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Abstract— In this paper, we consider the problem where a
point robot in a 2D or 3D environment equipped with an
omnidirectional range sensor of finite range D is asked to
inspect a set of surface patches, while minimizing the sum of
view cost, proportional to the number of viewpoints planned,
and the travel cost, proportional to the length of path traveled.
We call it the Metric View Planning Problem with Traveling Cost
and Visibility Range or Metric TVPP in short. Via an L-reduction
from the set covering problem to a two-dimensional Metric
TVPP, we show that the Metric TVPP cannot be approximated
within O(log m) ratio by any polynomial algorithm, where m

is the number of surface patches to cover. We then analyze a
natural two-level algorithm of solving first the view planning
problem to get an approximate solution, and then solving,
again using an approximation algorithm, the Metric traveling
salesman problem to connect the planned viewpoints. We show
this greedy algorithm has the approximation ratio of O(log m).
Thus, it asymptotically achieves the best approximation ratio
one can hope for.

I. I NTRODUCTION

Imagine that a robot is asked to autonomously scan the
artifacts in a historic site and build their complete surface
representations. The robotic artifact “documentation” orvir-
tual reality environment construction ability automates many
tedious work done primarily by human thus far. See [1] and
the references therein for some of the few existing works on
automating this process; and see Fig. 1 for a simple illustra-
tion. For such applications, especially in remote missions, the
time and energy spent are a critical factor for the tasks to be
successfully completed. Thus, we model this robotic object
inspection task as an optimization problem of minimizing the
corresponding total cost, a weighted sum of both the view
cost and the traveling cost. View cost corresponds to the
image processing, image registration and geometric model
construction after each view is taken and is proportional to
the number of viewpoint planned [16]. Travel cost is the
cumulative time and energy consumption due to the robot
movements and thus is proportional to the length of the
total tour the robot travels. We call it the problem of view
planning with combined view and traveling costs, denoted
by Traveling VPP[19]. Note that in [1] and the references
therein, this optimization of both view and traveling cost is
not addressed.
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Fig. 1. A Traveling VPP instance. It shows 6 planned sensor viewpoints
that totally cover the surface of the object of interest, andthe robot traveling
tour to realize them.

Traveling VPP combines elements of both the NP-
complete view planning problem (VPP) and the watchman
route problem, and thus generalizes both. Consequently,
Traveling VPP is NP-hard. VPP refers to planning the
minimum number of viewpoints to completely inspect an
object surface. It is considered in the robot vision area [16],
where often a sensor positioning system is used within a
well controlled and limited workspace. These formulations
do not consider the traveling cost of the robot, a critical cost,
particularly for large workspaces and remote autonomous
missions, where power consumption is a critical factor. On
the other hand, the watchman route problem, considered
in the computational geometry area [4], [17], asks for the
shortest tour to inspect the interior of a two-dimensional
polygonal region. It does not consider view cost, a critical
cost, particularly for the inspection tasks considered here,
where each sensor view and the consequent processing are
time-consuming.

For VPP, we refer to [16] for a detailed survey. Here we
mention a related theoretical work [15], in which the authors
show that VPP is reduced to the well-known NP-complete
set covering problem (SCP). SCP refers to, given a universe



of elements and some subsets of the universe, planning the
minimum number of such subsets, the union of which is
the universe. By regarding each object surface patch as an
element in a subset that a viewpoint can cover [15], VPP is
reduced to SCP. SCP plays a central role in the combinatorial
optimization area. Best known approximation algorithms1 for
SCP proceed greedily according to the (amortized) covering
cost, and have an approximation ratio ofO(log m), where
m is the number of elements in the universe [18].

There is some existing work on combining the view and
traveling cost in the literature, but not in a unified and global
fashion. For example, in [8], [11], the authors considered
a local version of the robot exploration problem, “to look
around a corner”, i.e., to detect an object hidden behind a
corner while minimizing the sum of the robot traveling dis-
tance and the sensor scan time. The problem is considerably
simpler since the goal is local, i.e., the objective is not to
cover all the object surfaces. In [6], the authors considered
the combined problem, however, in a “weak sense”, since no
view cost is considered, thus corresponding to a special case
of Traveling VPP. They proposed to solve the problem by
a decoupled two-level approach, i.e., to plan the minimum
number of viewpoints without considering robot traveling
cost first and then to solve approximately the Metric TSP
using the shortest path graph. They used a probabilistic
algorithm to plan the minimum number of viewpoints at
the first level. We refer [19] for a counter-example where
this two-level decoupled approach provides no performance
bound (with respect to the optimal solution cost), and can
perform arbitrarily poorly.

