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Abstract—In this report, we discuss several issues of Maximal the status of each discretized (or randomly sampled for high di-

expected Entropy Reduction (MER) criterion for generic range mensional cases) robot configuratipnbeing free ; = 0) or
sensor based on a simple stochastic physical space model, the POisi, collision @Q: = 1). The entropy of this joint distribution is

son point process. First, we investigate using more realistic but 1
complex stochastic models in the place of Poisson point process.caIIed C-space entropy{ (C)", given by,

We show that even with a simple extension, the computational cost
for MER criterion is tremendously increased. This justifies the us-

age of Poisson point. It, albeit simple, matches our intuitions and H(C) =

improves tremendously the planning results over simple physical

space criteria. - e Z Pr[Q1, ..., Qn]log Pr[Q1, ..., Q4]
We then show the monotonicity property of the marginal en- Q1=0,1  Q,=0,1

tropy reduction (of a single unknown robot configuration) under (1)

Poisson point model, i.e., the marginal entropy reduction is always
monotone as the function of the volume of the known part of the

robot. The monotonicity result also makes intuitive sense: the ex- . . L
pected information gain is larger as the volume intersection, the ~ MER (Maximal expected Entropy Reduction) criterion states

volume of robot unknown part that lies in the sensor field of view that the next best sensing action is the one to maximizesthe
(FOV), is bigger. We arrived the same results for MER criterion  pectedC-space entropy reduction, i.e.,
based on a point FOV sensor model.

We also investigate empirically the effects of (Poisson point)
model parameter estimation on view planning qualities. The pa- il
rameter estimation error is inevitable for unknown environment Smaz = 418 mfx ERc(s)
with imperfect statistical assumptions. We find that MER cri-

X h ; X a ax F{H(C) — H(C 2
terion based on generic range sensor models is relatively robust TEmax {H(C) (CV(s)} 2)
with respect to estimation errors. We also show, empirically, that
the quality of estimations (of the density parameter of the Pois-
son point model) nevertheless improves the planning results mar-

ginally. B. MER for generic FOV sensor FOV model

In [4], we derived closed form expressions for MER criterion
|. BACKGROUND based on generic non-zero volume FOV sensor model as shown

In this section, we briefly recapitulate the notion of C-spaé@ Fig. 1.

entropy and MER criterion, and its application to view planning Iﬁnorlng mu;ugl entropy terms fo:jefﬂqengy n compqtatlong
problems. See [4] for a detailed coverage. , the expected C-space entropy reduction due to sensing action

s, ER¢(s), can be approximated by the sum of the expected en-
tropy reduction of each unknown configuratignthe marginal
A. C-space Entropy expected entropy reductiam,(s), i.e.,
Assume a stochastic geometric model for the physical space,
i.e., a certain unknown region in the physical space takes a cer- .
tain probability of being free, called void probability, accord- ERc(s) ~ ER(s) = Y erg(s) 3)
ing to this model. This in turn induces a stochastic model on q€Ci,
the robot configuration space (C-space), i.e., each unknown ro-
bot configuration takes a certain void probability according to
the void pfObab'“FY of the robot unknown partin the phySICaJurrent known physical space. This hé"v%‘é%r makes it too long. And since it
space at that configuration. The notion of C-space entropy w&svident that probabilities and thence entropy computations should be con-
introduced as an ignorance measure of the C-space. Taki ftignal on current state, we will neglect this condition in the notations in the
. - ) llowing discussion.
discrete view, the C-space could be represented by a collecti

. i er‘gnoring mutual entropy regards the statuses of two configurations indepen-
of n random variables (r.v.)21,...,Q;,...,Qn, representing dent of each other.

L1t should really be denoted b¥f (C|P? ), the entropy conditional on



Y i T MER criterion then gives the next sensing actioto maxi-
Known Obitace 0 E_| | Known Onstacie S il NN mize the expected C-space entropy reduction, i.e.,
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o 1 llustration of . s FOYe). After thi ) In this section, we investigate using more realistic but com-

1g. 1. ustration or a generic range sensors S). er tnis sensing . .

action, regions A, B and C are known free, the black contour is a sensed obst&)éf%x StOf:haStIC mOdel forthe phy§|caI spage. We show that eYen

and region D, occluded by the sensed obstacle remains unknown. Region E wiéth a simple extension to the Poisson point process, by adding

remains unknown, but it is occluded by an already known obstacle. a nonzero size to the cell. the computational cost can be in-
creased to be in the order of the cell number exponential be-
cause of the lack of a closed-form solution. This justifies the

