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Abstract—In this paper, we consider the problem where a
point robot in a 2D or 3D environment equipped with an Viewpoinw."'

omnidirectional range sensor of finite range D is asked to \\
g -
6o 0

robot traveling paiﬁ“a_

inspect a set of surface patches, while minimizing the sum of
view cost, proportional to the number of viewpoints planned s
and the travel cost, proportional to the length of path travded. ] \

\
We call it the Metric View Planning Problem with Traveling Cost ; P biect of
and Visibility Range or Metric TVPP in short. Viaan L-reduction 1 e Cterest
from the set covering problem to a two-dimensional Metric Y <l
TVPP, we show that the Metric TVPP cannot be approximated robot Stan\ ~—_

within O(log m) ratio by any polynomial algorithm, where m position Goo e
is the number of surface patches to cover. We then analyze a
natural two-level algorithm of solving first the view planning

problem to get an approximate solution, and then solving,

again using an approximation algorithm, the Metric traveling

salesman problem to connect the planned viewpoints. We show

this greedy algorithm has the approximation ratio of O(log m).

Thus, it asymptotically achieves the best approximation rdio  Fig. 1. A Traveling VPP instance. It shows 6 planned sensewpoints
one can hope for. that totally cover the surface of the object of interest, tredrobot traveling

tour to realize them.
I. INTRODUCTION

Imagine that a robot is asked to autonomously scan the
artifacts in a historic site and build their complete sugfac Traveling VPP combines elements of both the NP-
representations. The robotic artifact “documentationvior ~complete view planning problem (VPP) and the watchman
tual reality environment construction ability automatesnyr  foute problem, and thus generalizes both. Consequently,
tedious work done primarily by human thus far. See [1] andfaveling VPP is NP-hard. VPP refers to planning the
the references therein for some of the few existing works ofinimum number of viewpoints to completely inspect an
automating this process; and see Fig. 1 for a simple illustr@bject surface. It is considered in the robot vision ared,[16
tion. For such applications, especially in remote missitims  Where often a sensor positioning system is used within a
time and energy Spent are a critical factor for the tasks to ty@” controlled and limited Workspace. These formulations
successfully completed. Thus, we model this robotic objeéto not consider the traveling cost of the robot, a criticaitco
inspection task as an optimization problem of minimizing th Particularly for large workspaces and remote autonomous
corresponding total cost, a weighted sum of both the vieWpissions, where power consumption is a critical factor. On
cost and the traveling cost. View cost corresponds to tH8€e other hand, the watchman route problem, considered
image processing, image registration and geometric modél the computational geometry area [4], [17], asks for the
construction after each view is taken and is proportional t8hortest tour to inspect the interior of a two-dimensional
the number of viewpoint planned [16]. Travel cost is thePolygonal region. It does not consider view cost, a critical
cumulative time and energy consumption due to the rob&®st, particularly for the inspection tasks considereceher
movements and thus is proportional to the length of thwhere each sensor view and the consequent processing are
total tour the robot travels. We call it the problem of viewtime-consuming.
planning with combined view and traveling costs, denoted For VPP, we refer to [16] for a detailed survey. Here we
by Traveling VPP[19]. Note that in [1] and the referencesmention a related theoretical work [15], in which the author
therein, this optimization of both view and traveling cost i show that VPP is reduced to the well-known NP-complete
not addressed. set covering problem (SCP). SCP refers to, given a universe