Our methodology is to design approximation algorithms
(used for NP-hard problems) for solving Traveling VPP that
guarantee performance bounds. In [19], we gave a unified
formulation of the problem with a single objective function
that combines both view and traveling costs, and proposed
approximation algorithms that are fast and guarantee per-
formances. To abstract out application related issues and
concentrate on the combinatorial nature of the problem, in
[19], we assume the set of viewpoints, the set of surface
patches, and the covering relation between them are given
in Traveling VPP. For given scenes, these viewpoints can
be derived from the aspect graph of the scene [3], or by
randomly sampling the sensor configuration space, the space
of the sensor configurations that uniquely determines the
viewpoints [10]. Traveling VPP also assumes a general graph
that connect the viewpoints is given. This graph would
essentially be a roadmap built in the configuration space
of the robot. This is a standard and well-studied technique
for robot motion planning [12], [14]. In [19], we developed
an approximation algorithm for Traveling VPP that has the
approximation ratio of the smaller of theview frequency,
defined as the maximum number of viewpoints that cover a
single surface patch, and a poly-log of the input size. We
refer [19] for a detailed coverage.

1Approximation algorithms are algorithms that run in polynomial time
and guarantee the algorithmic solution cost is within a certain ratio of the
optimal cost. The ratio is called the approximation ratio [18].

The traveling graph given in [19] is arbitrary and the edge
costs do not assume a metric. This implies that the robot used
can have arbitrary kinematics and geometry, for example a
mobile robot or a mobile-manipulator, while quite often a
mobile robot is used for inspection tasks (See Fig. 1) and
generally modeled as a point in the same environment as
the object. Also, the covering relations between viewpoints
and surface patches in Traveling VPP can be arbitrary. While
this models well range sensors of omnidirectional and infinite
field of view (subject to occlusions from obstacles), realistic
sensors usually have limited sensing range and often for
better inspection qualities, the range sensors is requiredto
be within a certain range to the surface patch to cover.

To address the above-mentioned realistic scenarios and
corresponding constraints, in this paper we introduce a spe-
cial case of Traveling VPP, in which a point robot equipped
with a omnidirectional range sensor with a certain range
D, is asked to inspect object surfaces in a two- or three-
dimensional environment. We call this special caseMetric
View Planning Problem with Traveling Cost and Visibility
Range, or Metric TVPP in short. Note that unlike the
general Traveling VPP, for Metric TVPP, the robot traveling
distances between viewpoints is the shortest path lengths
between them, and assume a metric, satisfying the triangular
inequality.

First, we analyze the inapproximability of Metric TVPP,
i.e., the best approximation ratio any polynomial algorithm
can achieve. We construct aL-reduction, a reduction from
one problem to the other while the inapproximability is
preserved, from the SCP to two-dimensional Metric TVPP
and show that Metric TVPP is log-inapproximable, i.e.,
Metric TVPP cannot be approximated withinO(log m) ratio
by any polynomial algorithm, wherem is the number of
surface patches to cover. Please see the appendix for a
quick recap of the inapproximability concept and L-reduction
method.

The question we ask in this paper is: Can we find an algo-
rithm for Metric TVPP with better approximation ratio than
the one we developed in [19] for the general Traveling VPP?
The answer is yes! And this better approximation algorithm
follows the two-level approach mentioned earlier, i.e., tofirst
solve the minimum number of viewpoints problem and then
solve the Metric TSP to connect them. Our contribution here
is to show that this two-level approach, although shown to
perform arbitrarily poorly for the general Traveling VPP in
[19], achieves an approximation ratio ofO(log m), which is
of the same order as the inapproximability result of Metric
TVPP. Intuitively, the key insight is that the sensor range
constraint in Metric TVPP implicitly couples the traveling
and view components: in order to cover a surface patch, the
robot has to travel to at least within the sensor range of it.
Thus the two-level approach is no longerdecoupled.

The rest of the paper is organized as follows: first, we give
notations and the problem formulation for the Metric TVPP;
second, we give a L-reduction to show the inapproximability
of Metric TVPP; we then recap the two-level algorithm in
[6] and analyze its approximation ratio; finally, we conclude



and discuss future work.

II. N OTATIONS AND PROBLEM FORMULATION

Let W denote the environment where both robot and
surface patches reside. We assumeW is either the two- or
three-dimensional Euclidean space populated by obstacles.
For any two pointsx1 andx2 in W , we denote the Euclidean
distance between them by‖x1, x2‖W .