Further under Poisson point process assumption for obstaplsisson point model in the MER computation.
distribution in physical spacg in [4], we showed that for a

given sensor configuratiosn, the marginal (expected) entropy , Simple extension to Poisson point

reduction for an unknown configuratigris given by, , ) .
As shown in a series of paper based on different sensor model

[71, [8], [4], [5], albeit simple and unrealistic, Poisson point
erq(s) = BE{H(Q) — H(Q|V(s))} model, when applied to MER criterion, induces great improve-
— HQ) - oM A@Vu(s)] H(Q|event2) (4) ments over S|mplg physmal space based_wew planning stra_lte-
gies, e.g., to maximize the unknown physical space volume in-
side the view (MPV). Here we investigate using some more re-

In the above equatior/ (Q) is the entropy of before sens- alistic model and show the computational costs it introduces
ina.ie. H _ 1 1 ] _ ; when being applied to MER criterion.
ing, i.e., H(Q) = —p(q)log p(q) — (1 — p(q))log(1 — p(g)) in

whichp(q), the void probability ofy, is defined as the probabil- S & Simple extension to the Poisson point process, here we
ity of ¢ being not in collision with obstacle. By Poisson poin{:onsmerthe following stochastic model for the physical spiace

assumption, we havg(q) — o= AL ()] Vu(s) is defined as the physical space is discretized into cells of a certain size, i.e.,

the portion of the sensor FOW(s), that intersect$;, and is Zi) - {fjl’ci’ A . Cf\é}?b?ll_':d ((ajach fedﬁj hgs a_cPertalln_m-
not occluded by known obstacles. The conditional evéi 2 Oep?nnd en npdrlonr Voilm pﬁo a‘ i y Eno e‘ WJ? - Fr[rcjir;
Eq. (4) refers to the event that the part of the robaf atside ] (Independence impliegc;, , ¢;,) = p(c;,)p(c;,).) For sim-

the unknown part of the sensor FOV is free of obstacle. Tiﬁ)elzlcny’ we model the range sensor as an ideal one that returns,

. . o . e within its FOV, the distances (with respect to the sensor ori-
\ég': dﬁi?r?;béat);hgghsvgrn?liosagliil/gnobfyk')emg collision free) af gin) of first sensed obstacles along the sensing direction, called

hit points, and the space between senor origin and hit points is
A AL (@\Vu(s)] sensed free. Accordingly, the cell statp$g;), changes after
p(q | Alg) NVu(s) free) = e sensing: it becomes known-freg(¢;) = 1), if its unknown

H(Q | A(q) N V. (s) free) is then simply computed fromy(g |  Part is sensed free; it becomes obstaple() = 0), if it has

A(q) N Vy(s) free) in the above formulation. intersection with some sensed obstacles; its void probability is
In Eq. (4), if A(q) does not intersed?, (s), (sensing action unchanged if nelt_her of the_ above two cases happens. .
s does not cover any portion of the robot volumegit mar- In essence, this model is the same as occupancy grid map

ginal entropy reduction of is zero. By defining the “unknown [2], with perfect (wit_hout L_Jn(_:ertf_;linties) sensing model for map
C-zone ofs”, y.(s), as the set of unknown configurations aypdate: the cell prior void is §|ther unchanged, changedl to
which the robotdoesintersectV, (s) 4, i.e., xu(s) = {q € (ree)orl (obstacle) after sensing.

Ci1AL (9) N Vu(s) # ¢}, we can rewrite Eq. (3) as, The robot void probability at configuratiop can be com-
e puted as the joint probability of its comprising cells, i.e.,

ET%(S): Z erq(s) (5) plg) = H p(c;)-

qEX (3) c;€A(q)

The product formula above is due to the independence of the

3poisson point model is essentially characterized as uniformly distriouté€ll probabilities.
points in the physical space. Note that for sensor-based MP use, these points
are regarded as obstacles. 5 Another possibility would be to use Boolean model [3], which is character-
4The unknown C-zone definition a physical space region can be thoughtizéd by associating a geometric shape (with some probability) with every point
as a whole robot body inverse kinematics, i.e., a region in the physical spacmithe Poisson point model. However, due to the increased complexity of proba-
related to regions in C-space. Thus, the physical space geometry is transforinigty computations with this model, it is very unlikely that there exists a closed
to C-space geometry, which gives MER a C-space geometry flavor. form analytical expressions for MER criterion.