of elements and some subsets of the universe, planning theThe traveling graph given in [19] is arbitrary and the edge
minimum number of such subsets, the union of which isosts do not assume a metric. This implies that the robot used
the universe. By regarding each object surface patch as ean have arbitrary kinematics and geometry, for example a
element in a subset that a viewpoint can cover [15], VPP imobile robot or a mobile-manipulator, while quite often a
reduced to SCP. SCP plays a central role in the combinatorialobile robot is used for inspection tasks (See Fig. 1) and
optimization area. Best known approximation algorithfies  generally modeled as a point in the same environment as
SCP proceed greedily according to the (amortized) coverinbe object. Also, the covering relations between viewpmint
cost, and have an approximation ratio @flogm), where and surface patches in Traveling VPP can be arbitrary. While
m is the number of elements in the universe [18]. this models well range sensors of omnidirectional and it&ini
There is some existing work on combining the view andield of view (subject to occlusions from obstacles), rdalis
traveling cost in the literature, but not in a unified and gllob sensors usually have limited sensing range and often for
fashion. For example, in [8], [11], the authors considereBetter inspection qualities, the range sensors is requaed
a local version of the robot exploration problem, “to lookbe within a certain range to the surface patch to cover.
around a corner”, i.e., to detect an object hidden behind a To address the above-mentioned realistic scenarios and
corner while minimizing the sum of the robot traveling dis-corresponding constraints, in this paper we introduce a spe
tance and the sensor scan time. The problem is considerablgl case of Traveling VPP, in which a point robot equipped
simpler since the goal is local, i.e., the objective is not tavith a omnidirectional range sensor with a certain range
cover all the object surfaces. In [6], the authors considlereD, is asked to inspect object surfaces in a two- or three-
the combined problem, however, in a “weak sense”, since rdimensional environment. We call this special caéetric
view cost is considered, thus corresponding to a special cagiew Planning Problem with Traveling Cost and Visibility
of Traveling VPP. They proposed to solve the problem bjRange or Metric TVPP in short. Note that unlike the
a decoupled two-level approach, i.e., to plan the minimurgeneral Traveling VPP, for Metric TVPP, the robot traveling
number of viewpoints without considering robot travelingdistances between viewpoints is the shortest path lengths
cost first and then to solve approximately the Metric TSPetween them, and assume a metric, satisfying the triangula
using the shortest path graph. They used a probabilisticequality.
algorithm to plan the minimum number of viewpoints at First, we analyze the inapproximability of Metric TVPP,
the first level. We refer [19] for a counter-example wheré.e., the best approximation ratio any polynomial algarith
this two-level decoupled approach provides no performan@an achieve. We constructlareduction a reduction from
bound (with respect to the optimal solution cost), and caone problem to the other while the inapproximability is
perform arbitrarily poorly. preserved, from the SCP to two-dimensional Metric TVPP
Our methodology is to design approximation algorithma&and show that Metric TVPP is log-inapproximable, i.e.,
(used for NP-hard problems) for solving Traveling VPP thametric TVPP cannot be approximated withii(log m) ratio
guarantee performance bounds. In [19], we gave a unifig®y any polynomial algorithm, where: is the number of
formulation of the problem with a single objective functionsurface patches to cover. Please see the appendix for a
that combines both view and traveling costs, and proposegick recap of the inapproximability concept and L-redoiati
approximation algorithms that are fast and guarantee peanethod.
formances. To abstract out application related issues andThe question we ask in this paper is: Can we find an algo-
concentrate on the combinatorial nature of the problem, irithm for Metric TVPP with better approximation ratio than
[19], we assume the set of viewpoints, the set of surfaatie one we developed in [19] for the general Traveling VPP?
patches, and the covering relation between them are giv@he answer is yes! And this better approximation algorithm
in Traveling VPP. For given scenes, these viewpoints caollows the two-level approach mentioned earlier, i.e fitst
be derived from the aspect graph of the scene [3], or bsolve the minimum number of viewpoints problem and then
randomly sampling the sensor configuration space, the spasmve the Metric TSP to connect them. Our contribution here
of the sensor configurations that uniquely determines the to show that this two-level approach, although shown to
viewpoints [10]. Traveling VPP also assumes a general grapierform arbitrarily poorly for the general Traveling VPP in
that connect the viewpoints is given. This graph would19], achieves an approximation ratio 6flog m), which is
essentially be a roadmap built in the configuration spaasf the same order as the inapproximability result of Metric
of the robot. This is a standard and well-studied techniqueVPP. Intuitively, the key insight is that the sensor range
for robot motion planning [12], [14]. In [19], we developedconstraint in Metric TVPP implicitly couples the traveling
an approximation algorithm for Traveling VPP that has thand view components: in order to cover a surface patch, the
approximation ratio of the smaller of thdew frequency robot has to travel to at least within the sensor range of it.
defined as the maximum number of viewpoints that cover @hus the two-level approach is no longtgcoupled
single surface patch, and a poly-log of the input size. We The rest of the paper is organized as follows: first, we give
refer [19] for a detailed coverage. notations and the problem formulation for the Metric TVPP;
1 o . . _ . second, we give a L-reduction to show the inapproximability
Approximation algorithms are algorithms that run in polgrial time . . .
and guarantee the algorithmic solution cost is within aatertatio of the of Metric TVPF, we then recap the two-level algomhm in
optimal cost. The ratio is called the approximation ratig][1 [6] and analyze its approximation ratio; finally, we conaud



