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Abstract

We introduced the concept of C-space entropy recently in [9] as a measure of knowledge of C-

space for sensor-based exploration and path planning for general robot-sensor systems. The robot

plans the next sensing action to maximally reduce the expected C-space entropy, also called the

Maximal expected Entropy Reduction, or MER criterion. The resulting view planning algorithms

showed significant improvement of exploration rate over physical space based criteria. However,

this expected C-space entropy computation made two idealized assumptions. The first was that the

sensor field of view (FOV) is a point; and the second was that there are no occlusion (or visibility)

constraints, i.e., as if the sensor can sense through the obstacles. We extend the expected C-space

entropy formulation where these two assumptions are relaxed, and consider a range sensor with

non-zero volume FOV and occlusion constraints, thereby modeling a realistic range sensor. Planar

simulations and experimental results on the SFU Eye-in-Hand system show that the new formulation

results in further improvement in C-space exploration efficiency over the point FOV sensor based

MER formulation.

keywords: sensor-based robot path planning, robot mounted range sensor, view planning, configuration

space, configure space entropy

1 Introduction

In sensor-based path planning, a robot, equipped with one or more sensors, senses and explores its

environment as it plans its motions while avoiding collisions with the obstacles in its environment [1].

Most research in sensor-based path planning and exploration has concerned itself with mobile robots

[2, 3, 4, 5, 6, 7], which are often modeled as points in the physical space, hence considered to be trivial

geometry and kinematics. Our recent work has concentrated on general robot-sensor systems, where a
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range sensor is mounted on a robot with non-trivial geometry and kinematics [8, 9]. See also [10, 11, 12].

The range sensor (also called an “eye” type sensor) provides distances from a given vantage point (actual

implementation may be a laser range scanner, passive stereo vision, etc.). Fig. 1 shows two examples of

(i) 2-D simulation (ii) SFU Eye-in-Hand system

Figure 1: Two Eye-in-Hand systems: (i) 2D simulation: a planar 2-link robot with a triangle FOV

range sensor (ii) SFU Eye-in-Hand system: 6 dof PUMA 560 with a wrist mounted area scan laser range

finder.

Eye-in-Hand systems [8, 9]. (i) shows a simulated planar two link robot equipped with a triangle field of

view (FOV) range sensor on its end-effector. The white, light grey, and dark grey regions in the figure are

the free region known to the robot, free but still unknown region, and unknown obstacles respectively.

The robot starts from its initial configuration, the vertical line in the middle of the figure, and its task

is to explore its environment while avoiding collisions with the obstacles, known or unknown. (ii) shows

the SFU Eye-in-Hand system, a six degree of freedom (dof) PUMA 560 robot arm and a wrist mounted

area scan laser range finder. The robot is shown at its start configuration, with unknown obstacles

around it; its task is to explore the environment while avoiding collisions with obstacles. Sensor-based

planning and exploration for such general robot-sensor systems is of interest from several perspectives.

The first and foremost is that the problem is of intrinsic interest and leads to several novel fundamental

issues [13]. It is also of practical interest since it results in a high degree of manoeuvrability for the

sensor, necessary in constrained situations such as exploring under a table.

Unlike simple mobile robots, for robots with non-trivial geometry and kinematics, such as the Eye-

in-Hand systems, where the robot can move (path planning) and what it should sense (view planning),

has a much more complex relationship [8]: the robot must find additional physical space to manoeuvre

itself, taking into account its own “size” and “shape” and not simply any additional physical space.

What this implies is that the effect of the sensing action, which obviously senses physical space, must
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be (implicitly or explicitly) transformed to and viewed from the configuration space (C-space) of the

robot.

In [9], we showed that, for efficient C-space exploration, the next view should be planned to give

maximum information (whether a configuration is free or in collision with an obstacle) of the robot C-

space. Treating the unknown environment stochastically, we introduced the notion of C-space entropy

as a measure of the robot’s (lack of) knowledge of C-space. The next best view is the one that maximizes

the expected entropy reduction, called Maximal expected Entropy Reduction (MER) criterion. In [9],

under a Poisson point process model of (obstacle distribution in) the environment, we derived a closed-

form expression of MER criterion. We also showed that point FOV sensor based MER criterion is far

more efficient in C-space exploration than physical space based criteria, such as to randomly choose the

next view or to choose the next view with the maximum unknown physical space volume (MPV) in the

senor FOV [11].

However, the above result is based on two idealized assumptions: (i) the sensor has a point FOV,

i.e., it senses a single point and (ii) no visibility constraints were taken into account, i.e., as if the

sensor would “see” (get range measurement) through the obstacles. In this paper1, we relax the above

two assumptions and derive closed form expressions for the MER criterion computation for generic

range sensors with non-zero volume FOV while respecting occlusion constraints. These closed form

expressions are a key contribution of the paper. Simulations and experiments show clear improvements

of exploration efficiency with the new formulation over point FOV sensor based MER. This also implies

that the generic sensor FOV based MER outperforms the physical space criteria mentioned above. The

improvements come with a computation overhead for each iteration, the cumulative effect of which

mitigates due to the reduced number of iterations. See Section 5 for a detailed discussion. Since real

and commercially available sensors fall in the generic FOV sensor category, the results in this paper

make the MER criterion applicable to real systems.

