
View Planning Problem with Traveling Costs:

Problem Formulation, Hardness of

Approximation, and Approximation Algorithms

Pengpeng Wang ∗ , Ramesh Krishnamurti †, and Kamal Gupta ∗

Abstract

In this paper, we introduce the problem of view planning with traveling
cost, or Traveling VPP. It refers to planning a sequence of sensing actions
with minimum total cost by a robot-sensor system to completely inspect
the surfaces of objects with known geometries in a known workspace. The
cost to minimize is a combination of the view cost, proportional to the
number of viewpoints planned, and the traveling cost for the robot to
realize them. First, we formulate Traveling VPP as a combinatorial opti-
mization problem and show it is equivalent to “set covering on a graph”.
Then, we use the hardness of approximation result for the group Steiner
tree problem (GST) to show that Traveling VPP is log-square inapprox-
imable. Also, we show, via a reduction to the group Steiner tree problem,
that the existing approximation algorithm for GST applies to Traveling
VPP, thereby providing a poly-log approximation ratio. Finally, we give
a linear program based rounding algorithm that achieves an approxima-
tion ratio of the order of view frequency, defined to be the largest number
of viewpoints that see a single surface patch of the object. We conclude
with a discussion of realistic issues and constraints if our algorithm were
implemented on real robot-sensor systems.

Keywords: view planning with traveling cost; hardness of approximation; integer
linear program; linear program; approximation algorithm

1 Introduction

In applications ranging from surveillance to object inspection, an autonomous
robot is required to inspect the surfaces of objects or boundaries of the workspace
in a large and/or cluttered environment. Every surface of the objects of inter-
est (which could be the whole environment) must be viewed/covered via at
least one planned viewpoint of the range sensor. It is desired that the total

∗School of Engineering Science, Simon Fraser University, Burnaby, B.C., Canada. Email:
{pwangf, kamal}@cs.sfu.ca

†School of Computing Science, Simon Fraser University, Burnaby, BC, Canada. Email:
ramesh@cs.sfu.ca

1

cost of the plan, consisting of the traveling cost (the total distance traveled
by the robot along the planned path, often a measure of the total amount of
energy consumed by the robot) and the view cost (proportional to the number
of viewpoints planned where each viewing overhead is due to image acquisition,
processing, and registration), is minimized, often a requirement for autonomous
robotic missions where battery life is a significant issue [1]. We call this problem
Traveling View Planning Problem, or Traveling VPP in short, and formulate it
as an optimization problem. We assume the object and environment are of
known geometries and call it the “model-based” case.

See Fig. 1 for a simple Traveling VPP example where the robot-sensor sys-
tem, a mobile manipulator with a range sensor mounted at the manipulator
end-effector, is required to inspect the surface of a large object. Compared with
just the mobile base, the mobile manipulator gives the sensor additional degrees
of freedoms and maneuverabilities. This is illustrated in Fig. 1, where the robot
achieves visibility by extending the manipulator over occluding obstacles. The
six robot configurations that realize the planned viewpoints are also shown, and
the dotted lines between these configurations is the traveling path of the robot.
The dotted triangles that are attached to the robot end-effector are the sensor’s
field of view (FOV) at different configurations. The total cost of such a plan
includes the total view cost, proportional to the number of viewpoints planned
(six in this case), and the traveling cost, proportional to the length of the path
traveled by the robot.

Robot traveling path

Viewpiont

Sensor
FOV

Robot start
position

Object of
interest

Figure 1: A Traveling VPP instance. It shows 6 planned sensor viewpoints that
totally cover the surface of the object of interest, and the robot traveling path
to realize them.

Traveling VPP combines elements of both the view planning problem (VPP)
and the watchman route problem, and thus generalizes both. VPP refers to

2

planning the minimum number of viewpoints to completely inspect an object
surface. It is considered in the robot vision area [2], where often a sensor po-
sitioning system is used within a well controlled and limited workspace. These
formulations do not consider the traveling cost of the robot, a critical cost, par-
ticularly for large workspaces and remote autonomous missions, where power
consumption is a critical factor. On the other hand, the watchman route prob-
lem, considered in the computational geometry area [3, 4], asks for the shortest
tour to inspect the interior of a two-dimensional polygonal region. It does not
consider view cost, a critical cost, particularly for the inspection tasks considered
here, where each sensor view and the consequent processing are time-consuming.
Also, unlike the watchman route problem being restricted to a two-dimensional
environment, our Traveling VPP formulation uses a graph to encode traveling.
Such graphs, called roadmaps, in the root configuration space are commonly
used for the path planning problem for high degree-of-freedom robots in the
robot motion planning literature [5, 6]. In addition, since we do not assume
metrics for the graph, Traveling VPP is applicable to more general cases.

There is some existing work on combining the view and traveling cost in
the literature, but not in a unified and global fashion. For example, in [7, 8],
the authors considered a local version of the robot exploration problem, “to
look around a corner”, i.e., to detect an object hidden behind a corner while
minimizing the sum of the robot traveling distance and the sensor scan time.
The problem is considerably simpler since the goal is local, i.e., the objective is
not to cover all the object surfaces.

In [9], the authors considered the combined problem, however, in a “weak
sense”, since no view cost is considered, thus corresponding to a special case of
Traveling VPP. They proposed to solve the problem by a decoupled two-level
approach, i.e., to plan the minimum number of viewpoints without considering
robot traveling cost first and then to solve (approximately) the Metric TSP
using the shortest path graph. This two-level decoupled approach would work
well for cases where the views considered do not have overlap between their
coverage (they become the only choice for a view plan.), or those with large
coverage overlap are close to each other (they correspond to similar traveling
costs). However, this is not true for a general Traveling VPP setting. For
example, as shown in Fig. 2, even assuming that at each level the respective
optimization subproblem, obtaining the minimum number of viewpoints and
the shortest path tour respectively, is solved optimally, this two-level decoupled
approach provides no performance bound (with respect to the optimal solution
cost), and can perform arbitrarily poorly. This is easily achieved by pulling
the leftmost viewpoint arbitrarily farther from the rightmost ones. This issue
occurs because the planned viewpoints at the first level are too far apart for the
robot to realize a plan efficiently since no traveling cost is considered at the first
stage.