We denote the set of all viewpoints byV and index
them by i. We denote the set of surface patches byS
and index them byj. We use the notationsi ∈ V and
j ∈ S to imply the “ith viewpoint” and “jth surface patch”,
respectively. Fori ∈ V , let S(i) denote the subset of the
surface patches that viewpointi covers; and forj ∈ S, let
V(j) denote the subset of viewpoints that cover surface patch
j. By definition, the necessary condition for a viewpointi

to cover a surface patchj is that the distance between them
is upper bounded byD. With a slight abuse of notation, we
use‖i, j‖W to denote this distance. Formally, for a surface
patchj that occupies a regionR(j) (of co-dimension 1) in
W , the distance‖i, j‖W is the supremum of the distances
between points belonging toR(j) and the viewpointi, i.e.,
‖i, j‖W = supx∈R(j) ‖x, i‖W . Let G = (V , E) denote the
traveling graph. The edge costce, e = (i1, i2) between two
viewpointsi1, i2 ∈ V is the shortest distance the robot travels
between them. This implies that any free path betweeni1
an i2 has length lower bounded byce For a subsetU of
viewpoints, i.e.,U ⊆ V , let Tour(U) and‖Tour(U)‖ denote
a tour connecting these viewpoints and its total length, i.e.,
the sum of edges costs on the tour, respectively. Letwv and
wp denote the unit view cost, or cost per viewpoint, and
the unit traveling cost, or cost per unit traveling distance
respectively. Let|A| denote the cardinality of setA.

Metric TVPPis to plan a subset of viewpoints, denoted by
V ′, and a connecting tourTour(V ′), such that the total cost,
wv|V

′|+ wp‖Tour(V ′)‖, is minimized, under the constraint
that all the surface patches are covered, i.e.,∀j ∈ S, V(j)∩
V ′ 6= ∅.

III. I NAPPROXIMABILITY OF Metric TVPP

In this section we give an L-reduction from SCP to the
Metric TVPP. Given an arbitrary SCP instance, we construct
a two-dimensional Metric TVPP instance where the unit view
cost is1 and the traveling cost is negligible, i.e.,wp ≪ wv =
1. In the constructed Metric TVPP instance, the number of
viewpoints and surface patches are respectively the same as
the number of subsets and elements in the SCP instance. Any
solution to the constructed Metric TVPP instance correspond
to a solution to the SCP instance with the same cost. This
L-reduction extends the inapproximability result for SCP to
Metric TVPP.

Theorem 1:Metric TVPP isO(log m) inapproximable.
Proof: Given an arbitrary SCP instance, we denote the

universe of elements byS = {sj, j = 1, . . . , m}, and a
collection of its subsets byV = {vi : vi ⊆ S, j = 1, . . . , n}.
We construct a two-dimensional Metric TVPP instance as in
Fig. 2. We first draw a circleC of radiusRC and letL be a

diameter dividing the boundary of the circle into two halves.
For one half of the circle, we divide it equally into three
parts as shown and putm equally-sized surface patches in the
perimeter of the middle part, each of which corresponds to
an element of the universe of the SCP instance. This middle
part can guarantee any viewpoint surface relationships as we
show below. The size of each is less thanRCπ

3m
. We denote

the surface patches using the same labels as those for the
elements in the SCP instance,sj , j = 1, . . . , m, to imply this
correspondence. We then create viewpoints, corresponding
to the subsets in the SCP instance, and put them onL

with distances between two consecutive ones greater than
2RO. (See Fig. 2(c).) We construct a half ring (cut by
L) of obstacles of radiusRO and negligible thickness. To
accommodaten viewpoints, we require thatn ·2RO < 2RC .
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Fig. 2. Reduction from an arbitrary SCP instance to a VPP instance. See
the text for the explanation.

For the half ring of obstacles around each viewpoint,
we cut some openings, such that the viewpoint covers only
the surface patches corresponding to those elements in the
viewpoint’s corresponding subset. For example, in Fig. 2(b),
for viewpoint vi corresponding to subset{s1, s2, sm}, we
cut three openings such that only the three surface patches
corresponding tos1, s2, and sm are visible fromvi. As
shown in Fig. 2(c), for viewpointvi, the obstacles around
viewpoints other thanvi cannot occlude the shaded area from
vi. The area they can occlude is bounded by the two angles
α1 and α2, andα1, α2 ≤ tan−1 RO

2RO
= 30o. Thus, we can

achieve any covering relationships betweenvi and the surface
patches if the patches are put on the part of circleC in the
shade area. By putting the surfaces patches on the common
“shaded areas” of all viewpoints, we can construct any SCP
instance. By simple planar geometries, this common area is
bounded by the dotted lines fromv1 andvn respectively, and
thus occupies the middle part as shown.