A detailed presentation of other related works and comparisons with our general approach is given

in [9]. Here we simply mention Choset et al. [16] for sensor-based path planning for a planar rod robot;

Kruse et al. [11] and Renton et al. [12] for previous work on Eye-in-Hand systems; survey by Scott et

al. [17] on a variety of view planning problems (and correspondingly a variety of criteria) in computer

vision area; and Banos and Latombe [2] for work on NBV problem for a point robot in the presence

of obstacles and visibility constraints. In addition, information theoretic concepts such as Shannon’s

entropy are used in learning tasks [18] and in mobile robot exploration [19, 20, 21, 22]. As opposed to

the focus in this paper, these works do not incorporate any robot C-space information.
1As an intermediate result, and also applicable in its own right (certain range sensors sense along a beam), we derived

closed form expressions for MER for beam FOV sensors, sensors sensing along a beam of finite length, [14, 15].
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2 Background: C-space Entropy

2.1 Notation and Problem Statement

Let P denote the 2D or 3D physical space, R2 or R3. Let A denote the robot, and C denote its

configuration space (C-space). q ∈ C denotes a robot configuration, and A(q) ∈ P denotes the physical

region occupied by the robot at q. Subscripts free and obs denote the free regions and obstacles in

both physical and C-space. P = Pfree ∪Pobs , where Pfree denotes the free physical space (known and

unknown), and Pobs denotes the set of obstacles (known and unknown). Cfree and Cobs are similarly

defined. Subscripts u and known denote the unknown and known quantities (in physical and C-space)

and superscript i denotes the iteration number, i.e., the number of scans (or views) that the sensor has

already taken (i = 0 at the very start). For notational brevity, rather than using subscripts known-free

and known-obs, we simply use free and obs. So Pi
free,Pi

obs, and Pi
u denote the known free physical

space, known obstacles, and unknown physical space after iteration i. Hence Pi
known = Pi

free ∪ Pi
obs,

and P = Pi
known ∪ Pi

u. Furthermore, Ai
u(q) denotes the unknown part of the robot at iteration i, i.e.,

Ai
u(q) = A(q) ∩ Pi

u. Similarly Ai
known(q) = A(q) ∩ Pi

known.

Ci
free, Ci

obs, and Ci
u, respectively denote the known free C-space, known C-obstacles, and unknown

C-space, after iteration i. A configuration q is: free (∈ Ci
free), if Ai

u(q) = ∅ ∧ A(q)∩Pi
obs = ∅; obstacle

(∈ Ci
obs), if A(q) ∩ Pi

obs 6= ∅; and unknown (∈ Ci
u), if Ai

u(q) 6= ∅ ∧ A(q) ∩ Pi
obs = ∅.

Let B ⊂ Pi
u. The set of unknown robot configurations at which the robot overlaps B, is called the

unknown C-zone of B, denoted by χi
u(B), i.e., χi

u(B) = {q ∈ Ci
u : Ai

u(q) ∩ B 6= ∅}. The definition also

applies to the special case, when B is a point x, i.e., χi
u(x) = {q ∈ Ci

u : x ∈ Ai
u(q)} [9]. The key notion

of the unknown C-zone of B essentially captures the part of C-space that will be affected if B were to

be sensed by the sensor.

Let S denote a range sensor attached to the robot. Let s denote the sensor’s configuration, the

vector of parameters that completely determine the sensor’s coordinate frame we attach to its origin.

For the eye-in-hand systems, s = (x, y, θ) for planar case; s = (x, y, z, α, β, γ) for 3D case. V(s) ∈ P
denotes the sensor’s field of view (FOV) at configuration s. We discuss two different sensor FOV’s: (i)

an idealized point, i.e., V(s) is a point, and (ii) a generic non-zero volume FOV sensor, such as an area

scan range sensor, i.e., V(s) is an open set. Finally, we use “\” to denote the set difference operator.

2.2 C-space Entropy and MER Criterion

Following subsections are a brief recap of the results in [9].

Assume a stochastic model of obstacle distribution in the unknown physical space Pi
u, such as

the Poisson Point Process described later. As the function A(q) relates C-space to physical space,

this stochastic model induces a probability distribution over C-space. The entropy of the resulting

distribution, called the C-space entropy, H(C|Pi
known), measures the robot’s (lack of) knowledge of its

own C-space. The conditional Pi
known denotes “given the knowledge of the physical space after iteration
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i”, the prior before sensing.