The fact that Traveling VPP cannot be satisfactorily solved by decoupled
approaches motivated the approach we take in this paper, i.e., to give a uni-
fied formulation of the problem with a single objective function that combines
both sensing and traveling costs, and to design fast algorithms with guaranteed

3

Obj. of Interest

v4 = s

v1

v3

 v2

100

1
s1

s3
s2

e2

e3

1

e1

(i) Optimal solution

v2

v4

(ii) Two level solution

v4

v1

v3

Figure 2: A planar example shows the arbitrarily poor performance of the two-
level decoupled approach. The object to inspect, the triangle, has three surface
patches, s1, s2 and s3; the four possible sensing positions, or viewpoints, are
v1, v2, v3 and v4, all shown in the top figure. v4 coincides with the robot start
position s. The shaded sensing triangles show the covering relations: viewpoints
v1, v3 and v4 cover the surface patches s1, s2 and s3 respectively, while v2

(sensing triangle of which is not shown) covers both s1 and s2. The line segments
connecting the views, e1, e2 and e3, denote the robot’s traveling path; the
numbers on each segment are the respective traveling costs (distances). (The
distances are not drawn to scale.) We assume the view and traveling cost are
equally weighted in the objective function, i.e. the unit viewing cost (cost
for each view) is the same as the unit traveling cost (cost for unit traveling
distance). Thus the total cost is the sum of the number viewpoints planned
and the total distance of the path planned. The dashed lines shown in the two
bottom figures are the planned paths connecting the planned viewpoints. The
optimal solution is to take three views at s, v1 and v2 using the dashed line
segments as the traveling path. The solution given by the decoupled cost can
be made arbitrarily poor by pulling v2 farther to the left.

4

performances. We show that this unified formulation is equivalent to “set cov-
ering on a graph”, clearly an NP-complete problem. Approximation algorithms
that are fast and provide guarantees on their worst case performance are usu-
ally sought for these intractable problems. The worst-case performance of an
approximation algorithm is measured by the “approximation ratio”, the largest
ratio between the cost of the solution provided by the algorithm and the optimal
value. See [10] for a review on approximation algorithms for NP-hard problems.
The main emphasis of this paper is to design a good approximation algorithm
for the traveling VPP.

Secondly, using the hardness of approximation result for the group Steiner
tree problem (GST) [20], we show that Traveling VPP is log-square inapprox-
imable. This establishes a lower bound on the best approximation ratio for any
approximation algorithm for Traveling VPP.

We then use the approach based on linear program (LP) relaxation for our
approximation algorithm. We give a rounding algorithm that takes an optimal
relaxed LP solution and outputs an integral Traveling VPP solution. A key
result of this paper is that the algorithm has an approximation ratio that is
twice the “view frequency”, where the view frequency is defined as the maxi-
mum number of viewpoints that covers a single surface patch. We then show
that this approximation ratio is the same as the integrality gap for Traveling
VPP. For an ILP formulation, the integrality gap is defined as the largest ratio
between the optimal values to ILP and to its relaxed LP. In the sense that the
integrality gap is widely believed to be a lower bound on the approximation
ratio for algorithms based on LP relaxation, the rounding algorithm proposed
has the best possible approximation ratio for the ILP formulation. Also, we
show, via a reduction from Traveling VPP to GST, that the existing poly-log
approximation algorithm for GST [11, 12] is applicable to Traveling VPP and
achieves a poly-log approximation ratio. This result parallels that for the set
covering problem (SCP) for which the best approximation ratio is either the
frequency or a logarithm of the input size.

Furthermore, we give necessary reductions to show that our LP-based round-
ing algorithm applies to related combinatorial optimization problems such as the
GST and the Traveling Purchaser Problem (TPP) [13] and achieves a similar
approximation ratio. And finally, we discuss some realistic issues and con-
straints towards implementing the algorithms on a real system. These include
how to generate viewpoints and the traveling graph, and how to accommodate
additional constraints.

The rest of the paper is organized as follows. We first give our formulation
for Traveling VPP, followed by related work on some combinatorial optimization
problems (We delay the discussions on these related work since their relationship
to Traveling VPP will become clearer after our formulation is given, the appli-
cation related issues are abstracted out, and the combinatorial nature of the
problem is clear.) We show the hardness of approximation for Traveling VPP;
we then give our LP-based rounding algorithm and analyze its performance;
finally, we discuss how to incorporate realistic issues towards implementations.

5

2 Problem Formulation

2.1 Traveling VPP: abstraction to set covering on a graph

In this section, we formulate Traveling VPP as a combinatorial optimization
problem combining two well-known problems, namely the set covering problem
(SCP) and the traveling salesman problem (TSP).

By considering each object surface patch as an element in a subset that a
viewpoint can cover [14], an arbitrary VPP instance is immediately an SCP
instance. Since the VPP has an inherent geometric structure, one might hope
that VPP is a simpler version of SCP. In the appendix, we show a simple
reduction that takes any SCP instance and constructs a VPP instance1, thus
showing the equivalence of the SCP and VPP.

On the other hand, assuming the planned viewpoints are given (or the VPP
as a sub-problem is already solved), Traveling VPP is reduced to the Metric
Traveling Salesman Problem (Metric TSP) by constructing the shortest path
graph on the planned viewpoints [9]. The shortest path graph is defined as the
complete graph between the planned viewpoints in which the edge cost between
two viewpoints is the length of the shortest path the robot needs to travel to
realize them. Since the two problems, SCP (without metrics) and Metric TSP
(with metrics), have fundamentally different structures and solving techniques,
Traveling VPP is an interesting and non-trivial generalization.