and discuss future work. diameter dividing the boundary of the circle into two halves
For one half of the circle, we divide it equally into three
parts as shown and put equally-sized surface patches in the
Let W denote the environment where both robot angerimeter of the middle part, each of which corresponds to
surface patches reside. We assuwieis either the two- or an element of the universe of the SCP instance. This middle
three-dimensional Euclidean space populated by obstaclgart can guarantee any viewpoint surface relationshipseas w
For any two pointg; andzs in W, we denote the Euclidean show below. The size of each is less th%g}. We denote
distance between them b1, 22y . the surface patches using the same labels as those for the
We denote the set of all viewpoints by and index elementsinthe SCP instance,j = 1,...,m, to imply this
them by i. We denote the set of surface patches &y correspondence. We then create viewpoints, corresponding
and index them byj. We use the notations € V and to the subsets in the SCP instance, and put themZon
j € S to imply the “ith viewpoint” and %th surface patch”, with distances between two consecutive ones greater than
respectively. Fori € V, let S(i) denote the subset of the 2Ry. (See Fig. 2(c).) We construct a half ring (cut by
surface patches that viewpoihtcovers; and forj € S, let L) of obstacles of radiufo and negligible thickness. To
V(j) denote the subset of viewpoints that cover surface pateétcommodate viewpoints, we require that-2Ro < 2Rc.
4. By definition, the necessary condition for a viewpoint

II. NOTATIONS AND PROBLEM FORMULATION

to cover a surface patchis that the distance between them Coverss,
is upper bounded by. With a slight abuse of notation, we L

- - || coversssy
usel|s, j||w to denote this distance. Formally, for a surface Ro

patch; that occupies a regioR(j) (of co-dimension 1) in
W, the distance|i, j||w is the supremum of the distances
between points belonging t&(j) and the viewpoint, i.e.,
7, illw = sup,er(j) llz, illw. Let G = (V, E) denote the
traveling graph. The edge cost, e = (i1,i2) between two
viewpointsiy, io € V is the shortest distance the robot travels
between them. This implies that any free path betwaen
an i, has length lower bounded by. For a subset/ of
viewpoints, i.e.ld C V, let Tour(U4) and||Tour(U)| denote
a tour connecting these viewpoints and its total length, i.e
the sum of edges costs on the tour, respectivelyatetnd
w, denote the unit view cost, or cost per viewpoint, and. , , _ ,
the unit traveling cost, or cost per unit traveling distancé{g' 2. Reduction from an arbitrary SCP instance to a VPRafitt. See
! e text for the explanation.
respectively. Let.A| denote the cardinality of sed.
Metric TVPPIs to plan a subset of viewpoints, denoted by
V', and a connecting todfour(V’), such that the total cost, For the half ring of obstacles around each viewpoint,
wy|V'| + w, || Tour(V')|, is minimized, under the constraint we cut some openings, such that the viewpoint covers only
that all the surface patches are covered, ¥¢.< S, V(j)n the surface patches corresponding to those elements in the
V' £ 0. viewpoint's corresponding subset. For example, in Fig),2(b
) for viewpoint v; corresponding to subseltsy, s2, s, }, We
Il. | NAPPROXIMABILITY OF Metric TVPP cut three openings such that only the three surface patches
In this section we give an L-reduction from SCP to thecorresponding tos;, sz, and s,, are visible fromv;. As

Metric TVPP. Given an arbitrary SCP instance, we construshown in Fig. 2(c), for viewpoin;, the obstacles around
a two-dimensional Metric TVPP instance where the unit viewiewpoints other tham; cannot occlude the shaded area from

cost is1 and the traveling cost is negligible, i.es, < w, = v;. The area they can occlude is bounded by the two angles
1. In the constructed Metric TVPP instance, the number af; andaz, anday, ap < tan™! 22 = 30°. Thus, we can

viewpoints and surface patches are respectively the sameasieve any covering relationships betweeand the surface

the number of subsets and elements in the SCP instance. Apgtches if the patches are put on the part of cit¢len the

solution to the constructed Metric TVPP instance corredporshade area. By putting the surfaces patches on the common

to a solution to the SCP instance with the same cost. Thishaded areas” of all viewpoints, we can construct any SCP

L-reduction extends the inapproximability result for S@P t instance. By simple planar geometries, this common area is

Metric TVPP. bounded by the dotted lines from andw,, respectively, and
Theorem 1:Metric TVPP isO(logm) inapproximable.  thus occupies the middle part as shown.