Assume C-space is represented as a set of N configurations, q1, . . ., qN . This could arise either

by discretizing the C-space at a certain resolution, or by randomly sampling it (for high dimensional

C-spaces). Q, a binary random variable (r.v.) that takes a value of 0(free) or 1(obstacle), denotes the

collision status of configuration q. The marginal entropy of Q, H(Q), is given by [23],

H(Q) = Pr(Q) log Pr(Q)− (1− Pr(Q)) log(1− Pr(Q)) (1)

C-space entropy is then given by,

H(C|Pi
known) = −

∑

Q1=0,1

..
∑

Qn=0,1

(
Pr[Q1, . . . , Qn|Pi

known] · log Pr[Q1, . . . , Qn|Pi
known]

)
(2)

The next best view, si+1
max, is chosen to maximize the expected C-space entropy reduction (denoted by

ERC), where the expectation is computed over all possible sensing results for sensing action s. (Note

that the number of possible sensing results can be exponential.) This is called MER (Maximal expected

Entropy Reduction) criterion. Formally, the criterion is defined as,

si+1
max = arg max

s
ERc(s)

def
= arg max

s
−E{4

s
H(C|Pi

known)}
def
= arg max

s
(E{H(C|Pi

known)−H(C|Pi
known,V(s))}) (3)

∆
s

denotes the difference operation in a quantity (in this case, entropy) before and after sensing at s.

The conditional Pi
known,V(s) denotes one possible sensing result, given the knowledge of Pi

known; and

E denotes the expected value carried over all possible sensing results. For notational simplicity, we

will omit the conditional Pi
known with the implicit assumption that all probabilistic quantities, unless

otherwise mentioned, are conditional on Pi
known.

2.3 Stochastic Model of Physical Space: Poisson Point Process

We use a simple probabilistic model of obstacle distribution in the physical space — the Poisson point

process, which is essentially characterized by uniformly independently distributed points in space [24].

From a motion planning point of view, these points, denoted by pt, are obstacles. Given the density

parameter λ for Poisson point process, the probability of an unknown region Bu ⊂ Pi
u being free of

obstacles, denoted by p(Bu|Pi
known), called the void probability, is the same as the unconditional void

probability of Bu, p(Bu), and is given by, (Here “| |” denotes the volume of a bounded set.)

p(Bu|Pi
known) = p(Bu) = e−λ |Bu| (4)

The void probability of an unknown robot configuration q is,

p(q|Pi
known) =





e−λ |Ai
u(q)| q ∈ Ci

u

0 q ∈ Ci
obs

1 q ∈ Ci
free

(5)
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Eq. (5) maps the probability distribution of physical space to C-space and induces a stochastic process

onto it.

Although the Poisson point process model is a simplifying assumption because obstacles, in general,

are not points in the real environments, nevertheless, it matches well our reasonable intuition that the

more the robot (at a given configuration) is in unknown region, the less is the chance that it would

be collision free. It is an unbiased uniform distribution assuming no obstacle shape information, and

hence reasonable when no a priori information is known about the environment. As we show in this

paper, Poisson point model allows one to derive efficiently computed closed form expression for expected

C-space entropy reduction (for both point and generic FOV sensor models). The resulting algorithms,

as shown via simulations and real experiments in Section 5, drastically improve the efficiency of C-space

exploration when compared to pure physical space based criteria, such as MPV. Furthermore, the closed

form expressions give us insights into the interplay between geometry (C-space changed as the result of

a sensing action) and stochastic (entropy) component. This is beyond the scope of the current paper

and is further explored in [25].

Other more complex models do not lend themselves to such closed form expressions and therefore

would tremendously increase computational cost of entropy computations. For example, if we were to

use occupancy grid maps [26] for the physical space, the expectation computation in Eq. (3) is to be

carried out over all possible combinations of the grid statuses, thus potentially having an exponential

(in the number of unknown cells in the sensor FOV) computational complexity. Existing exploration

approaches (for exploring physical space) for mobile robots ignore this complexity and do not compute

the true expectation. For example, some assume that the unknown area to be sensed is completely free,

i.e., only one sensing result is possible [5, 7]. This is clearly an oversimplifying assumption. Others use

an ad-hocly defined information function [22].

2.4 MER for Point FOV Sensor Model

For a point FOV sensor model, Fig. 2, which only senses a point (or an infinitesimal ball centered at a

point) in physical space, rather than computing the expected entropy reduction, it is more appropriate

to compute the corresponding density function,2 i.e., expected entropy reduction per unit volume.