Thus, in the abstract sense, Traveling VPP can also be termed as “Set
Covering on a Graph”.

2.2 Related work on combinatorial optimization problems

In addition to the related work in the robotics and vision literature mentioned
earlier, here we mention some related work in the combinatorial optimization
literature, especially the problems of connected facility location and errand
scheduling. Two other problems, the group Steiner tree and the traveling pur-
chaser problem, are also related and will be discussed in later sections.

In [15], the problem of connected facility locations is addressed, which, given
a set of facilities and a set of clients both residing in a metric space, asks for
a set of open facilities connected by a Steiner tree and the service assignments
between these open facilities and the clients, such that the total cost, which
includes both the sum of the service assignment costs and the tree cost, is
minimized. The authors give a greedy algorithm with a constant approximation
ratio for the metric case. By regarding the clients as the surface patches in
the Traveling VPP, and the facilities as the viewpoints, the connected facility
location problem is related to the Traveling VPP. However, the visibility relation
between viewpoints and surface patches does not assume a metric, and the
heuristic used in [15] is not applicable to the Traveling VPP.

1In [14], the authors claimed the VPP is isomorphic to the SCP but did not give a concrete
reduction from an arbitrary SCP instance to a VPP instance.

6

In the errand scheduling problem (ESP), a graph with metric costs (the edge
costs satisfy the triangular inequality) is given, where each vertex is associated
with a subset of errands. A shortest tour is required such that all errands are
accomplished [16]. In [16], the author gives an algorithm with an approximation
ratio of 3ρ/2, where ρ is the maximum number of nodes an errand is associated.
Traveling VPP is a much more general problem than ESP. First, the graph in
Traveling VPP does not assume metrics. Furthermore, in Traveling VPP, even
if some viewpoints are in the final solution, the robot may not need to take
a view at these points i.e., the robot simply travels through these points (also
termed as Steiner nodes [10]). There is no view cost in ESP; and there is no
notion of Steiner nodes. This implies that there is no simple reduction from
Traveling VPP to ESP.

2.3 Integer program formulation of Traveling VPP

We now give an integer linear program (ILP) formulation for the Traveling VPP.
In our unified formulation of traveling VPP, we make assumptions to abstract

out and focus on certain key ingredients, in particular the interplay between SCP
and Metric TSP. We assume that the surface patches to be inspected are given,
the viewpoints from which a surface can be inspected are also given, and that a
graph which encodes the possible robot movements connecting the viewpoints
and the robot start position, is also given. We assume binary covering relation-
ship, i.e., a viewpoint either covers a surface patch or does not cover it. These
assumptions are based on a realistic scenario and algorithms from the literature
can be used to derive these quantities. We discuss these realistic issues with an
eye towards implementation in Section 6.

Our formulation of Traveling VPP chooses a subset of the viewpoints and
a (Steiner) tree on the graph to connect them, under the (covering) constraint
that every surface patch is covered by at least one planned viewpoint and the
(connection) constraint that every planned viewpoint is connected to the robot
start position via the planned (Steiner) tree. The objective is to minimize
the total cost of the plan, defined as the sum of the view costs and the tree
cost (the sum of all edge costs in the Steiner tree). The reason for using a
(rooted) Steiner tree instead of a tour is that we are able to combine the (rooted)
Steiner tree formulation with covering constraints. It is not immediately clear
how to combine a tour (or path) constraints (especially the subtour elimination
constraints [17]) with the covering constraints. Moreover, Metric TSP can be
easily approximated using the solution to the Steiner tree problem [10].

We denote the set of all viewpoints by V and index them by i. We denote the
set of surface patches by S and index them by j. We use the notation i ∈ V and
j ∈ S to imply the “ith viewpoint” and the “jth surface patch”, respectively.
For i ∈ V , let S(i) denote the subset of the surface patches that viewpoint i
covers; and for j ∈ S, let V(j) denote the subset of viewpoints that cover surface
patch j. The robot movements are restricted to the graph G = (V , E), where the
node set V is the set of all viewpoints and s, the starting position of the robot.
In case the robot start position does not correspond to a viewpoint, we simply

7

assign the empty set as the set of surface patches it sees. The edge e between
two views vi1 and vi2 represents the path from vi1 to vi2 . We use ce to denote
the cost (length) of edge e. We also use T ⊂ V : s /∈ T to denote a cut or subset
of the graph that does not include the robot start position. We use δ(T) to
denote the set of edges that “crosses” T , having one end inside T and the other
outside T , i.e., e = < v1, v2 > ∈ δ(T)⇐⇒ v1 ∈ T ∧ v2 /∈ T OR v2 ∈ T ∧ v1 /∈ T .
We use wv, the unit view cost or cost per viewpoint, and wp, the unit path cost
or cost per unit traveling distance. Furthermore, we use F to denote the view
frequency, defined as the maximum number of viewpoints that cover a single
surface patch, i.e., F = maxj∈S |V(j)|, where |A| denotes the cardinality of a
discrete set A.

