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Abstract— In this report, we discuss several issues of Maximal
expected Entropy Reduction (MER) criterion for generic range
sensor based on a simple stochastic physical space model, the Pois-
son point process. First, we investigate using more realistic but
complex stochastic models in the place of Poisson point process.
We show that even with a simple extension, the computational cost
for MER criterion is tremendously increased. This justifies the us-
age of Poisson point. It, albeit simple, matches our intuitions and
improves tremendously the planning results over simple physical
space criteria.

We then show the monotonicity property of the marginal en-
tropy reduction (of a single unknown robot configuration) under
Poisson point model, i.e., the marginal entropy reduction is always
monotone as the function of the volume of the known part of the
robot. The monotonicity result also makes intuitive sense: the ex-
pected information gain is larger as the volume intersection, the
volume of robot unknown part that lies in the sensor field of view
(FOV), is bigger. We arrived the same results for MER criterion
based on a point FOV sensor model.

We also investigate empirically the effects of (Poisson point)
model parameter estimation on view planning qualities. The pa-
rameter estimation error is inevitable for unknown environment
with imperfect statistical assumptions. We find that MER cri-
terion based on generic range sensor models is relatively robust
with respect to estimation errors. We also show, empirically, that
the quality of estimations (of the density parameter of the Pois-
son point model) nevertheless improves the planning results mar-
ginally.

I. BACKGROUND

In this section, we briefly recapitulate the notion of C-space
entropy and MER criterion, and its application to view planning
problems. See [4] for a detailed coverage.

A. C-space Entropy

Assume a stochastic geometric model for the physical space,
i.e., a certain unknown region in the physical space takes a cer-
tain probability of being free, called void probability, accord-
ing to this model. This in turn induces a stochastic model on
the robot configuration space (C-space), i.e., each unknown ro-
bot configuration takes a certain void probability according to
the void probability of the robot unknown part in the physical
space at that configuration. The notion of C-space entropy was
introduced as an ignorance measure of the C-space. Taking a
discrete view, the C-space could be represented by a collection
of n random variables (r.v.),Q1, . . . , Qi, . . . , Qn, representing

the status of each discretized (or randomly sampled for high di-
mensional cases) robot configurationqi, being free (Qi = 0) or
in collision (Qi = 1). The entropy of this joint distribution is
called C-space entropy,H(C)1, given by,

H(C) =

−
∑

Q1=0,1

. . .
∑

Qn=0,1

Pr[Q1, . . . , Qn] log Pr[Q1, . . . , Qn]

(1)

MER (Maximal expected Entropy Reduction) criterion states
that the next best sensing action is the one to maximize theex-
pectedC-space entropy reduction, i.e.,

si+1
max = arg max

s
ERc(s)

= arg max
s

E{H(C)−H(C|V(s))} (2)

B. MER for generic FOV sensor FOV model

In [4], we derived closed form expressions for MER criterion
based on generic non-zero volume FOV sensor model as shown
in Fig. 1.

Ignoring mutual entropy terms for efficiency in computations
2, the expected C-space entropy reduction due to sensing action
s, ERC(s), can be approximated by the sum of the expected en-
tropy reduction of each unknown configurationq, the marginal
expected entropy reductionerq(s), i.e.,

ERC(s) ≈ ẼR(s) =
∑

q∈Ci
u

erq(s) (3)

1It should really be denoted byH(C|Pi
known), the entropy conditional on

current known physical space. This however makes it too long. And since it
is evident that probabilities and thence entropy computations should be con-
ditional on current state, we will neglect this condition in the notations in the
following discussion.

2Ignoring mutual entropy regards the statuses of two configurations indepen-
dent of each other.
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(i) Before scan (ii) After scan.

Fig. 1. Illustration of a generic range sensor’s FOVV(s). After this sensing
action, regions A, B and C are known free, the black contour is a sensed obstacle
and region D, occluded by the sensed obstacle remains unknown. Region E also
remains unknown, but it is occluded by an already known obstacle.