Furthermore, ignoring mutual entropy terms for computation efficiency, the entropy reduction density

function (ẼRDC(x)) for a point FOV sensor is given by

ẼRDc(x) =
∑

q∈X i
u(x)

−λ log(1− e−λ|Ai
u(q)|) (6)

We interpret the above equation as follows. If a point x ∈ Pu were to be sensed, it affects the C-space

entropy via each unknown configuration q that it “touches”. The term inside the summation is the

marginal contribution via configuration q. It depends on the volume of the unknown portion of the

robot at q; the larger this volume, the higher is the marginal entropy reduction.
2While the absolute entropy reduction due to a single point becoming free is zero almost everywhere, the corresponding

density function is non-zero and finite. Thus, it gives a more complete picture of the entropy reduction.
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Sensor
Origin

Free Region

Unknown
Region

Sensed Point
Obstacle

Sensed Point
Free

Known
Obstacle

Unknown
Obstacle

Figure 2: The point FOV sensor model. It senses if a given point x (or a small region around it) is

obstacle or free. No occlusion constraints are modeled: a point can be sensed even if it is occluded by

an obstacle. Two different potential sensing actions are shown. x1 would be sensed free and x2 would

be sensed obstacle (even if it is occluded by known obstacle from the sensor).

Two key limitations in the above derivation are: (i) no occlusion constraints are taken into account,

and (ii) the sensor FOV has zero volume. In the following, we relax these assumptions and derive an

analytic expression for a generic nonzero volume FOV sensor, our main theoretical result.

3 MER for Generic FOV Sensor Model

We now consider the general case, a range sensor with non-zero volume FOV and the volume sensed is

governed by occlusion constraints. Most commercially available range sensors that provide range images

(such as the area scan laser range sensor used in SFU Eye-in-Hand system) fall into this category. Fig. 3

shows a schematic diagram as the sensor senses an unknown region within its FOV. Let Vu(s) denote

the unknown portion of the FOV that is not occluded by known obstacles. In the figure, Vu(s) consists

of regions A, B, C and D (region E is excluded from Vu(s) since it is occluded by a known obstacle).

After sensing, regions A, B and C become free; region D remains unknown because it is occluded by the

sensed obstacles (shown in dark). Of course, the sensor also provides the distances from the sensor’s

origin to the sensed obstacles.

Since the volume of the sensor is not zero, clearly it is the entropy reduction (ER) function (as

opposed to the density in the point sensor case) that is relevant. Making similar approximations as

earlier, i.e., to approximate C-space entropy as sum of marginal entropies of unknown configurations,

we have,

ẼRC(s) = −E{4
s
H̃(C)} =

∑

q∈χu(Vu(s))

erq(s)

As in the point sensor case, the summation is carried over the unknown C-zone of Vu(s), the set of

unknown robot configurations at which some unknown part of the robot could be sensed. erq(s), the

7



Sensor
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Sensed
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Sensor FOV A

E

A

D

C

Known Obstacle

B

Obstacle
Sensor
Origin

Free
Region

Unknown
Region

Sensed
Obstacle

Sensor
FOV

A

E

A

D

Known
Obstacle

B

Obstacle

C

B

A

A

Before scan. After scan.

Figure 3: A generic range sensor. After this sensing action, regions A, B and C become free, the black

contour is a sensed obstacle and region D, occluded by the sensed obstacle remains unknown. Region E

also remains unknown, but it is occluded by an already known obstacle.

marginal entropy reduction of q, is given by:

erq(s) = −E{4
s
H(Q)} (7)

As in Fig. 4, a sensing action s reduces the expected entropy of each unknown configuration, and the

sum of the reductions approximates the expected C-space entropy reduction.

In the following, we are going to show how to compute the marginal entropy reduction term erq(s).

Due to lack of space, we give only intuitive explanations. [15] gives detailed proofs.

3.1 erq(s) Computation

Recall that the environment is composed of free space and point obstacles, called pt. With occlusion

constraints, the sensor only detects the very first point obstacle, called a hit point and denoted by hpt,

along each sensing ray. Note the subtle but important difference between a hpt and a pt. For a robot

configuration q, the possible outcomes for a sensing action s, can be grouped into event 1 and event 2.

Event 1, Fig. 5, corresponds to cases where the sensor would sense at least one hpt inside A(q)∩ Vu(s),

the unknown region occupied by the robot (if it were at configuration q) that lies inside the sensor

FOV, if the sensor were to be placed at sensor configuration s, i.e., ∃hpt ∈ A(q) ∩ Vu(s). Event 2,

Fig. 6, corresponds to a set of outcomes in which there does not exist any hpt inside A(q) ∩ Vu(s). We

accordingly decompose the entropy reduction computation into two parts: erq(s) = (erq)1 + (erq)2 =

E{ ∆
event 1

H}+ E{ ∆
event 2

H}.

8
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Free Region

q2
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Sensor FOV: V(s)

q3

Unknown
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Free Region

q2
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Sensor FOV: V(s)

q3

Unknown
Region

Before scan. After scan.