We define a binary variable, yi, as the indicator whether to take a view at
viewpoint i, corresponding to yi = 1, or not, corresponding to yi = 0; we define
the binary variable, ze, as the indicator whether to include the edge e in the
robot traveling path, corresponding to ze = 1, or not, corresponding to ze = 0.
Thus, the ILP formulation for the traveling VPP is given as:

Traveling VPP (ILP): (1)

min wv

∑

i∈V

yi + wp

∑

e∈E

ceze

Subject to: ∀j ∈ S ,
∑

i∈V(j)

yi ≥ 1 (2)

∀i ∈ V,∀T ⊂ V : i ∈ T ∧ s /∈ T,
∑

e∈δ(T)

ze ≥ yi (3)

yi, ze ∈ {0, 1}, i ∈ V, e ∈ E

The coverage constraints, (2), require that for each surface at least one view
is chosen from its viewpoint set. The connection constraints, (3), require that
for each planned view i, i.e., yi = 1, and for every cut T of the vertex set that
separates i from the robot start position s, at least one edge that crosses T must
be chosen to connect the cut. Such connection constraints are used in the stan-
dard (rooted) Steiner tree problem ILP formulation [19], and essentially express
the notion that each selected node must be reachable from the start node. Note
that the above ILP formulation (1) is not the most compact one, since there are
a large number of constraints corresponding to the cuts in the graph. In the
following, we will also give a polynomial-sized formulation (especially useful to
solve the corresponding relaxed LP). Nonetheless, this formulation gives us a
lot of intuition, since it works directly with the edge assignments, and is handy
when we analyze the algorithmic performance.

8

3 Hardness Analysis of Traveling VPP

As the generalization to both SCP and Metric TSP, Traveling VPP is immedi-
ately seen to be an NP-hard problem. The hardness of approximation, i.e., the
best approximation ratio by any polynomial algorithm, is of great importance
to approximation algorithm design. In this section, we use the result in [20] to
show the hardness of approximation for Traveling VPP via reductions to the
group Steiner tree problem (GST).

GST is defined as follows. Given a graph G = (V, E), where the ver-
tex set V is divided into k distinct groups, g1, g2, . . . , gk, construct the min-
imum cost Steiner tree to connect at least one vertex from each group. The
GST generalizes both the SCP and the Stener tree problem where the best
known approximation ratios are O(log n) and O(1) respectively. In [11, 12],
the authors used an LP-based randomized rounding algorithm and a greedy
algorithm respectively to achieve the best known poly-log approximation ra-
tio, O(log |V | log log |V | · log k log N), where |V |, k and N are the number of
graph nodes, the number of groups and the maximum cardinality of the groups
respectively.

We now show that the Traveling VPP is not approximable within the same
poly-log ratio via the reduction given in [11]. By considering each group in any
GST instance as the viewpoint set of a surface patch in the Traveling VPP, GST
is reduced to a special case of the Traveling VPP where the viewpoint sets that
cover different surface patches are exclusive, i.e., they do not share common
viewpoints. Thus, the Traveling VPP is certainly at least as hard as GST and
cannot be approximated within log2−ǫ |S|, following the result of [20], where
Halperin and Krauthgamer show that the optimal solution to GST cannot be
approximated by any polynomial algorithm within the O(log2−ǫ k) ratio, for any
ǫ > 0. The question remains whether Traveling VPP is harder to approximate.
We show in the following that the inapproximalities of Traveling VPP and GST
are of the same order by showing a reduction from Traveling VPP to GST in
two steps.

We first show how to reduce an arbitrary Traveling VPP instance to a Trav-
eling VPP instance with 0 view cost. Given an arbitrary Traveling VPP instance
with unit view cost and unit traveling cost wv and wp respectively, we add a
new viewpoint i′, for each original viewpoint i, with an identical surface patch
set, let the surface patch set for i be empty, and connect i′ to i via an edge
with cost of wv

wp
. It is easy to see an optimal solution to the reduced (0 view

cost) version of Traveling VPP corresponds to an optimal solution to the orig-
inal Traveling VPP instance since view costs are encoded in the edge costs of
the reduced Traveling VPP instance. (Since the surface patch set of the original
viewpoint is empty, the new solution has to go to the new copy of the viewpoint,
thus incurring the traveling cost wv

wp
which is equivalent to adding wv

wp
·wp = wv

in the objective function.) The size of the resulting instance has 2|V| number
of viewpoints and |V|+ |S| number of edges.

We now show how to construct a GST instance from a special case of a

9

viewpoint i covers
j1, j2, j3, j4, ...

0 cost edges

covers j1
covers j2

covers j4

...
covers j3

(a) (b)

Figure 3: Construction of an GST instance from Traveling VPP with 0 view
cost.

Traveling VPP instance with 0 view cost. The idea is to duplicate each viewpoint
many times (equal to the number of surface patches it covers) to make the
resulting viewpoint sets distinct. Consider such a Traveling VPP instance, i.e.,
the viewpoint set V , the surface patch set S, the viewpoint set V(j) ⊆ V for
surface patch j ∈ S, and the graph G that connects V . We first construct a
group gj for each surface patch j and construct a vertex for each pair of a surface
patch j and one viewpoint from its viewpoint set, i.e., (j, i), i ∈ V(j), j ∈ S. We
modify the graph G of Traveling VPP accordingly by first constructing a tree
with 0-cost edges between the vertices corresponding to the same viewpoint,
i.e., {(j, i) : j ∈ S(i)} (picking an arbitrary vertex (j, i) as the tree root) and
then placing the tree root at the node i on G. See Fig. 3. Thus, we have a GST
instance on the graph over vertices in the form (j, i) and groups corresponding
to the surface patches j. And it is easy to see that an optimal GST solution
that picks vertices (j, i) and Steiner tree between them correspond to an optimal
solution to Traveling VPP of picking viewpoints i and the resulting Steiner tree
connection by collapsing the 0-cost edges. The above GST instance construction
produces O(|V||S|) number of vertices and O(E + |V||S|) number of edges.

By combining the two reduction steps above, an arbitrary Traveling VPP
instance with viewpoint set V and surface patch set S is reduced to a GST in-
stance with a graph having O(|V||S|) vertices, O(|V||S|) edges, and |S| groups.
As a result, the Traveling VPP is inapproximable within O(log2−ǫ |S|) ratio of
the optimal using any polynomial algorithm. Also the best known approxima-
tion algorithms mentioned at the beginning of this section can be applied to the
Traveling VPP (after the reductions given above) and the approximation ratio
is O(log |V| log log |V| · log |S| log F), where F is the view frequency.