Further under Poisson point process assumption for obstacle
distribution in physical space3, in [4], we showed that for a
given sensor configurations, the marginal (expected) entropy
reduction for an unknown configurationq is given by,

erq(s) = E{H(Q)−H(Q|V(s))}
= H(Q)− e−λ·|A(q)∩Vu(s)| ·H(Q | event 2′) (4)

In the above equation,H(Q) is the entropy ofq before sens-
ing, i.e.,H(Q) = −p(q) log p(q)− (1− p(q)) log(1− p(q)) in
whichp(q), the void probability ofq, is defined as the probabil-
ity of q being not in collision with obstacle. By Poisson point
assumption, we havep(q) = e−λ|Ai

u(q)|. Vu(s) is defined as
the portion of the sensor FOV,V(s), that intersectsPi

u and is
not occluded by known obstacles. The conditional event 2′ in
Eq. (4) refers to the event that the part of the robot atq inside
the unknown part of the sensor FOV is free of obstacle. The
void probability (the probability of being collision free) ofq
conditional on this event is given by:

p(q | A(q) ∩ Vu(s) free) = e−λ·|Ai
u(q)\Vu(s)|

H(Q | A(q) ∩ Vu(s) free) is then simply computed fromp(q |
A(q) ∩ Vu(s) free) in the above formulation.

In Eq. (4), ifA(q) does not intersectVu(s), (sensing action
s does not cover any portion of the robot volume atq), mar-
ginal entropy reduction ofq is zero. By defining the “unknown
C-zone ofs”, χu(s), as the set of unknown configurations at
which the robotdoesintersectVu(s) 4, i.e., χu(s) = {q ∈
Ci

u|Ai
u(q) ∩ Vu(s) 6= φ}, we can rewrite Eq. (3) as,

ẼR(s) =
∑

q∈χu(s)

erq(s) (5)

3Poisson point model is essentially characterized as uniformly distributed
points in the physical space. Note that for sensor-based MP use, these points
are regarded as obstacles.

4The unknown C-zone definition a physical space region can be thought of
as a whole robot body inverse kinematics, i.e., a region in the physical space is
related to regions in C-space. Thus, the physical space geometry is transformed
to C-space geometry, which gives MER a C-space geometry flavor.

MER criterion then gives the next sensing actions to maxi-
mize the expected C-space entropy reduction, i.e.,

smax = arg max
s

ẼR(s) = arg max
s

∑

q∈χu(s)

erq(s) (6)

II. POISSONPOINT PROCESSMODEL

In this section, we investigate using more realistic but com-
plex stochastic model for the physical space. We show that even
with a simple extension to the Poisson point process, by adding
a nonzero size to the cell, the computational cost can be in-
creased to be in the order of the cell number exponential be-
cause of the lack of a closed-form solution. This justifies the
Poisson point model in the MER computation.

A. Simple extension to Poisson point

As shown in a series of paper based on different sensor model
[7], [8], [4], [5], albeit simple and unrealistic, Poisson point
model, when applied to MER criterion, induces great improve-
ments over simple physical space based view planning strate-
gies, e.g., to maximize the unknown physical space volume in-
side the view (MPV). Here we investigate using some more re-
alistic model and show the computational costs it introduces
when being applied to MER criterion.

As a simple extension to the Poisson point process, here we
consider the following stochastic model for the physical space5:
the physical space is discretized into cells of a certain size, i.e.,
P = {c1, c2, . . . , cj , . . . , cM}; and each cellcj has a certain in-
dependent prior void probability, denoted byp(cj) = Pr[cj =
0]. (Independence impliesp(cj1 , cj2) = p(cj1)p(cj2).) For sim-
plicity, we model the range sensor as an ideal one that returns,
within its FOV, the distances (with respect to the sensor ori-
gin) of first sensed obstacles along the sensing direction, called
hit points, and the space between senor origin and hit points is
sensed free. Accordingly, the cell status,p(cj), changes after
sensing: it becomes known-free (p(cj) = 1), if its unknown
part is sensed free; it becomes obstacle (p(cj) = 0), if it has
intersection with some sensed obstacles; its void probability is
unchanged if neither of the above two cases happens.

In essence, this model is the same as occupancy grid map
[2], with perfect (without uncertainties) sensing model for map
update: the cell prior void is either unchanged, changed to0
(free) or1 (obstacle) after sensing.

The robot void probability at configurationq can be com-
puted as the joint probability of its comprising cells, i.e.,

p(q) =
∏

cj∈A(q)

p(cj).

The product formula above is due to the independence of the
cell probabilities.