Proof: Given an arbitrary SCP instance, we denote the The resulting Metric TVPP instance is to plan the mini-
universe of elements by = {s;,j = 1,...,m}, and a mum number of viewpoints and a connecting tour that cover
collection of its subsets by = {v; : v; CS,j=1,...,n}. all the surface patches. Since the traveling cost is néxgdigi
We construct a two-dimensional Metric TVPP instance as ithe cost to minimize is just the number of viewpoints
Fig. 2. We first draw a circl€' of radiusRc and letL be a planned. The solution to the Metric TVPP instance implies



a solution to the SCP instance, i.e., to choose the subsets
corresponding to those viewpoints chosen. The two solstion g
have the same cost. Thus, the L-reduction from SCP to
Metric TVPP is constructed.

The above reduction implies that Metric TVPP is at least
as hard as the SCP, and any approximation algorithm for
the Metric TVPP cannot have a better approximation ratio
than the best approximation ratio for the SCP. Thus the
inapproximability result for SCP [7] implies this lemma

IV. TWO-LEVEL ALGORITHM FOR Metric TVPP

In this section, we give the the pseudo code of a two-level
algorithm for Metric TVPR N
Algorithm 1: Two-level Algorithm foMetric TVPP 2D"
Step 1. Solve the SCP greedily: R
Iteratively choose the viewpoint that covers the 77

mostuncoveredsurface patches until all surface patches Fig. 3. Virtual domain and dependence. Viewpoiiitaindiz are dependent
are covered and have a free path of length 2D, comprising of solid line segments
’ joining the two viewpoints.

Output the chosen viewpoint sgt.
Step 2. Solve the Metric TSP to conn¥tt
Construct the shortest path graghf on V', i.e.,

the complete graph oW’ where the edge cost is the In the following, we give the pseudo codes of the alterna-
corresponding shortest path length ¢h tive algorithm.
Use Christofides’ algorithm [5] to construct the Algorithm 2: Alternative Algorithm foMetric TVPP
tour on G’ to connect)’ 2. Step 1. Solve the SCP greedily to @&t
This algorithm solves the problem in two steps. In the first (This step is exactly the same as Step 1 of the

step, it solves the VPP or SCP part of Metric TVPP greedilywo-level algorithm Algorithm 1.)
In the second step, it solves the Metric TSP to connect these Step 2. Choose independent viewpoints:
picked viewpoints using the Christofides’ algorithm [5]. Iteratively choose a viewpoint frod’ that is
independenfrom already chosen ones.
Output the chosen viewpoint sgt’.

To analyze the approximation ratio of the two-level al-  Step 3. Solve the Metric TSP to conn¥¢t
gorithm, Algorithm 1, we present an alternative algorithm, Construct the shortest path gragh” on V"
Algorithm 2, whose performance is no better than Algo- Use Christofides’ algorithm [5] to construct the
rithm 1. We emphasize that Algorithm 2 is only for analysigour on G” to connect)”.
purpose and does not need to be implemented. We then give Step 4. Connect the viewpoints ¥ \ V" to its nearest
the approximation ratio of this alternative algorithm. Jhi neighbor inV” using the shortest path of.
ratio thus also serves as the approximation ratio for Metric Note that Algorithm 2 chooses exactly the same view-
TVPP. In the following, we give the algorithm after a fewpoints,)’, as Algorithm 1. However, it constructs the tour
definitions, and then analyze its performance. differently: it first constructs the tour to connect only the
. . viewpoints in)”, calledcentersand forV’\ V", it constructs
A. Alternative algorithm “detours” to their nearest centers. So clearly, the sahutimst

For any surface patch any two covering viewpoints must by Algorithm 2 is no better than that by Algorithm 1.
lie within 2D distance of each otheY/ii,i, € V(j),e =

(i1,42), ce < 2D. This is because there exists a free patiB. Analysis
betweeni; andi, having distance less thalhD, as shown
in Fig. 3. This path follows first the free visibility line fro
11 to surfacej, and then the visibility line frony to i5. For
viewpointi, we define the free region within i2sD distance, 1
i.e., the set of point$ can reach using the shortest path OL
length less tha D, thedomainof ;. We call two viewpoints
dependenif one lies in the other's domain, anddependent
otherwise.