Sensing action s …


Reduce entropy
qN

q1

q2

q3

)(er
1q s

)(er
2q s

)(er
3q s

)(er
Nq s

Figure 4: A sensing action at configuration s. Assuming that the sensed region becomes free, the

knowledge about each of the three robot configurations shown above is changed. q1 is known free while

q2 and q2 are still unknown. erq(s) provides a (expected) measure of this knowledge gained for each q.

The expected C-space entropy reduction is simply a sum of these marginal terms.

Vu(s)

Known
Obstacle

Sensor
Origin

Free Region

Unknown
Region

Actual Robot
Position

A(q)

Hit Point

)(   )( sVqA u

U

Sensor
Origin

Free Region

A(q)

Actual Robot
Position

Known
Obstacle

Hit pt in
collision
with A(q)

(a) Before Scan (b) After Scan

Figure 5: Computation of (erq)1. Event 1 refers to the cases where at least one hpt lies insideA(q)∩Vu(s).

If event 1 were to occur, q would be in collision with a sensed obstacle (sensed hpt).
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3.1.1 (erq)1 Computation

If event 1 were to happen, configuration q would be in collision with a sensed obstacle (the sensed hpt).

So H(Q | event 1) = 0 (since p(q|event 1), the probability of q being free conditional on event 1 is 0)

and 4
event 1

H(Q) = H(Q | event 1)−H(Q) = −H(Q).

It turns out that the probability of event 1, Pr[event 1] = Pr[∃hpt ∈ A(q) ∩ Vu(s)], is the same as

Pr[∃pt ∈ A(q) ∩ Vu(s)], as if occlusion does not matter. Theorem 1 states this result formally.

Theorem 1: Pr[∃hpt ∈ B] = Pr[∃pt ∈ B] = 1− e−λ·|B|, where B ⊆ Vu(s) is an open set.

See [15] for a rigorous proof. An intuitive explanation is as follows. For a pt not to be sensed, thus

not becoming a hpt, it must be occluded by another pt, which requires exact alignment of points along

the sensing ray, and the chances of that happening are rare, and in fact approach zero in the limit. Thus

the probability that a hpt ∈ B is equal to the probability that a pt ∈ B, which is easily computed using

Eq. (5). And hence,

(erq)1 = Pr[∃hpt ∈ A(q) ∩ Vu(s)] ·H(Q)

= Pr[∃pt ∈ A(q) ∩ Vu(s)] ·H(Q)

= (1− e−λ·|A(q)∩Vu(s)|) ·H(Q) (8)

3.1.2 (erq)2 Computation

Vu

Known
Obstacle

Sensor
Origin

Free Region

Unknown
Region

Actual Robot

A(q)

)(   )( sVqA u

U

Known
Obstacle

Sensor Origin

Free Region

Unknown
Region

Actual Robot
Position

A(q)

 

(a) Before Scan (b) After Scan

Figure 6: Computation of (erq)2. Event 2 refers to cases where hpt (if it exists) lies in Vu(s) \ Au(q),

the grid shaded region excluding the region in (a) occupied by the robot Vu(s) ∩ Au(q). If event 2 were

to occur, the whole Vu(s) except the regions occluded by sensed obstacles (hpt) would be sensed free,

shown as white region in (b).

In this case, as shown in Fig. 6, the status of q would either remain unknown, albeit the unknown

portion of A(q) may have decreased, or it may be known free; in either case, its collision status will not

be obstacle.
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For event 2, the closed form expression computation for entropy reduction is quite complicated;

however, a closed form entropy reduction expression for a sub-event of event 2, called event 2′, is easily

calculated. Fortunately, it turns out that the difference in the entropy reduction between the two events

is negligible in a probabilistic sense, and hence the closed form entropy reduction expression for event 2

is derived. Event 2′ corresponds to those outcomes in which there does not exist any pt in A(q)∩Vu(s),

or equivalently the region A(q)∩Vu(s) is free, as shown in Fig. 7. Note that this event 2′ is fictitious since

occlusion is ignored and event 2′ is used purely for derivation purposes. As an immediate consequence

of Theorem 1, event 2 and event 2′ have the same probabilities, as stated in Lemma 1 below. The

expression on the right hand side follows directly from Eq. (4).

Sensor Origin

Free Region Unknown
Region

Actual Robot
Position

q

Sensor FOV

Figure 7: Event 2′ corresponds to the cases for which there does not exist any pt in A(q)∩Vu(s). Thus,

A(q) ∩ Vu(s), the white region inside the sensor FOV, becomes free.

Lemma 1: Pr[event 2] = Pr[event 2′] = e−λ·|A(q)∩Vu(s)|.

Next, Theorem 2 states that the expected entropy of q given event 2 is the same as that given event

2′, i.e., occlusion does not affect expected entropy.

Theorem 2: E{H(Q|event 2)} = Pr[event 2′]H(Q | event 2′) = e−λ·|A(q)∩Vu(s)| ·H(Q | event 2′).