5Another possibility would be to use Boolean model [3], which is character-
ized by associating a geometric shape (with some probability) with every point
in the Poisson point model. However, due to the increased complexity of proba-
bility computations with this model, it is very unlikely that there exists a closed
form analytical expressions for MER criterion.
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B. MER based on simple extension

In the following, we show how to use this physical space
model for MER criterion based on generic range sensors.

Using MER criterion, the next best view is such chosen that
the expected entropy reduction (approximated by the sum of
marginal entropies) is maximized, i.e.,

si+1
max = arg max

s
E{H(C)−H(C|V(s))}

≈ arg max
s

∑

q∈Cu

E{H(Q)−H(Q|V(s))} (7)

In the above, the conditionalV(s) denotes a possible sens-
ing result if the sensor were to sense at sensor’s configuration
s. This result in turn induces, using the ideal sensor update
model mentioned above, the posterior probabilities of the phys-
ical space cells and the posterior probability distribution of the
C-space space changes accordingly. The entropy reduction ex-
pectation computation above is carried out over all such possi-
ble sensing results. This reduction expectation is used to eval-
uate each sensor configuration’s potential effect on the C-space
knowledge.

As before, we useerq(s) to denote the expected marginal
entropy reduction for an unknown robot configurationq ∈ Cu,
if the sensor were to sense ats, i.e.,

erq(s) = E{H(Q)−H(Q|V(s))}.

For the lack of a closed form solution, the expected mar-
ginal entropy reduction has to be computed numerically. Sup-
pose the physical space cells that comprisesVu(s), the un-
known sensor FOV ats in front of known obstacles, are la-
beledj = 1, 2, . . . , k. (For simplicity, we ignore those situa-
tions where the cells have only partial intersection withVu(s).
Thus this computation will be accurate up to a certain resolu-
tion.) Expanding the expectation expression, we have,

erq(s) =
∑

c1=0,1

. . .
∑

ck=0,1

∏

j

Pr[cj ](H(Q)−H(Q|c1, . . . , ck)).

Without visibility constraints, it is easy to see that the number
of terms inside the summation is in the order of the exponential
of unknown cell number. Thus, the complexity of evaluating
the expected marginal entropy reduction is in the same order.
Even with visibility constraints, the complexity is still roughly
in the same order. This can be explained as follows. By de-
composing the unknown sensor FOV into small sensing cones,
Fig. 2, there can only exist one hit point (or hit obstacle cell) in
each cone. Thus, for each cone, the number of possible sensing
results will be the number of unknown cells in that cone plus
1 (corresponding to a free cone). So the number of terms in
the above summation is the product of these numbers for all the
cones. This induces a computational complexity of roughly the
number of cells in each cone to the power of number of such
discretized cones.

Note that by the above discussion, the resolution of the phys-
ical space stochastic model has a big effect on the entropy com-
putation because of the lack of a closed form representation. If

Fig. 2. Illustration of a possible way of discretizingVu(s) into sensing cones.

we make the resolution coarser to reduce the computation costs,
the accuracy of the representation can not be guaranteed. On the
other hand, for the sake of accuracy, the number of cells repre-
senting the physical space will increase and in turn induce a big
overhead (growing exponentially) for MER criterion computa-
tion. This justifies the usage of Poisson point model: although
simplistic, it results in a closed form solution for MER crite-
rion which can be computed relatively fast, and in addition, it
matches well our intuitions and MER based on it improves the
view planning results significantly over simple physical space
based criterion.

III. E XPECTEDENTROPY REDUCTION’ S MONOTONICITY

In the following, we show that although marginal entropy
function (w.r.t. the volume of robot unknown part) under Pois-
son point model is not monotone, the expected marginal en-
tropy reduction is always positive and monotone, i.e., as un-
known part of the robot atq, Au(q), intersects the sensor FOV
at s in front of known obstacles,Vu(s), the expected marginal
entropy value ofq is always decreasing and the decreasing
amount is bigger, larger this intersection is.