B. MER based on simple extension . T

In the following, we show how to use this physical space
model for MER criterion based on generic range sensors.

Using MER criterion, the next best view is such chosen that  orisin
the expected entropy reduction (approximated by the sum of

marginal entropies) is maximized, i.e., e Skt
contaming 763 T oo
i+1
s;i_ax = arg Insax E{H(C) - H(C|V(s))} Fig. 2. lllustration of a possible way of discretizii, (s) into sensing cones.
~ argmax ) E{H(Q) - H(QV(s))} (7)
a€Cu we make the resolution coarser to reduce the computation costs,

In the above, the conditional(s) denotes a possible Sens_the accuracy of the representation can not be guaranteed. On the

ing result if the sensor were to sense at sensor’s configuratfz)tlt?e_r hand, for the sake of accuracy, the number Of cells repre-
s. This result in turn induces, using the ideal sensor updatgnting the physical space will increase and in turn induce a big
model mentioned above, the posterior probabilities of the ph%\(erher?.d _(grq\;ylng ﬁxponentla]lly) f_or MER F:ntenc:jn I(':OTEUta_h
ical space cells and the posterior probability distribution of tH&"" IT IS Just] |es| the usalge Od Ff>0|sson|pq|nt TO el: althoug
C-space space changes accordingly. The entropy reduction JPVIStic, it results in a closed form solution for MER crite-

pectation computation above is carried out over all such pos@?n which can be computed relatively fast, and in addition, it

ble sensing results. This reduction expectation is used to eyg@tches well our intuitions and MER based on it improves the

uate each sensor configuration’s potential effect on the C-spXi& Planning results significantly over simple physical space
knowledge ased criterion.

As before, we user,(s) to denote the expected marginal

entropy reduction for an unknown robot configuratipe C,,, I1l. EXPECTEDENTROPYREDUCTION'S MONOTONICITY

if the sensor were to sensesai.e., In the following, we show that although marginal entropy
function (w.r.t. the volume of robot unknown part) under Pois-
ery(s) = E{H(Q) — H(Q|V(s))}. son point model is not monotone, the expected marginal en-

tropy reduction is always positive and monotone, i.e., as un-

For the lack of a closed form solution, the expected maknown part of the robot af, A, (q), intersects the sensor FOV
ginal entropy reduction has to be computed numerically. Sugks in front of known obstacles;,, (s), the expected marginal
pose the physical space cells that compri¥gss), the un- entropy value ofg is always decreasing and the decreasing
known sensor FOV at in front of known obstacles, are la-amount is bigger, larger this intersection is.
beledj = 1,2,...,k. (For simplicity, we ignore those situa- The expected marginal entropy reduction for an unknown ro-
tions where the cells have only partial intersection Witl{s).  bot configuratiory is given by [4]:
Thus this computation will be accurate up to a certain resolu-

tion.) Expanding the expectation expression, we have, ery(s) = H(Q) — o= MA@V ()] H(Q|event2).  (8)

erg(s)= > ... > [IPrlel(H@)—H(Qler,....ck)).  In the above formula, the conditional eventdenotes the
=01 ¢=01 j event that the intersectioA(q) NV, (s) is free of obstacles. So
. N . . conditionally on eveng’, the volume of unknown part of the
f\t/vnhogt v[3|b|tl|r:y constra[[rjts,_lt is etﬁsy t%see]:[?:t the numbt Dbot is reduced fromAu ()] to | 4w ()| — |A(g) A Vu(s)].
otterms nside the summation 1S n the order of the exponen @hder Poisson point model, the posterior void probability
of unknown cell number. Thus, the complexity of evaluatlr:jg levent 2) is given by:
the expected marginal entropy reduction is in the same or e@ g y:
Even with visibility constraints, the complexity is still roughly A AL~ ANV (s
in the same order. This can be explained as follows. By de- plalevent2) __e A ) ( " ®)
composing the unknown sensor FOV into small sensing conesNote that before sensing, the valti(Q) is fixed. Thus, by
Fig. 2, there can only exist one hit point (or hit obstacle cell) igdS- (8) and (9), we haver, (s) as a function of A(q)NVu(s)|-
each cone. Thus, for each cone, the number of possible senéﬂi?]ead of directly analyzing the positiveness and monotonicity
results will be the number of unknown cells in that cone plu@f this function, which turns out to be very complicated, we are
1 (corresponding to a free cone). So the number of terms $RiNg to analyze this indirectly using its derivative, given by:
the above summation is the product of these numbers for all the
cones. This induces a computational complexity of roughly the derqy(s)
g.umb?r 02 cells in each cone to the power of number of such dlA(q) N Vu(s)]
iscretized cones. —AlA(@)NVu (s
Note that by the above discussion, the resolution of the phys- _/\€_A|A(q)m} (7)| log(1 — p(_(i|ev\4/lent 2—)),4 V(s
ical space stochastic model has a big effect on the entropy com-= —Ae MA@ “(‘S)llog(l — e MA@l “(5)‘))
putation because of the lack of a closed form representation. If (20)