The resulting Metric TVPP instance is to plan the mini-
mum number of viewpoints and a connecting tour that cover
all the surface patches. Since the traveling cost is negligible,
the cost to minimize is just the number of viewpoints
planned. The solution to the Metric TVPP instance implies



a solution to the SCP instance, i.e., to choose the subsets
corresponding to those viewpoints chosen. The two solutions
have the same cost. Thus, the L-reduction from SCP to
Metric TVPP is constructed.

The above reduction implies that Metric TVPP is at least
as hard as the SCP, and any approximation algorithm for
the Metric TVPP cannot have a better approximation ratio
than the best approximation ratio for the SCP. Thus the
inapproximability result for SCP [7] implies this lemma.

IV. T WO-LEVEL ALGORITHM FOR Metric TVPP

In this section, we give the the pseudo code of a two-level
algorithm forMetric TVPP.

Algorithm 1: Two-level Algorithm forMetric TVPP
Step 1. Solve the SCP greedily:

Iteratively choose the viewpoint that covers the
mostuncoveredsurface patches until all surface patches
are covered.

Output the chosen viewpoint setV ′.
Step 2. Solve the Metric TSP to connectV ′

Construct the shortest path graphG′ on V ′, i.e.,
the complete graph onV ′ where the edge cost is the
corresponding shortest path length onG

Use Christofides’ algorithm [5] to construct the
tour on G′ to connectV ′ 2.

This algorithm solves the problem in two steps. In the first
step, it solves the VPP or SCP part of Metric TVPP greedily.
In the second step, it solves the Metric TSP to connect these
picked viewpoints using the Christofides’ algorithm [5].

V. A LGORITHM ANALYSIS

To analyze the approximation ratio of the two-level al-
gorithm, Algorithm 1, we present an alternative algorithm,
Algorithm 2, whose performance is no better than Algo-
rithm 1. We emphasize that Algorithm 2 is only for analysis
purpose and does not need to be implemented. We then give
the approximation ratio of this alternative algorithm. This
ratio thus also serves as the approximation ratio for Metric
TVPP. In the following, we give the algorithm after a few
definitions, and then analyze its performance.

A. Alternative algorithm

For any surface patchj, any two covering viewpoints must
lie within 2D distance of each other,∀i1, i2 ∈ V(j), e =
(i1, i2), ce ≤ 2D. This is because there exists a free path
betweeni1 and i2 having distance less than2D, as shown
in Fig. 3. This path follows first the free visibility line from
i1 to surfacej, and then the visibility line fromj to i2. For
viewpointi, we define the free region within its2D distance,
i.e., the set of pointsi can reach using the shortest path of
length less than2D, thedomainof i. We call two viewpoints
dependentif one lies in the other’s domain, andindependent
otherwise.

2Christofides’ algorithm first constructs the minimum spanning treeT

on G′; second, it computes the minimum cost perfect matching between
vertices ofT with odd degrees; third, it adds edges corresponding to this
matching toT to make it Eulerian; last, it computes a tour on the resulting
Eulerian graph [5].

surface patchj
free path

viewpoint i1

i2

2D

D
domain ofi1

Fig. 3. Virtual domain and dependence. Viewpointsii andi2 are dependent
and have a free path of length≤ 2D, comprising of solid line segments
joining the two viewpoints.

In the following, we give the pseudo codes of the alterna-
tive algorithm.

Algorithm 2: Alternative Algorithm forMetric TVPP
Step 1. Solve the SCP greedily to getV ′.

(This step is exactly the same as Step 1 of the
two-level algorithm Algorithm 1.)

Step 2. Choose independent viewpoints:
Iteratively choose a viewpoint fromV ′ that is

independentfrom already chosen ones.
Output the chosen viewpoint setV ′′.