The expected marginal entropy reduction for an unknown ro-
bot configurationq is given by [4]:

erq(s) = H(Q)− e−λ·|A(q)∩Vu(s)| ·H(Q | event 2′). (8)

In the above formula, the conditional event 2′ denotes the
event that the intersectionA(q)∩Vu(s) is free of obstacles. So
conditionally on event2′, the volume of unknown part of the
robot is reduced from|Au(q)| to |Au(q)| − |A(q) ∩ Vu(s)|.
Under Poisson point model, the posterior void probability
p(q|event 2′) is given by:

p(q|event 2′) = e−λ(|Au(q)|−|A(q)∩Vu(s)|) (9)

Note that before sensing, the valueH(Q) is fixed. Thus, by
Eqs. (8) and (9), we haveerq(s) as a function of|A(q)∩Vu(s)|.
Instead of directly analyzing the positiveness and monotonicity
of this function, which turns out to be very complicated, we are
going to analyze this indirectly using its derivative, given by:

d erq(s)
d|A(q) ∩ Vu(s)|

= −λe−λ|A(q)∩Vu(s)| log(1− p(q|event 2′))
= −λe−λ|A(q)∩Vu(s)| log(1− e−λ(|Au(q)|−|A(q)∩Vu(s)|))

(10)
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Since the term inside the logarithm function above is al-
ways less than1, the above derivative is always positive. This
guarantees that marginal entropy reduction as a function of
|A(q) ∩ Vu(s)| is monotonically increasing and the increase
is always positive. In other words, if the additional unknown
part of the robot inside sensor FOV is larger, so is the expected
entropy reduction. This is shown in Fig. 3 for different|Au(q)|
values. This matches our intuition very well: more information
of an unknown robot configuration is expected if the sensor can
potentially see a larger portion of the robot volume.
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Fig. 3. The marginal entropy reduction value,erq(s), as a function of expected
sensed volume,|A(q) ∩ Vu(s)|. The plots shown are for different unknown
volume before sensing,|Au(q)|. λ is set to be1 for all the plots.

The formula Eq. (10) also revels the “boundary” property
of the erq(s) function: the expected marginal entropy re-
duction is larger for those unknown robot configurations at
which the robot has less unknown volume. This can be shown
from Eq. (10 directly using monotonicity of the basic func-
tions involved: for a fixed|A(q) ∩ Vu(s)|, when |Au(q)| in-
creases, the value ofe−λ(|Au(q)|−|A(q)∩Vu(s)|) decreases, which
in turn causes increases in both−e−λ(|Au(q)|−|A(q)∩Vu(s)|) and
log(1−e−λ(|Au(q)|−|A(q)∩Vu(s)|)), and this results in a decrease
in erq(s). As noted in [8], this boundary property implies that
the MER criterion will “favor” those boundary robot configura-
tions, unknown configurations lying near the boundary ofCi

free

andCi
u, when summing up a sensing action’s potential effects

on the marginal entropy reductions. (This is why the property
was named “boundary” property.) The “boundary” property
of MER criterion based on generic range sensors comforts to
that for MER criterion based on point FOV sensors as shown
in [8], [7]. This will have impacts on the sampling strategies
to approximate the C-space entropy reduction. For example,
[7] adopts an importance sampling strategy and use a sampling
distribution that favors more near theCi

free andCi
u boundaries.

IV. PARAMETER ESTIMATION EFFECT ONMER
CRITERION

In this section, we investigate empirically the effect of para-
meter estimation error on view planning qualities.

A. The weighting effect ofλ

The density parameterλ is an important parameter of Poisson
point process. Intuitively, it tells how clustered the physical
space is. However, for sensor-based MP, this knowledge may
not be available a priori. For these cases, an estimatedλ has
to be used. Here we try to answer the question: how does this
estimation affect the qualities of the view planning results using
MER criterion?

Note that theλ value shape the marginal entropy reduction
function, Eq. (4). This implies that while doing view planning
and summing up the potential effects of a sensing action on dif-
ferent configurations, these configurations are weighted differ-
ently according to their marginal entropy reductions. As shown
in Fig. 4, the choices of smallerλ will tend to weight differ-
ent configurations more evenly, for example, theλ = 0.1 plot;
those of largerλ favors more those configurations at which the
robot has less unknown volume, for example,λ = 10 plot.
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Fig. 4. The marginal entropy reduction value,erq(s), as a function of the
unknown robot volume before sensing,|Au(q)|, assuming a fixed intersection
volume, |A(q) ∩ Vu(s)|. The plots shown are for differentλ values. The
volume values are all normalized to be the ratio to the volume of the whole
robot.