See [15] for a rigorous proof. An intuitive explanation is difficult, but an outline is as follows. We

first show that the expected newly sensed robot volumes (for robot at q) for event 2 and 2′ respectively

are the same. Intuitively, this is again due to the nature of point obstacles, i.e., that the probability of

occluding nonzero volume approaches zero. Then properties of entropy functions — being bounded and

concave — are then used to prove the above theorem.

Thus, combining Lemma 1 and Theorem 2, we have,

(erq)2 = Pr[event 2′] ·H(Q)− Pr[event 2′] ·H(Q | event 2′)

= e−λ·|A(q)∩Vu(s)| · (H(Q)−H(Q | event 2′)) (9)
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Summing the two components together, we have,

erq(s) = (erq)1 + (erq)2 = H(Q)− e−λ·|A(q)∩Vu(s)| ·H(Q | event 2′) (10)

H(Q | event 2′) and H(Q) in the above equation are determined using Eqs. (1), (5) and p(q | event 2′) =

e−λ·|Au(q)\Vu(s)|.

Finally, summing over the unknown C-zone,

ẼR(s) =
∑

q∈χu(Vu(s))

H(Q)− e−λ|A(q)∩Vu(s)|H(Q|event 2′) (11)

With simple algebraic manipulations, we can easily show that Eq. (11) reduces to Eq. (6) as the sensor

FOV V(s) approaches a single point in the limit [15].

4 View Planning Algorithm: Generic FOV Sensor based MER

Now that we have computed an expected entropy reduction expression for a given sensor action, we can

use the MER criterion to decide the next scan. The algorithm then is as follows:

for every s /* according to a certain resolution */

determine Vu(s)

ẼR(s) = 0 /* initialize */

for every q /* according to a certain resolution */

if (q ∈ Ci
u ∧ Au(q) ∩ Vu(s) 6= φ)

compute erq(s) /* Eq. (10) */

ẼR(s) = ẼR(s) + erq(s)

smax = arg max
s

(ẼR(s))

Determining quantities such as Au(q) and Vu(s) involves geometrical computations. For instance,

determining Vu(s) corresponds to computing the intersection of the sensor FOV with Pu while excluding

portions of Pu occluded by known obstacles (before sensing action). For simple geometries (polyhedral,

for example), these are relatively simple. In case of complex environments, discretized representations

such as grids or octrees can be used, as was done in [27]. erq(s) is therefore easily computed. The

iteration over q, i.e., summation over C-space to determine ER(s), may be prohibitive for robots with

many degree of freedoms. In this case, the summation can be carried out over a large enough number

of random samples to approximate the entropy reduction [9]. There is a vast literature on monte carlo

evaluation of multi-dimensional integrals [28]. We simply used empirically determined large enough

number of samples3. See Section 5 for specific resolutions and sampling parameters, respectively for

sensor’s configuration space and C-space, used in our experiments. Note that this approximation error is

of order 1/
√

N , where N is the number of samples [28]. Thus the number of samples needed, for a given

error bound, is independent of dimensionality of the robot C-space. The iteration over s, i.e., search over

all sensor configurations for smax, is proportional to the number of discretized sensing configurations.
3One can also estimate the number of samples needed for a given error bound. See [28] for details.
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5 Experimental Results

We now compare generic FOV sensor based MER criterion with the point FOV sensor based MER

criterion, for both the simulated 2-link Eye-in-Hand system and the real six-dof SFU Eye-in-Hand

system. In [9], it was shown, via extensive experiments and simulations that view planning based on

point FOV sensor MER criterion outperforms random view planning (to randomly choose a sensor

configuration) and MPV in terms of C-space exploration efficiency. Here we simply compare the point

FOV sensor based MER criterion, Eq. (6), with generic FOV sensor based MER criterion derived in

this paper, Eq. (11).

The overall sensor-based planner used is SBIC-PRM (sensor-based incremental construction of prob-

abilistic road map) reported in [8]. It consists of an incrementalized model-based PRM [29], that operates

in the currently known environment; and a view planner that decides a reachable configuration within

the currently known environment from which to take the next view. The two sub-planners operate in

an interleaved manner. Following is a brief description of SBIC-PRM.

Before each scan, the planner places uniformly random samples in C-space and checks their collision

status within known physical space. If more than a certain percentage of the samples are known, either

free or in collision with known obstacles, the exploration succeeds. If not, the status-unknown samples

are added to a list L. Then the view planner is called to plan a sensor’s configuration, which is reachable

(within the current probabilistic roadmap) from the current robot configuration. The robot moves to

this sensor configuration and take the next view. After the scan, the physical space known to the robot

is updated. The collision status of all the samples in list L are checked. The obstacle ones are removed

from the list. The free ones are made nodes in the probabilistic roadmap (PRM) [29] and checked for

connectivity with their neighboring nodes. In this way, the roadmap is incrementally expanded.