Step 3. Solve the Metric TSP to connectV ′′:
Construct the shortest path graphG′′ on V ′′.
Use Christofides’ algorithm [5] to construct the

tour on G′′ to connectV ′′.
Step 4. Connect the viewpoints inV ′ \ V ′′ to its nearest

neighbor inV ′′ using the shortest path onG.
Note that Algorithm 2 chooses exactly the same view-

points,V ′, as Algorithm 1. However, it constructs the tour
differently: it first constructs the tour to connect only the
viewpoints inV ′′, calledcenters; and forV ′\V ′′, it constructs
“detours” to their nearest centers. So clearly, the solution cost
by Algorithm 2 is no better than that by Algorithm 1.

B. Analysis

In this section, after giving some notations, we first show
that the optimal solution to Metric TVPP has to pass through
as least a viewpoint in every domain of the centers, Lemma 2.
This observation helps lower bound the optimal solution cost,
Lemma 3, and upper bound the algorithmic solution cost,
Lemma 4. Combining both bounds gives us the algorithmic
approximation ratio.

Let OPTTV PP denote the optimal solution cost to Metric
TVPP. We denote the algorithmic solution cost (Algorithm 2)
by cost′, the view cost and traveling parts of which are
denoted bycost′view and cost′travel respectively. We use
OPTSCP to denote the optimal SCP solution cost to cover



all the surface patches, i.e.,

OPTSCP = min
U⊆V: ∪

i∈U

S(i)=S
|U|.

We call the tour that connects at least one point from every
domain of the centers adomain tour. We useOPTDOMtour

to denote the shortest distance of such tours.
Lemma 2:The tour in the optimal solution to Metric

TVPP has to visit the domains of all centers, and is hence a
feasible domain tour.

Proof: For any centeri ∈ V ′′, we arbitrarily pick one
surface patch from its surface patch setj ∈ S(i). Note
that due to visibility range constraints and the triangular
inequality, any viewpointi′ of surface patchj’s viewpoint
set, i.e.,∀i′ ∈ V(j), has to lie in the domain ofi, i.e.,
‖i, i′‖ ≤ ‖j, i‖ + ‖j, i′‖ ≤ D + D = 2D. At least one
viewpoint fromV(j) is chosen and visited by the constructed
tour.

Lemma 2 leads to the following upper bound result for
the cost of the optimal solution to Metric TVPP.

Lemma 3:The cost of the optimal solution to Metric
TVPP is at least the sum of the minimum view cost (ignoring
traveling) and the optimal tour cost to visit every domain of
the centers, i.e.,

OPTTV PP ≥ wvOPTSCP + wpOPTDOMtour (1)

Proof: The viewpoint set chosen by the optimal solution
to Metric TVPP is a feasible solution to the corresponding
SCP. Lemma 2 shows that the tour chosen is a domain
tour. Hence their costs are lower bounded byOPTSCP and
OPTDOMtour , respectively.

Also we givw the upper bound result for the cost of the
algorithmic solution.

Lemma 4:The algorithmic solution costcost′ is at most
wvOPTSCP ·(1+6D

wp

wv
)O(log m)+wpOPTDOMtour ·1.5.

Proof: We use the greedy SCP algorithm to getV ′. Its
approximation ratio [18] implies:

cost′view = wv · |V ′| ≤ wv · OPTSCP · O(log m) (2)

We use Christofides’ algorithm [5] to get a tour of all the
centers inV ′′. This tour is at most 1.5 times the cost of the
optimal Metric TSP solution to connect the centers. Since we
do not know the value of the latter, we will instead use the
cost of another feasible Metric TSP solution to connect the
centers. This solution is to first travel on the optimal domain
tour and then detour to the centers (and back) if needed,
as shown by the dotted path in Fig. 4. By the definition of
the domain tour, for any center, there must exist a point on
the tour within its2D distance. This implies that the tour
constructed in Step 3 of Algorithm 2 has length at most
1.5(OPTDOMtour + |V ′′| · 4D). The4D factor corresponds
to traveling from such a point on the domain tour to the
center and then traveling back.

Further detouring (if needed) from a center to any of its
dependent viewpoints inV ′ \ V ′′, Step 4 of Algorithm 2,

incurs again a traveling distance of at most4D. So the overall
traveling cost of the algorithmic solution is upper bounded
as follow:

cost′travel ≤ wp · 1.5(OPTDOMtour + 4D|V ′′|)

+wp · 4D(|V ′| − |V ′′|)

≤ 1.5wp(OPTDOMtour + 4D|V ′|). (3)

The factor 1.5 above is due to the approximation ratio of
the Christofides’ algorithm [5].

≤ 2D ≤ 2D

≤ 2D

centeri1 ∈ V ′

i2 ∈ V ′ \ V ′′

tour with costOPTDOMtour

. . .

