
the entire robot body.

4This extends the notion of C-zone to that of a set in phys-
ical space rather than a single point x.



Figure 2: The beam sensor model.
may acquire one of three possible states: 0 (free), 1
(obstacle) or u (unsensible).
For mathematical formulation, we will assume that
the sensor FOV, V(s), is a thin cylinder of infinites-
imal radius (or equivalently, infinitesimal cross sec-
tional area denoted by 
a) and length L. We dis-
cretize this cylinder into n “disks”, each of length 
l,
by planes orthogonal to its axis, as shown in Figure 3.
As 
a and 
l approach zero, the cylinder becomes
an ideal beam.
Let Vu(s) denote the portion of sensed region that
lies inside Punk and is in front of the first known ob-
stacle along the sensing direction, i.e., Vu(s) denotes
the largest possible sensing region the beam sensor
can sense at s. Vu(s) ≈ x1 ∪ x2 ∪ . . . ∪ xm where
xi, i = 1, . . . ,m are the disks lying inside Vu(s) (we
are concerned with only the unknown portion of sen-
sor FOV and label only those disks) in front of the
first known obstacle. Note that Vu(s) may be a mul-
tiply connected set. If a disk (say, xi) contains the hit
point, its status would become 1 (obstacle). All disks
xj , j < i, would become 0 (free), and all disks xk,
k > i would keep their status u (unknown) as shown
in Figure 3. So we will get a “0, 0, . . . , 0, 1, u, u, . . . , u”
sequence.

Figure 3: The beam sensor model with infinitesimal
width and discretized into “disks”. The hit point lies in
disk xi with i = 3. Disks x1 and x2 become free and disks
x4 onwards remain unknown.

4.1 Environment Model
We use a simple probabilistic model of physical space
— the Poisson point process, essentially characterized
by uniformly distributed points in space [11]. From
the motion planning point of view, these points are
obstacles in the physical space of the robot. Given the
density parameter of this model, λ, the void probabil-
ity of an arbitrary set B ∈ P — the probability that
there is no point (obstacle) in B — denoted by p(B),
is given by

p(B) = Pr[B ⊆ Pfree] = e−λ·vol(B) (4)

This implies that p(q), the void probability of config-
uration q is given by

p(q) = Pr[A(q) ⊆ Pfree] = e−λ·vol(Aunk(q)) (5)

The location of the hit point is a random variable.
The event that the ith disk contains the hit point,
denoted by xi = h, corresponds to first (i− 1) disks,
x1, x2, . . . , xi−1, being all in Pfree and the ith disk,
xi, containing an obstacle point, i.e., {xj = 0, j =
1, . . . , i − 1 ∧ xi = 1} where i ∈ {1, . . . ,m}. The
corresponding probability, denoted by p(xi = h) is
then given by using Eq. (4):

p(xi = h) = e−λ·(i−1)·	a·	l · (1− e−λ·	a·	l) (6)

with 1 ≤ i ≤ m, and 
a · 
l being the volume of
each disk.
4.2 Compute igdq(s)
From the definition of igdq(s) in Eq. (3), we have:

igdq(s) = lim
�a→0
�l→0

−E{	
s

H(Q)}

L·	a
and

E�
s

H(Q)={
m∑

i=1

p(xi=h)�
xi=h

H(Q)}+{p(x1. . .xm=0)�
x1...xm=0

H(Q)} (7)

The r.h.s. in the above expression consists of two
terms: the first one (the summation) corresponds to
any of the xi’s being the hit point; and the second
one corresponds to there being no hit point in the
sensed beam. As before, �

xi=h

H(Q) denotes the change

in entropy if xi was the hit point and it is defined as:
�

xi=h

H(Q) = H(Q | xi = h)− H(Q)
where

H(Q | xi = h) = p(q | xi = h) · log(p(q | xi = h))

+(1− p(q | xi = h)) · log(1− p(q | xi = h))

and p(q | xi = h) = Pr[q = free | xi = h]

Let Vu(s | xi = h) denote the status of sensed region
assuming xi = h. Now we will compute E{�

s

H(Q)}.
See Figure 4. Suppose for some q, A(q) intersects
cylindrical Vu(s) and the intersection with Vu(s)’s
axis is denoted by I. I is actually a set of inter-
vals I1, I2, . . . , It. Let Ī denote the complement of
I in the unknown part of the cylinder’s axis. Let
num(Ij) represents the number of disks inside Ij . So
num(I) ≈ � Ii

�l�. As 
l → 0, num(Ii) ·
l → len(Ii).

Figure 4: Intersection of sensed unknown volume Vu(s)
with the space A(q) occupied by robot, if it were at config-
uration q, is given by intervals Ij, 1 ≤ j ≤ t.