V. ALGORITHM ANALYSIS

In this section, after giving some notations, we first show
that the optimal solution to Metric TVPP has to pass through
as least a viewpoint in every domain of the centers, Lemma 2.
his observation helps lower bound the optimal solutiort,cos
emma 3, and upper bound the algorithmic solution cost,
Lemma 4. Combining both bounds gives us the algorithmic
approximation ratio.

Let OPTry pp denote the optimal solution cost to Metric
2Christofides’ algorithm first constructs the minimum spagniree”  TVPP. We denote the algorithmic solution cost (Algorithm 2)

on G’; second, it computes the minimum cost perfect matching detw by cost'. the view cost and traveling parts of which are
vertices of T" with odd degrees; third, it adds edges corresponding to this ' ,

, .
matching toT" to make it Eulerian; last, it computes a tour on the resultingdenOted bycost;.,, and CO_Sttravel reSpeC.t'Vely' We use
Eulerian graph [5]. OPTscp to denote the optimal SCP solution cost to cover



all the surface patches, i.e., incurs again a traveling distance of at mést. So the overall
. traveling cost of the algorithmic solution is upper bounded
OPTscp = ugy;%lg(i)zg |Z/{| as follow:

€U

We call the tour that connects at least one point from every

domain of the centers domain tour We useO PT o atour o8ty aver < Wy 1L.5(OPTpoMtour +4D|V")
 Cemma 2-The. tour in the optimal Soliion to Metic Fup 4DV = V)
' y < 15w, (OPTporsiour +4DPV']).  (3)

TVPP has to visit the domains of all centers, and is hence a
feasible domain tour.

Proof: For any centei € V", we arbitrarily pick one
surface patch from its surface patch gete S(i). Note
that due to visibility range constraints and the triangular
inequality, any viewpoint’ of surface patchy’s viewpoint
set, i.e.,¥i’ € V(j), has to lie in the domain of, i.e.,
lli, 3" < ||7,il| + |14,%]] < D+ D = 2D. At least one
viewpoint fromV(j) is chosen and visited by the constructed
tour. ]

Lemma 2 leads to the following upper bound result for
the cost of the optimal solution to Metric TVPP.

Lemma 3:The cost of the optimal solution to Metric o
TVPP is at least the sum of the minimum view cost (ignoring <2D ;" <2D
traveling) and the optimal tour cost to visit every domain of L
the centers, i.e.,

OPTrypp > w,OPTscp + wp,OPTporiour (1)

The factor 1.5 above is due to the approximation ratio of
the Christofides’ algorithm [5].

ip € V\ V"

Proof: The viewpoint set chosen by the optimal solution tour with CostOPTportour

to Metric TVPP is a feasible solution to the corresponding

SCP. Lemma 2 shows that the tour chosen is a domalﬁig. 4. A feasible Metric TVPP solution that takes the opfih@main tour
! . and detours first to the centers, and then to rest of the plaviegvpoints .

tour. Hence their costs are lower bounded®¥7Tscp and

OPTpontour, rESPECtively. [ |
Also we givw the upper bound result for the cost of the In conclusion, using both Egs. 2,3, the total cost of the
algorithmic solution. algorithmic solution is upper bounded as follows:

Lemma 4:The algorithmic solution costost’ is at most
wUOPTscp-(l—i—GDfU]—S)O(log m)+w,OPTpotour - 1.5.