Since the term inside the logarithm function above is ah. The weighting effect of

ways less than, the above derivative is always positive. This e gensity parameteris an important parameter of Poisson
guarantees that marginal entropy reduction as a function afint nrocess. Intuitively, it tells how clustered the physical

[(a) N Vu(s)| is monotonically increasing and the increasgnacq js. However, for sensor-based MP, this knowledge may
is always positive. In other words, if the additional unknow: be available a priori. For these cases, an estimateas

part of the robot inside sensor FOV is larger, so is the expectety . ,sed. Here we try to answer the question: how does this

entropy reduction. This is shown in Fig. 3 for differem.(4)|  estimation affect the qualities of the view planning results using
values. This matches our intuition very well: more informatiog,er criterion?

of an unknown robot configuration is expected if the sensor Calyote that the) value shape the marginal entropy reduction

potentially see a larger portion of the robot volume. function, Eq. (4). This implies that while doing view planning
and summing up the potential effects of a sensing action on dif-

07 ‘ ‘ ‘ ‘ ferent configurations, these configurations are weighted differ-
ently according to their marginal entropy reductions. As shown
06k A, (@)=0.3 B i in Fig. 4, the choices of smaller will tend to weight differ-
A =08 ent configurations more evenly, for example, the- 0.1 plot;
osf A,@I=0.5 ] those of largen favors more those configurations at which the
robot has less unknown volume, for examples 10 plot.
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Fig. 3. The marginal entropy reduction valgeg (s), as a function of expected
sensed volume,A(q) N Vu(s)|. The plots shown are for different unknown 0.2
volume before sensingd. (¢)|. A is set to bel for all the plots.

0.1x

The formula Eq. (10) also revels the “boundary” property ‘ ‘ ‘ : ‘ ‘
of the ery(s) function: the expected marginal entropy re- 02 03 04 05 06 07 08 09 1
duction is larger for those unknown robot configurations at A @
which the robot has less unknown volume. This can be shown , _ ,
f E 10 directly using monotonicity of the basic funcflg' 4. The marginal entropy redyctlon valueq(s)_, as a_func_tlon of the
_rom ; a. ( y_ g Yy ) unknown robot volume before sensingl. (¢)|, assuming a fixed intersection
tions involved: for a fixed.A(q) N V. (s)|, when|A,(q)| in- volume, |A(g) N Vu(s)|. The plots shown are for different values. The
creases. the value of (4w (@)|-A(@)NVu(s)) decreases. which volume values are all normalized to be the ratio to the volume of the whole
. ’ . . ) bot.
in turn causes increases in bota (44 (@)| =l A@WVu()) gng 70
log(1—eMA«@I=IA@MVu()D) "and this results in a decrease o o N
in er,(s). As noted in [8], this boundary property implies that However, itis hard to tell the effects of the weighting ability
the MER criterion will “favor” those boundary robot configura-0f the A values on the view planning qualities based on MER
tions, unknown Configurations |y|ng near the boundarg"pL criterion. This is due to the fact that MER includes both the sto-
andC?, when summing up a sensing action’s potentiail effectbastic (the weig_hting effects by a stochastic mode!) compon_ent
on the marginal entropy reductions. (This is why the properf’d the geometric component, and much of the view planning
was named “boundary” property.) The “boundary” propertpwechanlsm is .attrlbuted to.the geometric one [6]. .
of MER criterion based on generic range sensors comforts to" the following, we empirically evaluate the effect of differ-
that for MER criterion based on point FOV sensors as sho/ftA values on the view planning resuilts.
in [8], [7]. This will have impacts on the sampling strategies
to approximatle the C-space entropy reduction. For examp|_§3_, Empirical results of the effect of
[7] adopts an importance sampling strategy and use a samplin
distribution that favors more near tifg andC!, boundaries.