Fig. 4. A feasible Metric TVPP solution that takes the optimal domain tour
and detours first to the centers, and then to rest of the planned viewpoints .

In conclusion, using both Eqs. 2,3, the total cost of the
algorithmic solution is upper bounded as follows:

cost′ = cost′travel + cost′view

≤ wvOPTSCP · (1 + 6D
wp

wv

)O(log m)

+1.5wpOPTDOMtour (4)

With the upper and lower bounds of the optimal and
algorithmic solution costs to Metric TVPP, we are ready to
prove the approximation ratio result for Algorithm 2.

Theorem 5:The approximation ratio of Algorithm 1 is
O(log m).

Proof: As mentioned before, the Metric TVPP solution
by Algorithm 2 has no better cost than that by Algorithm 1.
By Theorem 1, the best possible approximation algorithm has
approximation ratio ofO(log m), it suffices to prove that the
approximation ratio of Algorithm 2 isO(log m).

Combining the lower bound for the optimal solution
cost OPTTV PP , Lemma 3, and the upper bound for the
algorithmic solution costcost′, Lemma 4, it is easy to show
that the approximation ratio of Algorithm 2 ismax{1.5, (1+
6D

wp

wv
)O(log m)} = O(log m).



VI. CONCLUSION

In this paper, we introduced a special case of Traveling
VPP where the viewpoints (due to the point robot assump-
tion) and surface patches are in the same metric space
and the sensor is constrained by a certain visibility range.
We proposed a two-level algorithm using the decoupled
approach in [6]. It greedily solves VPP at the first step;
and use Christofides’ algorithm [5] to solve the Metric
TSP to construct the tour of the viewpoints chosen at the
first step. We showed that the approximation ratio of this
algorithm is in the order of the logarithm of the number
of surface patches, which matches (in the same order) the
inapproximability result of Metric TVPP. The analysis was
done by giving the approximation ratio of an alternative
algorithm that has no better solution cost.

For future work, we are interested in generalizing Metric
TVPP to its unknown case, where the surface patches to
cover are not given in advance but generated online, and
designingcompetitivealgorithms. Competitive algorithms for
online problems, where the inputs are iteratively given in an
online fashion, are polynomial algorithms with guaranteed
performance w.r.t. the offline optimal cost, the optimal cost
to an offline problem where all the inputs are given in
advance [2]. This corresponds to the robot exploration sce-
narios where the knowledge of the environment is (partially)
unavailable.

APPENDIX: INAPPROXIMABILITY AND L-REDUCTION

Although different NP-complete optimization problems
are considered at the same complexity level in terms of
solving for the optimal solutions, they can have different
difficulty levels in obtaining approximation solutions. This
concept is quantified by theinapproximabilityor the hard-
ness of approximation, which refers to a problem specific
constant or a function of the input size as the lower bound
on the approximation ratio of any polynomial algorithm,
assuming some generally-believed complexity class relations,
for exampleP 6= NP . For example, the inapproximability
result for SCP says that the optimal solution to SCP cannot
be approximated within its(1 − o(1)) lnn ratio unless NP
admits quasi-polynomial algorithms [7].

We use the simplest form of a common technique, called
L-reduction, to establish the inapproximability result for
Metric TVPP, which works similarly as the reduction method
[9] used in proving NP-completeness results. Rather than
covering the theory, we refer to [13] for a detailed coverage
on L-reduction. An intuitive explanation of the form we use
is as follows. Suppose the problem of interest isP1 and we
know the inapproximability result for problemP2. If, given
an arbitrary instance ofP2, we can construct in polynomial
time an instance ofP1 such that the optimal solution costs
of the two instances are the same, and for any solution
to the P2 instance, we can construct in polynomial time
a solution to theP1 instance with the same cost, we can
claim that the inapproximability result ofP2 extends toP1.
Otherwise, if there exists an algorithm toP1 with a better
approximation ratio, we can recover a better approximation

solution to anyP2 instance by first solving the constructed
P1 instance using this better algorithm. This is contradictory
to the inapproximability result we know forP1. Note that if
the inapproximability result depends on the input size, for
example that for SCP islog n where n is the number of
elements in the universe, we will have to introduce the size
difference between the constructedP1 instance and theP2

instance toP1’s inapproximability result. However, this is
not the case for our reduction given in Section III where
the given SCP instance and the constructed Metric TVPP
instance have the same number of surface patches.
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