We can further divide the summation term in the
expression for E{�

s

H(Q)} in Eq. (7) into two compo-

nents. The first one is when the disk containing the
hit-point, xi, were to lie inside A(q), i.e., it were to
lie within one of the intervals Ij , 1 ≤ j ≤ t, in set I.
We denote this component by E{ �

xi∈A(q)

H} (or simply



E{
H1}), and corresponding igdq as (igdq)1. The
second one is when xi were not to lie within A(q),
i.e., it were to lie in Ī. We denote this component
by E{ �

xi /∈A(q)

H} (or simply E{
H2}), and the corre-

sponding igdq as (igdq)2. Let E{
H3} denote the
term (second term in r.h.s of Eq. (7)) if there were
no sensed hit point, i.e., all the disks were free, cor-
responding igdq being (igdq)3.
So we have:

igdq = (igdq)1 + (igdq)2 + (igdq)3
or, equivalently,

E{�H} = E{�H1}+ E{�H2}+ E{�H3}
= E{ �

xi∈A(q)

H}+ E{ �
xi /∈A(q)

H}

+ p(x1 = x2 = . . . xm = 0) · �
x1=x2=...xm=0

H

Computing the 1st Component (E{
H1}).
When xi (remember xi is the hit-point) lies inside
A(q), A(q) is in collision with obstacles. So p(q |
xi = h) = 0 and hence H(Q | xi = h) = 0, thereby
�

xi=h

H(Q) = −H(Q). Hence, E{�H1} = −
∑

xi∈A(q)

p(xi =

h) · H(Q). Therefore,

(igdq)1=lim�a→0
�l→0

−E{�H1(Q)}
L · �a

=lim
	l→0

H(Q)

L

∑
xi∈I

lim
	a→0

p(xi = h)

�a
(8)

Let us take a look at lim
	a→0

p(xi=h)
	a

, the probability

per unit volume that the hit point is xi as the sens-
ing cylinder approaches zero radius, i.e. the idealized
beam. Using Eq. (6), and with simple algebra, we
can show that

lim
	a→0

p(xi = h)

�a
= lim
	a→0

e−λ(i−1)	a	l(1− e−λ	a	l)

�a
= λ�l (9)

Substituting in Eq. (8),

(igdq)1=lim�a→0
�l→0

−E{�H1}
L · �a

= [num(I1) +. . .+ num(It)] · λ · �l

L
· H(Q)

As �l → 0, num(Ii) · �l → len(Ii). So we have,
(igdq)1=

len(I1)+. . .+len(It)

L
λH(Q)=

λ

L
len(A(q)∩Vu(s))H(Q) (10)

The expression makes intuitive sense. Since it is
the expected contribution from those cases where a
sensed hit point lies inside A(q), we know that each
such event would reduce the entropy to zero since
the status of Q would become known (in collision)
and hence the entropy reduction will be −H(Q),
the entropy before sensing. The multiplying factor
len(A(q)∩Vu(s))· λ

L simply represents the expectation
(per unit length) of such an event happening under
Poisson model.
Computing the 2nd Component (E{
H2}).
When xi lies outside A(q), A(q) is not in collision
with sensed obstacle (the hit point). (igdq)2 is then

(igdq)2= lim
�a→0
�l→0

−E{�H2}
L · �a

= lim
∆l→0

−1
L

∑
xi /∈A(q)

lim
	a→0

p(xi = h) lim
	a→0

�
xi=h

H

∆a

Let us look at lim
	a→0

	H
∆a

. H(Q) is a continuous func-

tion of p(q). Now from Eq. (5), p(q) = e−λ·vol(Aunk(q)).
vol(Aunk(q)) changes continuously with 
a since hit
point does not belong to A(q) and vol(Aunk(q)) will
increase by the additional free space sensed in V(s),

a continuous function of 
a. Hence p(q) is a continu-
ous function of 
a almost everywhere. Furthermore,
as 
a → 0, vol(V(s)) → 0, i.e., vol(Aunk(q)) changes
infinitesimally. Therefore, via the chain rule, we have

lim
∆a→0

�
xi=h

H

�a
= lim

∆a→0

�H

�p
lim

∆a→0

�p

�vol(Aunk(q))
lim

∆a→0

�vol(Aunk(q))

�a

Now the first term lim
∆a→0

	H
	p

is simply the derivative

of H(Q) w.r.t. p and differentiating Eq. (1), we have
	H
	p

= log 1−p(q)
p(q)

. The second term is simply derivative
of p w.r.t. vol(Aunk(q)), and from Eq. (4) we have

	p
	vol(Aunk(q))