10

4 LP based Algorithms for Traveling VPP (ILP)

In this section, we first give the LP relaxation for the ILP formulation given
in Section 2.3, introduce a rounding algorithm to get an integral solution from
the LP solution, give the approximation ratio analysis, and then discuss how to
solve the LP.

4.1 LP Relaxation for Traveling VPP

By relaxing the binary integral variables, yi and ze, to be positive reals, we have
the relaxed linear program (LP) formulation given as:

LP Relaxation: min wv

∑

i∈V

yi + wp

∑

e∈E

ceze

Subject to: ∀j ∈ S :
∑

i∈V(j)

yi ≥ 1 (4)

∀i ∈ V, ∀T ⊂ V : i ∈ T ∧ s /∈ T :
∑

e∈δ(T)

ze ≥ yi (5)

yi, ze ≥ 0, i ∈ V, e ∈ E

We call the optimal (fractional) solution and the corresponding cost the
LP-optimal solution and LP-optimal value respectively. The LP-optimal solu-
tion corresponds to the fractional LP-optimal viewpoint assignments and the
fractional LP-optimal edge assignments. We call the optimal (integral) solu-
tion and corresponding cost to the original ILP the ILP-optimal solution and
ILp-optimal value, respectively. The ILP-optimal solution correspond to the
integral ILP-optimal viewpoint assignments and the integral ILP-optimal edge
assignments.

4.2 Rounding Algorithm

Let y∗
i and z∗e denote the Lp-optimal viewpoint assignments and the LP-optimal

edge assignments respectively, and let OPT ∗ denote the LP-optimal value, i.e.,
OPT ∗ = wv

∑

j∈V y∗
i +wp

∑

e∈E cez
∗
e . Let y′

i, z
′
e denote the algorithmic integral

solution by the algorithm Round and Connect given below, and let cost′ denote
the corresponding cost, i.e., cost′ = wv

∑

j∈V y′
i + wp

∑

e∈E cez
′
e. Throughout

this paper, we use the superscript ∗ to denote the LP-optimal solution/cost to
the corresponding problem instance; and use superscript ′ to denote a feasible
ILP solution/cost. The algorithm Round and Connect is given below:

Algorithm Round and Connect: (take LP-optimal y∗
i , z∗e as input and out-

put y′
i, z

′
e)

Step 1. Initialize.

11

Set viewpoint choice set Vc to include all the viewpoints, i.e., Vc ← V; the
viewpoint solution set V ′ to be empty, i.e., V ′ ← ∅; the uncovered surface patch
set Su to include all surface patches, i.e., Su ← S

Step 2. Round.

While set Su is not empty
Select the viewpoint imax ∈ Vc that covers some uncovered surface

patch(es) and has the largest Lp-optimal viewpoint assignment, i.e.,
imax = argmax

i∈Vc: S(i)∩Su 6=∅

y∗
i , and add it to V ′, i.e., V ′ ← V ′ ∪ {imax}

Delete the surface patch(es) that imax covers from the uncovered
surface patch set, i.e., Su ← Su \ S(imax); and delete imax from the viewpoint
choice set, i.e., Vc ← Vc \ {imax}

Output V ′, i.e., set y′
i = 1 for i ∈ V ′, and set y′

i = 0 for i /∈ V ′.
Step 3. Connect.

Get the optimal solution to the Steiner tree problem to connect V ′. Set
z′e = 1 for edges in the solution, and 0 otherwise.

In the above algorithm, we iteratively choose the viewpoint with the largest
(fractional) LP-optimal viewpoint assignment until all the surface patches are
covered. We then feed these chosen viewpoints to a Steiner tree algorithm to
get the optimal integral solution, in the Connect step. Note that the Steiner
tree problem is an NP-complete problem for a general graph. So practically
speaking, we can use a constant-ratio approximation algorithm, for example the
one in [19], and incur an additional bounded performance degradation. It is
easy to see that the rounding part of the above algorithm (up to the Connect
step) runs in polynomial time, O(|V||S|).

4.3 Approximation ratio for algorithm Round and Con-

nect

It is trivial to see that the solution given by algorithm Round and Connect is
a feasible integral solution. In the following, we analyze the performance of
the algorithm using the fact that the LP-optimal value is a lower bound on
the ILP-optimal value. We first show that the view part of the cost of the
solution given by the algorithm is bounded and then bound the total cost using
a feasible hybrid solution with integral viewpoint assignments and fractional
edge assignments.

4.3.1 View cost analysis

In the following, we show in Lemma 2 that the LP-optimal viewpoint assign-
ments of the chosen viewpoints are lower bounded by 1

F
. This follows immedi-

ately from Lemma 1, which is a simple observation based on the feasibility of
the LP-optimal solution. In Corollary 1, these results are used to bound the
view cost part of the algorithmic solution.

Lemma 1 For any surface patch, there exists a viewpoint that covers it with

12

the corresponding LP-optimal viewpoint assignment greater than 1
F

, i.e., ∀j ∈
S, ∃i ∈ V(j) : y∗

i ≥
1
F

.

Proof. We show this by contradiction. Assume that for some surface patch
j ∈ S, all the LP-optimal viewpoint assignments are strictly less than 1

F
, i.e.,

y∗
i < 1

F
, ∀i ∈ V(j). By recalling that view frequency F is the maximum number

of viewpoint that covers any surface patch (i.e., |V(j)| ≤ F, ∀j ∈ S), we must
have,

∑

i∈V(j)

y∗
i <

∑

i∈V(j)

1

F
= |V(j)| ·

1

F
≤ 1

The above implies that for j ∈ S, the sum of covering viewpoint assignments
is strictly less than 1, or in other words, surface j is not covered. This contradicts
the feasibility of the LP solution, specifically the constraints (4).

Lemma 2 The LP-optimal viewpoint assignment for each viewpoint chosen by
Algorithm Round and Connect is lower bounded by 1

F
, i.e., y∗

i ≥
1
F

, ∀i ∈ V ′.