/

COSt/ = COSt:ﬁruvel + COStview
Proof: We use the greedy SCP algorithm to &t Its < w,OPTsop- (1+ GD%)O(log )
approximation ratio [18] implies: > v P "
+1.5w,OPTpoMtour 4
costy;,, = Wy - V'] <w, - OPTsop - O(logm)  (2) Wp DOMt (4)
|

We use Christofides’ algorithm [5] to get a tour of all the . )
centers inV”’. This tour is at most 1.5 times the cost of the With the upper and lower bounds of the optimal and
optimal Metric TSP solution to connect the centers. Since walgorithmic solution costs to Metric TVPP, we are ready to
do not know the value of the latter, we will instead use th@rove the approximation ratio result for Algorithm 2.
cost of another feasible Metric TSP solution to connect the Theorem 5:The approximation ratio of Algorithm 1 is
centers. This solution is to first travel on the optimal damaiO(log m).
tour and then detour to the centers (and back) if needed, Proof: As mentioned before, the Metric TVPP solution
as shown by the dotted path in Fig. 4. By the definition oby Algorithm 2 has no better cost than that by Algorithm 1.
the domain tour, for any center, there must exist a point oBy Theorem 1, the best possible approximation algorithm has
the tour within its2D distance. This implies that the tour approximation ratio oD (log m), it suffices to prove that the
constructed in Step 3 of Algorithm 2 has length at mosgpproximation ratio of Algorithm 2 i£)(log ).
1.5(OPTpontour + |V"| - 4D). The 4D factor corresponds ~ Combining the lower bound for the optimal solution
to traveling from such a point on the domain tour to theost OPTrypp, Lemma 3, and the upper bound for the
center and then traveling back. algorithmic solution costost’, Lemma 4, it is easy to show

Further detouring (if needed) from a center to any of it¢hat the approximation ratio of Algorithm 2 isax{1.5, (1+
dependent viewpoints i’ \ V", Step 4 of Algorithm 2, GDL’j—f)O(log m)} = O(log m). [ ]



VI. CONCLUSION solution to anyP, instance by first solving the constructed

In this paper, we introduced a special case of Travelin§ inst_ance usipg th_ig better algorithm. This is contrad'y:tor
VPP where the viewpoints (due to the point robot assump@ the inapproximability result we know faf;. Note that if
tion) and surface patches are in the same metric spaldt® inapproximability result depends on the input size, for
and the sensor is constrained by a certain visibility rang€xample that for SCP isogn wheren is the number of
We proposed a two-level algorithm using the decoupleﬁ'ements in the universe, we will have to introduce the size
approach in [6]. It greedily solves VPP at the first stepdifference between the constructéyl instance and the?
and use Christofides’ algorithm [5] to solve the Metridhstance toP;’s mapproxmaplllty .resulf[. Howgver, this is
TSP to construct the tour of the viewpoints chosen at thiot the case for our reduction given in Section Il where
first step. We showed that the approximation ratio of thife given SCP instance and the constructed Metric TVPP
algorithm is in the order of the logarithm of the numbernStance have the same number of surface patches.
pf surfac_e pa_tc_:hes, which mat(_:hes (in the same order) the REFERENCES
inapproximability result of Metric TVPP. The analysis was | P8l 4P, Allen. View planning for automated sitedaling. |

.. . . . . . blaer an g en. View planning tor automated site g. In
done_ by giving the apprommaﬂo_n ratio of an alternative Proc. of IEEE International Conference on Robotics and fation
algorithm that has no better solution cost. pages 2621— 2626, Orlando, USA, May 2006.

For future work, we are interested in generalizing Metric[2] ﬁ- EIOYQdig ang _(F;- Ebe;lniV- _Onlljine COE;glétation and Competitive

. nalysis Cambpriage nlverS|ty ress, .
TVPP to its unknown case, where the surface pa_tches t ] K. Bowyer and C. Dyer. Aspect graphs: an introduction audvey
cover are not given in advance but generated online, and" of recent results. International Journal of Imaging Systems and
designingcompetitivealgorithms. Competitive algorithms for " J\?Cgﬂplogyd2é3ll\?t—?28, vlvg?oh s i Simole bolvamiscret

. . . . . - . Inan . Ntaros. VWatchman routes In simple polyganscrete
onl!ne prob!ems, where the |r_1puts are |terat|\{ely givennn a ™" . Computational Geometn$(1):9-31, 1991.
online fashion, are polynomial algorithms with guaranteeds] N. Christofides. Worst-case analysis of a new heuristic the
performance w.r.t. the offline optimal cost, the optimaltcos TV%‘{e"i_n? :(?'e_sma“ PfObi:em- T,ECWTF' TEPQH 33%1%@“05"3“