?n the following, we use conducted a series experiments on
the 2D simulated eye-in-hand system shown in Figure 5. It con-
sists of a 2 dof planar robot and a range sensor (triangle FOV)
mounted on its end-effector. The sensor has an additional dof
that rotates 360 degree around the wrist. The sensing angle
In this section, we investigate empirically the effect of pargthe angle between the two edge of the sensing triangle) is 60
meter estimation error on view planning qualities. degree. The task for the robot is to explore its environment,

ree

IV. PARAMETER ESTIMATION EFFECT ONMER
CRITERION



starting from pointing vertically downwards in its initial con- =
figuration.
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Fig. 5. Examples of Eye-in-Hand system: a planar 2-link robot with a triangle
FQOV range sensor.
We then simulated a series of different physical spaces, both ®) (4)

structured and randomly generated, for the robot to explore.
Four of them are shown in Fig. 6: (1) and (2) are two structuré}fac‘;’ure d
environments; (3) and (4) are two unstructured environments
where obstacles are randomly generated, with Poisson distribu-

tion with density parameters 0.02 and 0.2 respectively. some improvements whexwvalue used is closed to the environ-

We tested MER based view planner using differenalues o : ) )
(from 0.01 0 20) on these envirc?nments andgrecorded the plarqlent characteristics, these improvements are fairly marginal.

ning results (the exploration rate of the C-space). For all these
environments, the planning results are really close to each other. V. CONCLUSION
For example, for environment (1), the average standard deviain this report, we investigated several issues of MER crite-
tion of the known C-space percentages after each view is le&h based on generic range sensor models. First to justify the
than 0.4%; for environment (2), this number is less than 0.64sage of Poisson point process as our physical space model,
Our conjecture is that for structured environments, the physie showed that even with a simple extension, to add a size to
cal space regions are distinct from each other and geometties probabilistic physical space cells, the MER computational
play a bigger role than the stochastic effects. We also obsenggts increase exponentially, due to a lack of closed form solu-
that for larger\ values, bigger tham0, the results deteriorate tion. Thus from a computational efficiency consideration, Pois-
marginally. This is maybe due to the fact that largetends son point is the right choice for MER. Second, we investigate
to less weight those configurations at which the robot has late monotonicity of C-space entropy reduction function based
of unknown volume and thus ignores their effects, while theifoisson point process. We showed that marginal entropy reduc-
cumulative effects may play a big role in the C-space expltion is a monotone function: as robot (at the corresponding con-
ration. (This may be more so for the beginning of the expldiguration) intersects more with the sensor FOV, the expected
ration when a lot of configurations are largely unknown.) Fdanformation gain is larger. This matches our intuitions well.
environment (3) and (4), the average standard deviations &ve also showed that for configurations at which the robot has
3.3% and 3% respectively. It is obvious that stochastic compless unknown volume, the expected entropy reduction is larger.
nent plays a bigger role in these two randomly generated érhis is called “boundary” property, reported previous for MER
vironments. We also found that for environment (2), the plabased on point sensors. Last, to evaluate the stochastic mod-
ning results are marginally (about 2% percent) better arousting effects on view planning qualities based MER criterion,
for A = 0.01 ~ 0.04, the range around the trde= 0.02 used we conducted extensive simulations on both structured and ran-
to generate the environment. For environment (3), the bettmly generated environment. We showed empirically that the
(about 1% percent) performance range\is= 0.1 ~ 1, still view planning results are very robust to choices of the density
around the true\ = 0.2. parameter of the Poisson point process model. We also found
By these empirical results, we can conclude that MER critseme improvements in the view planning results when the den-
rion for view planning is fairly robust with respect the choicesity parameter is close to the true value used to generate the
of the stochastic model parameter Although we have seen environment. However, this improvement is really marginal.

The three different physical spaces used in the simulation: (1, 2)
environment, (3,4) random generated environment.
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