Proof. It is equivalent to show that the above algorithm cannot choose
any viewpoint whose LP-optimal viewpoint assignment is less than 1

F
. We

show this by contradiction. Assume we choose one viewpoint i with y∗
i <

1
F

. By the Round and Connect algorithm, the Round Step, at the iteration
when i is picked, it has the maximum LP-optimal viewpoint assignment among
the viewpoints that covers the remaining uncovered surface(s). We arbitrarily
choose one uncovered surface patch that i covers. By Lemma 1, there exists
another i′ for which y∗

i′ ≥
1
F

. This implies y∗
i′ > y∗

i . i′ has not yet been chosen,
since otherwise all its covering surface pathes including this uncovered one would
have been deleted from uncovered surface patch set. This contradicts that i has
the largest LP solution, y∗

i , among unchosen viewpoints that cover uncovered
surface patch(es).

Lemma 2 implies that the view cost part of the algorithmic solution is
bounded by the view cost of the LP-optimal, as stated in Corollary 1.

Corollary 1 Algorithm Round and Connect gives an integral solution with view
cost at most F times the view cost of the LP-optimal solution, i.e., wv

∑

i∈V y′
i ≤

F · wv

∑

i∈V y∗
i .

Proof. By Lemma 2, we have Fy∗
i ≥ 1, for all the chosen viewpoint i ∈ V ′. It

follows that

wv

∑

i∈V

y′ = wv

∑

i∈V′

1 ≤ F · wv

∑

i∈V′

y∗ ≤ F · wv

∑

i∈V

y∗

4.3.2 Total cost analysis

In the following, after stating in Lemma 3 the half-integrality gap result of the
Steiner tree problem [10], we show that the solution given by the algorithm

13

Round and Connect has a total cost at most 2F times the LP-optimal value.
Since the LP-optimal value is a lower bound on the ILP solution, we now show
that the algorithm Round and Connect has approximation ratio of 2F .

Lemma 3 For the Steiner tree problem, the integrality gap between the IP and
its relaxed LP is 2.

Proof. See Chapter 22 of [10].
Note that the Connect Step of the algorithm Round and Connect corresponds

to the Steiner tree problem of connecting V ′, the ILP-optimal solution to which is
z′e. We use OPT ′

tree to denote the corresponding optimal value, i.e., OPT ′
tree =

∑

e∈E cez
′
e. Again, we use OPT ∗

tree to denote the corresponding relaxed LP-
optimal value. Now we are ready to show the approximation ratio of algorithm
Round and Connect.

Theorem 1 Algorithm Round and Connect has the approximation ratio of 2F ,
i.e., cost′ ≤ OPT ∗ · 2F .

Proof. To prove the approximation ratio result, we utilize an intermediate
solution with integral viewpoint assignments and fractional edge assignments.
We emphasize this solution is only used in the proof and not computed in the
algorithm. This solution is denoted by y′

i, z
s
e . The viewpoint assignments are

the same as in the algorithm output y′
i, and the edge assignments are scaled by

F , i.e., zs
e = Fz∗e . The superscript s denotes it is a solution after scaling. We

call it the hybrid solution, and denote the total cost of this solution costh. By
Corollary 1 and the edge scaling, we have,

costh = wv

∑

i∈V

y′
i + wp

∑

e∈E

cez
s
e

≤ F · wv

∑

i∈V

y∗
i + F · wp

∑

e∈E

cez
∗
e ≤ F ·OPT ∗.

Now, we claim that the hybrid solution is a feasible solution to the LP relax-
ation of Traveling VPP. Sine the viewpoint assignments of the hybrid solution is
exactly the same as in the solution given by the algorithm Round and Connect,
all the covering constraints, (4), are satisfied by the solution viewpoint set V ′.
The connection constraints, (5), are also satisfied, since

∑

e∈δ(T)

zs
e =

∑

e∈δ(T)

Fz∗
e ≥ Fy∗

i ≥ y′
i.

The first inequality above is due to the feasibility of the Lp-optimal solution,
and the second is due to Lemma 2.

Since all y′
i are integral, zs

e is a feasible LP solution to the Steiner tree prob-
lem to connect V ′. It follows immediately that the connection cost

∑

e∈E cez
s
e

is at least the LP-optimal value to connect V ′, i.e.,
∑

e∈E

cez
s
e ≥ OPT ∗

tree.

14

Note that the algorithm Round and Connect (the Connect Step) gives an
optimal integral Steiner tree solution to connect V ′. By the integrality gap
result for Steiner trees, Lemma 3, this tree cost is at most twice the LP-optimal
value for the Steiner tree problem to connect V ′, i.e.,

∑

e∈E cez
′
e = OPT ′

tree ≤
2 ·OPT ∗

tree. So we have,
∑

e∈E

cez
′
e ≤ 2 · OPT ∗

tree ≤ 2 ·
∑

e∈E

cez
s
e = 2F ·

∑

e∈E

cez
∗
e

(The last equality above is due to the edge scaling.)
Combined with the view cost part of the algorithmic solution (Corollary 1),

we have,

cost′ = wv

∑

i∈V

y′
i + wp

∑

e∈E

cez
′
e

≤ F · wv

∑

i∈V

y∗
i + 2F · wp

∑

e∈E

cez
∗
e

≤ OPT ∗ · 2F,

which implies the algorithm Round and Connect has approximation ratio of at
most 2F .

4.3.3 Integrality gap for Traveling VPP

Theorem 1 shows that the algorithm Round and Connect, recovers an integral
solution from any LP-optimal solution to Traveling VPP and the solution cost
is within 2F times the optimal value. This implies that the integrality gap
between ILP-optimal and LP-optimal for Traveling VPP is at most 2F . In the
following, we show that 2F is also the integrality gap for Traveling VPP by
giving an example that achieves this ratio.