= −λ · p. Since vol(Aunk(q)) decreases
after the sensing, the negative of the third term is less
than or equal to the length of the sensing cylinder,
i.e., -∆vol(Aunk(q))

∆a
≤ L. Substituting these, we will

have
lim

	a→0

�
xi=h

H

�a
≤ λ · p(q) · log 1− p(q)

p(q)
· L

Therefore,
(igdq)2 ≤ −λp(q) log

1− (q)

p(q)
lim

	l→0

∑
xi /∈A(q)

lim
	a→0

p(xi = h) (11)

The set {xi /∈ A(q)} is a subset of {xi ∈ V(s)}.
Therefore, for the summation in Eq. (11) we have,

lim
	l→0

∑
xi /∈A(q)

lim
	a→0

p(xi = h) ≤ lim
	l→0

∑
xi∈V(s)

lim
	a→0

p(xi = h)

Using Eq. (9) with only first order expansion, we can
easily show that

lim
	l→0

∑
xi∈V(s)

lim
	a→0

p(xi = h) ≤ lim
∆a→0

λ · L ·∆a = 0

Hence, (igdq)2 = 0 (12)

This implies that those cases where the hit point
is sensed but does not lie within a given A(q), the
marginal information gain density (contribution due
to configuration q) is zero. We can think of (igdq)2
as essentially a “derivative” of entropy w.r.t. vol-
ume for the case when the hit point would not lie
inside the robot if the robot were at configuration
q, weighted by the corresponding probability of such
an event happening. The derivative is finite and the
probability of the event happening (a hit point ly-
ing outside the robot but within the sensing beam) is
very low and approaches zero under Poisson model as
∆a approaches zero . The (igdq)2 being the product
of the two, is therefore zero.
Computing the 3rd Component (E{
H3}).
When there is no sensed hit point in the entire beam,
we have:

(igdq)3 = lim
�a→0
�l→0

−E{�H3(Q)}
L · �a

= lim
∆l→0

−1
L

lim
	a→0

p(x1 . . . xm = 0) · �
x1...xm=0

H

�a

= lim
∆l→0

−1
L

lim
	a→0

p(x1 . . . xm = 0) lim
	a→0

∆H

�a
(13)

Using Eq. (4) for the void probability, we have,
lim

	a→0
p(x1 = . . . = xm = 0) = lim

	a→0
e−λ·m·	a·	l = 1

Using the same techniques as in computing (igdq)2,

lim
∆a→0

�
xi=h

H

�a
= lim

∆a→0

�H

�p
lim

∆a→0

�p

�vol(Aunk(q))
lim

∆a→0

�vol(Aunk(q))

�a



The first two product terms are the same as in pre-
vious case. The change in volume, ∆vol(Aunk(q)) =
−(num(I1) + . . . + num(It)) ·∆l ·∆a. Therefore,

lim
	a→0

�
x1...xm=0

H

�a
=λp(q) log

1− p(q)

p(q)
(num(I1)+. . .+num(It)) · �l

Substituting these in Eq. (13), we get
(igdq)3 =− lim

	l→0

λ

L
(num(I1)+. . .+num(It))�l · p(q) log 1− p(q)

p(q)

= − λ

L
(len(I1) + . . . + len(It))p(q)

1− p(q)

p(q)
An alternative form is

(igdq)3 = − λ

L
· len(A(q) ∩ Vu(s)) · p(q) · dH(Q)

dp
(14)

As for (igdq)2, (igdq)3 is essentially the “derivative”
of entropy w.r.t. volume for the case when the sensor
does not sense any hit point, weighted by the expec-
tation of the corresponding event. The derivative is
again finite, however, the probability of this event
happening (no hit point) is very high and approaches
unity as ∆a approaches zero under Poisson model.
The (igdq)3 being the product of the two, is therefore
finite.
Now, we have computed all the three components of
E{∆H}. We can easily get igdq(s) from Eq. (10),
(12) and (14),

igdq =
λ

L
· len(A(q) ∩ Vu(s)) · (H(Q)− p · dH(Q)

dp
)

= − λ

L
· len(A(q) ∩ Vu(s)) · log(1− p)

And finally,
ĨGDc(s) = − λ

L
·

∑
q∈X (s)

len(A(q) ∩ Vu(s)) · log(1− p)

We can easily see that this result also applies to the
point sensor model in the limit, i.e., as L, the length
of the sensing beam, goes to zero. In this case, we
have

lim
L→0

A(q) ∩ Vu(s)