Note that the number of samples in L whose status changes (from unknown to free/obstacle) can be

regarded as a measure of the known C-space percentage. We use this to capture various view planning

algorithms’ efficiency in real experimental results for SFU Eye-in-Hand system.

We implemented the following two different view planning criteria to compare their efficiencies to

explore the C-space:

1. point FOV sensor based MER criterion: the view planner computes ERD function, Eq. (6), over

the unknown physical space and choose xmax of the maximum value. It then places the center of

the actual sensor FOV at xmax.

2. generic FOV sensor based MER criterion: the view planner computes the ER function and de-

termines smax (i.e., it executes the view-planning algorithm in Section 4). It then takes the next

view at smax.
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5.1 Simulation Results for 2-link Robot

In the simulated two-link Eye-in-Hand system shown in Fig. 1 (i), the sensor has an additional dof,

denoted by α, that allows it to rotate freely around the wrist. The robot’s configuration is given as

q = (θ1, θ2), and the sensor’s configuration s = (q, α) = (θ1, θ2, α). The sensor FOV is a triangle with

apex angle of 60 degree. The task for the robot is to explore its environment, starting from its initial

configuration, pointing vertically downwards. In the simulation, the data structures for the physical

space and the robot is similar to [10].4 The simulation program, written in C++, runs on a Pentium

III 800.

Environment (1) Environment (2)

Environment (3) Environment (4)

Figure 8: The three different physical spaces used in the simulation: (1) structured environment, (2,3)

random generated environment.

We conducted a series of simulations for the robot in tens of different environments. For lack of

space, only the results of four representative environments are presented. The results for the other

environments were similar. The four environments, Fig. 8, are: two structured environments and two
4Briefly speaking, the physical space is represented by well structured (30 ∗ 30 grids in this simulation) overlapping

cells of radius r and the robot is represented by a collection of cells of radius r/2. While doing collision detection, all the

physical space cells that have intersection with robot cells are checked to determine the status of this robot configuration.
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unstructured ones with randomly generated obstacles, one with low density of obstacles and the other

with a much higher density.

We carried out 10 runs for each environment and computed the averages of these C-space exploration

rates and run times due to the random nature of underlying planner (SBIC-PRM). For lack of space

we only show snapshots of the simulation results for environment (1) for some of the scans, Fig. 9. The

left sub-image in each snapshot shows the physical space, and the right sub-image shows the C-space.

In both physical and C-space, “grey” (or “green” in colored version), “white”, and “dark” (or “blue” in

colored version) regions denote unknown part Pi
u or Ci

u, free part Pi
free or Ci

free, and obstacles Pi
obs or

Ci
obs, respectively. It is clear that the generic FOV sensor MER criterion based view planning algorithm

outperforms that based on point FOV sensor.

To quantify this improvement, in Fig. 10 we show the percentage of known C-space area vs. number

of iterations (i.e., scans taken) for these two criteria for the four simulation environments. Since the

C-space is two dimensional, the percentage in C-space is explicitly computed by discretizing the C-space

up to a certain resolution (2.4 degrees per joint). Please note that this explicit computation of known

C-space is for visualization only, the view planning algorithm does not compute it. Clearly generic FOV

MER criterion performs better. For example, for the structured environment in the first plot, to expand

the known C-space to 98%, point FOV sensor based MER criterion takes 17 scans while generic FOV

sensor based MER criterion takes 10 scans. However, this increased efficiency comes at a computational

cost. The average view planning time for generic FOV MER criterion is 51 seconds per iteration, while

it is 22 seconds for the point FOV MER criterion.

5.2 Experimental Results on the SFU Eye-in-Hand System

The experimental test-bed is the six-dof SFU Eye-in-Hand system mentioned in Section 1 and shown in

Fig. 1(ii). It consists of a PUMA 560 (hand) and an area scan laser ranger finder (eye) mounted on its

wrist.

We conducted experiments for comparing the efficiency of C-space exploration using point FOV

sensor based MER and generic FOV sensor based MER. The robot starts in the same start configuration

shown in Fig. 1 (ii). The measure used for known C-space is the number of samples in L whose status

is known. It is a rough but reasonable measure, given that explicit computation of the 6 dimensional

C-space is computationally intensive, and hence impractical. The data structure for the physical space

is as in [8], i.e., the physical space is represented by a binary valued (each leaf node is obstacle/free)

octree and after each scan, the range image acquired by the robot is integrated into the octree. The

parameters involved in the implementation are listed in Table 1. Again we conducted ten runs for the

environment shown in Fig. 1 (ii). The view planner and the overall planner are implemented on a

Pentium II 450 and the run-time results are based on this.