However, it is hard to tell the effects of the weighting ability
of the λ values on the view planning qualities based on MER
criterion. This is due to the fact that MER includes both the sto-
chastic (the weighting effects by a stochastic model) component
and the geometric component, and much of the view planning
mechanism is attributed to the geometric one [6].

In the following, we empirically evaluate the effect of differ-
entλ values on the view planning results.

B. Empirical results of the effect ofλ

In the following, we use conducted a series experiments on
the 2D simulated eye-in-hand system shown in Figure 5. It con-
sists of a 2 dof planar robot and a range sensor (triangle FOV)
mounted on its end-effector. The sensor has an additional dof
that rotates 360 degree around the wrist. The sensing angle
(the angle between the two edge of the sensing triangle) is 60
degree. The task for the robot is to explore its environment,
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starting from pointing vertically downwards in its initial con-
figuration.

Fig. 5. Examples of Eye-in-Hand system: a planar 2-link robot with a triangle
FOV range sensor.

We then simulated a series of different physical spaces, both
structured and randomly generated, for the robot to explore.
Four of them are shown in Fig. 6: (1) and (2) are two structured
environments; (3) and (4) are two unstructured environments
where obstacles are randomly generated, with Poisson distribu-
tion with density parameters 0.02 and 0.2 respectively.

We tested MER based view planner using differentλ values
(from 0.01 to 20) on these environments and recorded the plan-
ning results (the exploration rate of the C-space). For all these
environments, the planning results are really close to each other.
For example, for environment (1), the average standard devia-
tion of the known C-space percentages after each view is less
than 0.4%; for environment (2), this number is less than 0.6%.
Our conjecture is that for structured environments, the physi-
cal space regions are distinct from each other and geometries
play a bigger role than the stochastic effects. We also observed
that for largerλ values, bigger than10, the results deteriorate
marginally. This is maybe due to the fact that largerλ tends
to less weight those configurations at which the robot has lots
of unknown volume and thus ignores their effects, while their
cumulative effects may play a big role in the C-space explo-
ration. (This may be more so for the beginning of the explo-
ration when a lot of configurations are largely unknown.) For
environment (3) and (4), the average standard deviations are
3.3% and 3% respectively. It is obvious that stochastic compo-
nent plays a bigger role in these two randomly generated en-
vironments. We also found that for environment (2), the plan-
ning results are marginally (about 2% percent) better around
for λ = 0.01 ∼ 0.04, the range around the trueλ = 0.02 used
to generate the environment. For environment (3), the better
(about 1% percent) performance range isλ = 0.1 ∼ 1, still
around the trueλ = 0.2.

By these empirical results, we can conclude that MER crite-
rion for view planning is fairly robust with respect the choices
of the stochastic model parameterλ. Although we have seen

(1) (2)

(3) (4)

Fig. 6. The three different physical spaces used in the simulation: (1, 2)
structured environment, (3,4) random generated environment.

some improvements whenλ value used is closed to the environ-
ment characteristics, these improvements are fairly marginal.

V. CONCLUSION

In this report, we investigated several issues of MER crite-
rion based on generic range sensor models. First to justify the
usage of Poisson point process as our physical space model,
we showed that even with a simple extension, to add a size to
the probabilistic physical space cells, the MER computational
costs increase exponentially, due to a lack of closed form solu-
tion. Thus from a computational efficiency consideration, Pois-
son point is the right choice for MER. Second, we investigate
the monotonicity of C-space entropy reduction function based
Poisson point process. We showed that marginal entropy reduc-
tion is a monotone function: as robot (at the corresponding con-
figuration) intersects more with the sensor FOV, the expected
information gain is larger. This matches our intuitions well.
We also showed that for configurations at which the robot has
less unknown volume, the expected entropy reduction is larger.
This is called “boundary” property, reported previous for MER
based on point sensors. Last, to evaluate the stochastic mod-
eling effects on view planning qualities based MER criterion,
we conducted extensive simulations on both structured and ran-
domly generated environment. We showed empirically that the
view planning results are very robust to choices of the density
parameter of the Poisson point process model. We also found
some improvements in the view planning results when the den-
sity parameter is close to the true value used to generate the
environment. However, this improvement is really marginal.
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