Theorem 2 The integrality gap of the Traveling VPP is 2F .

Proof. We show the integrality gap of Traveling VPP is at least 2F by giving
a Traveling VPP instance where the 2F ratio is achieved.

In the Traveling VPP instance in Fig. 4, there are n surface patches. There
are n clusters of viewpoints, denoted by C1, . . . , Cn respectively, each of which
corresponds to one surface patch. Each cluster has exactly F viewpoints, each
of which covers only the corresponding surface patch of that cluster. We label
a viewpoint by the cluster it belongs to and its index within that cluster, for
example viewpoint iC1,1. There are two types of edges, e1 and e2, in the graph,
superscript 1 or 2 denote the edge type. e1 edges have the common edge cost
ǫ≪ 1 and e2 edges have the common cost 1. The e1 edges in each cluster form
a complete graph; and the e2 edges form a complete graph between the clusters.
We also use an e1 edge to connect the robot start position s to a single viewpoint

15

s

ic1,1 ic1,F

c1

c2

c3

cn

e1

e2

e1

Figure 4: A Traveling VPP instance. There are n ·F viewpoints, grouped into n
clusters (circled by dashed curves). Each cluster contains exactly F viewpoints.
For example, cluster C1 contains viewpoints iC1,1, . . . , iC1,F . There are n surface
patches (not drawn). All viewpoints in a cluster, i ∈ Cj, only cover one surface
patch indexed the same as the cluster, j ∈ S. Two types of edges, labeled by e1

and e2, connect the viewpoints. Inside each cluster, e1 edges form a complete
graph. Between clusters, e2 edges form another complete graph among the
representative viewpoints of the clusters, one representative per cluster.

of a single cluster. We further assume the view cost is negligible compared with
traveling cost, i.e., wv ≪ wp.

It is not difficult to see that the ILP-optimal solution is to choose a single
viewpoint from each cluster and construct a tree (which is also a path connecting
these viewpoints) using (n − 1) e2 edges, and the corresponding ILP-optimal
value is approximately (n− 1) · 1 (neglecting view cost and e1 edge costs). The
LP-optimal solution, however, is to assign 1

F
to each viewpoint and 1

n−1 ·
1
F

to

each e2 edge. (Since e1 edges do not contribute much to the objective function,
we can simply ignore all the e1 edges in the solution.) This solution is feasible
since for any viewpoint, the cuts that separate it from other clusters have at
least n−1 e2 edges, and the sum of such edge assignments is at least (n−1)· 1

n−1 ·
1
F

= 1
F

, the viewpoint assignment. The corresponding LP-optimal value is thus

approximately 1
(n−1)F ·

(

n
2

)

= n
2F

. (There are all together

(

n
2

)

number

of e2 edges.) So the ratio between ILP and LP-optimal values approaches 2F
assuming n is large, and the integrality gap for the general problem is at least
2F .

In conclusion, since both the upper and lower bounds are 2F , the integrality
gap of Traveling VPP must be 2F .

The integrality gap result for Traveling VPP, Theorem 2, suggests that the
2F approximation algorithm Round and Connect is the best possible for the LP
relaxation given above.

16

4.4 Solving the relaxed LP

With the algorithm Round and Connect, we can recover an integral solution from
a relaxed LP-optimal solution, with the approximation ratio of 2F for a general
Traveling VPP. However, the corresponding relaxed LP formulation may have
exponential number of connection constraints, (constraint 5). In the following,
we first consider a special but important case, the Traveling VPP on a Tree, i.e.,
the graph G connecting the viewpoints is a tree, and give a polynomially-sized
LP relaxation formulation. It is motivated by tree structures commonly used
in motion planning techniques to explore and represent the connectivity of the
configuration space [21, 22]. For general graph case, we suggest two ways here:
to use an alternative LP relaxation formulation with polynomial size based
on multi-commodity flows; or to adopt the column generation approach [23]
to practically solve the LP. Please see the appendix for the derivation of the
alternative LP formulation; and see [24] for the development of the column
generation approach.

4.4.1 Traveling VPP on a Tree

First, we claim that the approximation ratio of algorithm Round and Connect
improves to F for Traveling VPP on a Tree. This is because there is no integral-
ity gap for “Steiner tree on a tree”, since both the ILP-optimal and LP-optimal
solutions of “Steiner tree on a tree” correspond to taking the union of the unique
paths on the tree that connect the planned viewpoints to the start position.

However, we emphasize that Traveling VPP on a Tree is not a simple prob-
lem. First, note that the counterexample given in the introduction is also a
Traveling VPP on a Tree instance. Second, we show, via a counterexample,
that a greedy algorithm based on amortized costs can perform quite poorly
(linear approximation ratio). The algorithm is to iteratively pick a viewpoint
with the least amortized cost, i.e., the sum of the view cost and the shortest
path cost to connect to the existing tree, divided by the number of uncovered
patch(es) it covers, and iteratively grow the existing tree using this shortest
path. Although greedy algorithms based on amortized cost have been shown to
achieve the logarithmic approximation ratio (the best approximation ratio) for
the SCP [10], it is not so for Traveling VPP on a Tree. Consider the example
in Fig. 5. We have to choose either viewpoint i1 (which covers all the surface
patches, but connected to the start via a long edge) or all the remaining view-
points (connected via much shorter edges). It is not difficult to see that the
optimal solution is to choose i2, . . . , in and edges e2, ei2 , . . . , ein

, and the cost
is roughly 1, the edge cost of e2. The algorithm, however, will choose i1 since
the amortized cost of i1, ≈

n−1
n−1 = 1, is less than that of any other viewpoint,

1+ǫ
1 = 1 + ǫ. The algorithmic solution cost is thus (n − 1), arbitrarily worse

than the optimal value (1). Intuitively, this is because the large cost edge is
“underestimated” by the large number of surface patches in the amortized cost.