Fig. 11 shows the snapshots of robot taking scans at some of the view configurations planned by

the view planner using generic FOV sensor based MER criterion. It takes five scans to reach the goal
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The first scan

The third scan

The fifth scan

The seventh scan

Point FOV Sensor based MER Generic FOV Sensor based MER

Figure 9: The simulation results for environment (1) with point and generic FOV sensor based MER

criteria respectively: the snapshots. The figure shows both the planned next scan (the triangle shown

in the figure) and the physical space and C-space expansion after the scan of last iteration.

configuration between two “wall” obstacles. Note that the plan was biased toward goal as in [9] for this

example. Fig. 12 compares the exploration efficiency of the two criteria. We can clearly see the planner

based on generic FOV sensor based MER outperforms that based on point FOV sensor based MER in
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Figure 10: Comparison of C-space exploration efficiency for view planning criteria: point FOV sensor

based MER and generic FOV sensor based MER. The data shown are average performance for ten tests

conducted.

Parameter Value

Range image resolution 256 × 256

Physical space (octree) 192cm × 192cm × 192cm

Octree resolution 1.5 cm

Number of samples for roadmap 10,000 / iteration

Number of samples for MER 20,000 / iteration

λ: Obstacle density 0.5

Table 1: Implementation parameters for experiments on SFU Eye-in-Hand systems.

that it explores (makes known) a significantly larger portion of the C-space.

As in the simulations, this increased C-space exploration efficiency for each view taken, comes at a

computational cost. Table 2 shows the average of the number of iterations, the total view planning, and

the total running time for reaching the goal. The total running time includes both the view planning

time and the additional time for executing the whole sensor-based planner, which includes time for

sensor scanning, known physical space and roadmap update, roadmap searching, and executing the

robot movements. This additional time is roughly invariant with respect to the view planning criteria

and is roughly 1.5 minutes per iteration in our implementation.

Again as in the 2D simulations, generic FOV sensor based MER is computationally more expensive.
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The first scan. The second scan. The third scan.

The fourth scan. The fifth scan. Reach goal after the fifth scan.

Figure 11: Experimental results based on generic FOV sensor based MER criterion. Each snapshot

shows robot taking a scan, and after five scans, the robot is able to reach the goal configuration.

However, since generic FOV MER based planners take less number of views, the efficiency will be

justified where actual sensing (i.e., taking the scan) is relatively slow, as is often the case in practice.

Using a faster computer and with more efficient implementations, the computational overhead can be

reduced, thereby making the generic FOV based view planner time competitive. Certainly, the generic

FOV sensor based MER will result in greater energy efficiency, given that each scan requires the robot

to physically move to a view configuration, thereby expanding additional energy.
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Figure 12: C-space exploration comparison for SFU Eye-in-Hand system.

View Planning Criterion Point MER Generic MER

Average View Planning Time (seconds) 123 921

Average Running Time (seconds) 220 1018

Average Number of Iterations 5 8

Table 2: SFU Eye-in-Hand Result: The average view planning and running time (in seconds) for point

and generic FOV sensor based MER criteria.

6 Conclusion

This paper is a generalization of our previous work on efficient view planning algorithms based on C-

space entropy notion for sensor-based motion planning [8, 9]. It was shown there that MER criterion

results in significantly more efficient exploration over former view planning algorithms. However, two

unrealistic assumptions were made in getting the closed form expression for the criterion, (1) the sensor

FOV is a point, and (2) no occlusion constraints are taken into account. In this paper, we relax these two

assumptions and derive MER results based on generic non-zero volume range sensor that is subject to

occlusion constraints, thereby modeling a real range sensor. Planar simulations on a 2-link eye-in-hand

system, and experiments on real six dof SFU Eye-in-Hand system show that the generic FOV sensor

MER based view planning results in more efficient C-space exploration.

7 Future Work

There are a few different directions for further extending our results. The first concerns a more realistic

stochastic model for obstacle distribution. One could consider Boolean model [24], which deals with

distribution of geometric shapes (rather than points as in Poisson model). However, computing closed

form analytical expressions for Boolean model seems difficult due to the increased complexity of prob-
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ability computations with this model. Another possibility would be to consider occupancy grids [26],

which have been extensively used in mobile robot domain, and which have the added advantage that we

could incorporate sensor noise into view planning criteria. See [30] for work in this direction. However,

as mentioned earlier, these models make the MER computation intractable. We are currently looking

into it.

The closed form expression derived for the MER criterion, Eq. (11), merits further scrutiny. It

combines two important aspects: (i) effect of sensing action on C-space, and (ii) this effect is measured

in an information theoretic sense (using entropy). The former is purely geometric and the latter is

stochastic. We have recently looked at it in further detail and tried to delineate the effect of the two

components [25].

Current work on MER criteria assumes that the sensor measures exact data, i.e., it is not subject

to noise. Although this is reasonable for gross motion planning, as opposed to fine motion planning,

using fairly accurate range sensor, e.g. the laser range finder in the SFU Eye-in-Hand system, for

other sensors such as the stereo cameras, MER criterion should also incorporate sensory noise into view

planning account. See [30] for works in this direction.
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