. . . . ndistrial ministration, Carnegie Mellon University .
to an offline pr.ObIem where all the inputs are g'Ye” In [6] T. Danner and L. Kavraki. Randomized planning for shagpection
advance [2]. This corresponds to the robot exploration sce- " paths. InProc. of IEEE International Conference on Robotics and

narios where the knowledge of the environment is (parfially _ Automation pages 971 — 976, 2002.
ilabl [7] U. Feige. A threshold ofnn for approximating set covedournal of
unavailable. the ACM 45(4):634 — 652, July 1998.
. [8] S. Fekete, R. Klein, and A. Nuchter. Online searchinghwén
APPENDIX: INAPPROXIMABILITY AND L-REDUCTION autonomous robot. liProc. of Workshop on Algorithmic Foundation

Although different NP-complete optimization problems  of Robotics pages 350-365, 2004. - ,

idered at the same complexity level in terms o 9] M. Garey and 1979. Johnso@omputers and Intractability: A Guide

are _COﬂSl . g plexity - to the Theory of NP-Completened#.H. Freeman & Co., New York,

solving for the optimal solutions, they can have different 1979,

difficulty levels in obtaining approximation solutions. i§h [10] Hfh Gofnza'ez-Banosl and J. faﬁénﬁe'sA ra”dom'zedcafega?'?,o' |
. e f . T rthm T1or sensoer placement. ymposium on Computationa,

concept is quantified by thimapproximabilityor the hard- Geometry pages 232 — 240, 2001.

ness of approximatignwhich refers to a problem specific [11] V. Isler, S. Kannan, and K. Daniilidis. Local exploati online algo-

constant or a function of the input size as the lower bound rithms and a probabilistic framework. Proc. of IEEE International

e : . , Conf Robotics and Automafigages 1913 — 1920, 2003.
on the approximation ratio of any polynomial algorithm,,, ke o Svestka. . Latombe, are -

—
=

] - A . L. Kavraki, P. Svestka, J. Latombe, and M. Overmars. bRbilistic

assuming some generally-believed complexity class oalafi roadmaps for path planning in high-dimensional configoragpaces.
for exampIeP # NP. For example, the inapproximability IEEE Transactions on Robotics and Automafitf(4):556-580, 1996.
result for SCP says that the optimal solution to SCP cann ] gbc})(c?. rte and J. VygenCombinatorial Optimization Springer-Verlag,
be approximated within it§1 — o(1)) lnn ratio unless NP [14] J. Latombe. Robot Motion Planning Kluwer Academic Publishers,
admits quasi-polynomial algorithms [7]. 1991.

. ] 5] W. Scott, G. Roth, and J. Rivest. View planning with aiségtion
We use the SlmpleSt form of a common tEChmque’ Ca”e% component. InProc. of the 3D Imaging and Modeling Conference

L-reduction to establish the inapproximability result for (3DIM), pages 127-134, Québec, Canada, May 28 - June 1 2001.
Metric TVPP, which works similarly as the reduction method16l ‘é\/- Scott, GI- th))_th,tand J. Ftilveﬁt- \ﬁe"\(’j p_'a””'”gé% l\aﬂlu‘g’m‘ th;_ee'

. . Imensional object reconstruction ana Inspecti omputing
[9] us_ed in proving NP-completeness results: Rather than Surveys 35(1):64-96, March 2003.
covering the theory, we refer to [13] for a detailed coveragg7] X. Tan. Approximation algorithm for the watchman routsd
on L-reduction. An intuitive explanation of the form we use  zookeeper's problemsDiscrete Applied Mathematics36(2-3):363-

) . . 376, 2004.

IS as fO”OWS' Suppose the problem of Interesﬂsam_j we [18] V. Vazirani. Approximation algorithms Spinger, 2001.

know the inapproximability result for problet®,. If, given [19] P. Wang, R. Krishnamurti, and K. Gupta. View planningigem with
an arbitrary instance aP,, we can construct in polynomial combined view and traveling costs: Problem formulationidhass
. . . . of approximation, and approximation algorithms. Techhieaport
time an mstgnce of?; such that the optimal solution cost_s TR2006-17, Simon Fraser University, Burnaby, B.C.. Candday
of the two instances are the same, and for any solution 2006. A verson also submitted to ICRA 2007.

to the P, instance, we can construct in polynomial time

a solution to theP; instance with the same cost, we can

claim that the inapproximability result df, extends toP;.

Otherwise, if there exists an algorithm 1@ with a better

approximation ratio, we can recover a better approximation