L
= 1

Therefore, ĨGDq(s) = λ · (H(Q)−p · dH(Q)
dp

), precisely the
result we obtained in [1, 2, 3]5.
5 Algorithm for View Planning
Now that we have computed an expression for the
IGD over sensor’s configuration space, we can use the
MER criterion to decide the next scan, which is es-
sentially to take the next scan from that sensor con-
figuration which maximizes the information gain, i.e.,
to choose the sensor configuration smax such that

smax = max
s

{−
∑

q∈X (s)

len(A(q) ∩ Vu(s)) · log(1− p)}

The algorithm then is as follows:
for every s /* according to a certain resolution */

determine Vu(s)

ĨGD(s) = 0 /* initialize */
for every q

if (A(q) overlaps with Vu(s))
compute p(q)
compute l(q) = len(Vu(s) ∩ A(q))
compute igdq(s) = − λ

L
· l(q) · log(1 − p)

ĨGD(s) = ĨGD(s) + igdq(s)

smax = max(ĨGD(s))

5Please note that there is an algebraic error in earlier papers
for the point FOV case. This is the corrected result.

Determining Vu(s) corresponds to determining the in-
tersection of the beam with Punk in front of known
obstacles, a simple geometric computation. Note that
iteration over q (C-space of the robot) may be pro-
hibitive for robots with many degree of freedoms. In
this case, the summation can be carried out over a
large enough set of random samples.

6 Simulation Results
In order to test the effectiveness of our formulae,
we conducted a series of experiments on the simu-
lated two-link eye-in-hand preliminary system shown
in Figure 1. The task for the robot is to move to
the given goal configuration from the given start con-
figuration. The overall planner used is SBIC-PRM
(sensor-based incremental construction of probabilis-
tic road map) reported in [3, 4]. Briefly, SBIC-PRM
consists of an incrementalized model-based PRM,
[12], that operates in the currently known environ-
ment; and a view planner that decides a reachable
configuration within the currently known environ-
ment from which to take the next view. The two
sub-planners operate in an interleaved manner.
We compare the results of four different view planning
criteria for efficiency of exploration of the physical
and configuration space. The first strategy, denoted
by RV (random views), is to randomly choose a view-
point as the next scan, and place the centre of the
FOV (the cone) at that point. The second strategy,
denoted by MPV (maximum unknown physical vol-
ume) is to choose the next viewpoint so as to max-
imize the unknown physical volume inside the scan
[5]. The third strategy is to use point FOV based
MER criterion for view-planning [1, 2], and place the
centre of the actual FOV (the cone) at xmax, the
viewpoint that results in maximum entropy reduc-
tion. The fourth is to use the beam FOV based MER
criterion derived in this paper, and place the central
axis of the actual FOV (the cone) at smax, the sensor
configuraion that results in maximum entropy reduc-
tion. In all these cases, the robot started off as in
Figure 1.
As shown in the Figures 5, 6, 7, and 8, the first two
strategies expand the known C-space much less than
the last two MER criterion based strategy. Using RV
gives us about 8% expansion of known C-space in
5 scans, and the robot reached its goal in 36 scans.
MPV results in C-space expansion by about 54% in 5
scans, and the robot reached goal in 20 scans6. The
point FOV based MER criterion gives us much better
results, resulting in about 73% expansion in 5 scans
and the robot reached the goal in 14 scans. The beam
FOV based MER criterion was the best, better than
point FOV based MER. It made the C-space expand
by about 76 % in 5 scans and the robot reached the
goal in 11 scans.
Figure 9 plots C-space v.s. number of iterations for
above four view-planning algorithms. We can easily
see that beam FOV based MER is the most efficient
one, which expanded C-space to about 90% in 8 scans;
point FOV based MER needed 11 scans; RV needed
33 scans; and MPV needed 19 scans respectively.

6See [3] for an explanation of unexpected high inefficiency
of this strategy.



7 Conclusions
We presented closed form solutions for computing the
expected C-space entropy reduction for a beam FOV
range sensor. These results are extensions of our pre-
vious results that applied to a point FOV sensor and
take into account the visibility constraints inherent
in range sensors. Planar simulations show that our
new results lead to more efficient exploration of the
robot configuration space. Our next step is to im-
plement these results for a real six-dof eye-in-hand
system, a PUMA 560 with a wrist mounted area scan
laser range finder. We will also extend these results
further to that of a finite volume sensor (like an area
scan range sensor), thus closely modelling a real range
sensor providing range images.
The current formulation assumes a Poisson point pro-
cess for obstacle distribution. It treats obstacles as
points. Extending our formulation for a Boolean
stochastic model [11] where geometric shape of obsta-
cles is taken into account would be the next logical,
but perhaps analytically challenging step.

Figure 5: C-space expansion after 5 scans: RV Strategy

Figure 6:C-space expansion after 5 scans: MPV Strat-
egy

Figure 7: C-space expansion after 5 scans: Point FOV
Based MER Criterion
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