LP formulation for Traveling VPP on a Tree

The Traveling VPP on a Tree admits a polynomial-sized relaxed LP formu-

17

s

i1

e2

e1ei2

i2 i3 in

ei3
ei n

Figure 5: An instance of the Traveling VPP on a Tree. There are n viewpoints,
labeled by i1, i2, . . . , in, and n−1 number of surface patches (not drawn). View-
point i1 covers all the surface patch. Each of viewpoints i2, . . . , in covers only
one surface patch, but all together they cover all the patches. Viewpoint i1 is
connected to s via a long edge e1 with the cost of n− 1. The remaining view-
points are first connected to a common node (these connections have negligible
costs) and then to s via a short edge e2 with the cost of 1+ ǫ, where ǫ is a small
positive number. We also assume the traveling cost dominates, and the view
cost is negligible.

lation. Since Linear Program is in P [18], we have a polynomial time approxima-
tion algorithm (with view frequency as the approximation ratio) for Traveling
VPP on a Tree by solving first its LP and using Round and Connect to recover
an integral solution. In the following, we show the polynomial-sized formula-
tion. Intuitively, for a viewpoint to be connected, only the cuts corresponding
to the edges on its unique path (to the start s) are needed in the connection
constraints, (constraint 5), thus reducing dramatically the LP size.

Let pi denote the unique path connecting viewpoint i to s. For an edge
e =< i1, i2 >, with i1 closer to the root of the tree, s, than i2, we use Te

to denote the subtree of the original tree rooted at i2, i.e., the subset of tree
vertices that are connected to s via e. Note that e is the only edge that crosses
the subset Te, i.e., δ(Te) = {e}. The LP for Traveling VPP on a Tree is then
given as:

min wv

∑

i∈V

yi + wp

∑

e∈E

ceze

Subject to: ∀j ∈ S ,
∑

i∈V(j)

yi ≥ 1 (6)

∀i ∈ V, ∀e ∈ E : e ∈ pi, ze ≥ yi (7)

yi, ze ≥ 0, i ∈ V, e ∈ E

Since the covering constraints for the above formulation and for Traveling
VPP are the same, we only need to show the equivalence of the connection con-
straints, (5) and (7). We show this equivalence by reductions in both directions.
First, for i ∈ V and e ∈ pi, since Te is a cut that separates viewpoint i from the
start position s and e is the only edge crossing Te, according to (5), we have

18

∑

e′∈δ(Te) ze′ = ze ≥ yi, (7). Second, for any cut T that separates i and s, there

must be at least an edge e ∈ pi that crosses T , i.e., e ∈ δ(T). (Otherwise i and
s will not be separated by T .) So ze ≥ yi =⇒

∑

e′∈δ(T) ze′ ≥ ze ≥ yi, hence (5)

and (7) are equivalent for the tree case.
Note that in the above formulation, the number of constraints is O(|S| +

|E||V|).

4.5 Poly-log approximation algorithm via reduction to GST

By the reduction mentioned in Section 3, we can construct from an arbitrary
Traveling VPP instance a GST instance with O(|V||S|) vertices, O(|V||S|) edges,
and |S| groups. We then apply the randomized rounding algorithm in [11] to
achieve a O(log |V| log log |V| log |S| log F), a poly-log, approximation ratio.

In conclusion, using both the LP based algorithms, deterministic (Round and
Connect algorithm) and randomized (the rounding algorithm in [11]) round-
ing algorithms respectively, we have the approximation ratio of either O(F)
or O(log |V| log log |V| log |S| log F), whichever is smaller. This approximation
result parallels that for SCP.

5 Applications of Traveling VPP Algorithm to

Related Problems

In this section, we apply the algorithm Round and Connect to several related
problems and extend the best known approximation ratios for these problem
from poly-log to the minimum of poly-log and the order of frequency.

5.1 GST

Note that a GST instance is a Traveling VPP instance with 0-view cost. So the
frequency bound is just the largest cardinality of the groups and applying algo-
rithm Round and Connect gives us a frequency approximation ratio. Thus by
applying the algorithm Round and Connect above and LP randomized round-
ing in [11], the optimal solution to GST is approximated within the ratio of
min(O(F), O(log |V | log log |V | log k log N)).

5.2 Traveling Purchaser Problem (TPP)

Given a set of warehouses, W , connected by a graph G = (W , E), E ⊆ 2W×W ,
and a set of products P with requirements and the prices of buying a product
at a warehouse, dw,p, w ∈ W , p ∈ P , the (unlimited capacitated) Traveling
Purchaser problem (TPP) asks for certain warehouses for each product and the
tour connection between the planned warehouses with the minimum total cost,
the sum of the product purchase cost and the tour cost [13]. In [13], the authors
give a poly-log approximation ratio for TPP.

19

The Traveling VPP is a special case of TPP where the prices are uniform
for all the product and warehouse pairs. We now show how to reduce an arbi-
trary TPP instance to an instance of a weighted version of Traveling VPP. By
“weighted”, we mean the view costs associated with the viewpoints are not uni-
form. Since this weighted version has exactly the same constraints as Traveling
VPP, the algorithm Round and Connect only rounds to 1 the viewpoints with
assignments lower bounded by 1

F
. By exactly the same arguments as in Sec-

tion 4.3, it is clear that the algorithm Round and Connect still has the frequency
bound approximation ratio for the weighted version. The reduction from TPP
to Traveling VPP is done by “duplicating” a warehouse according to the number
of different product prices it offers and connecting them via 0-cost edges.

Formally, we define the price set of a warehouse to the set of different prices
it offers for different products, i.e., D(w) = {dw,p, w ∈ W , p ∈ P(w)}. We order
the set D(w) according to the price entities, and denote the ith smallest price
as d(w)i. We then add warehouses wi, i = 2, . . . , |D(w)| to the warehouse set
W , (We replace the viewpoint w by w1 with a different product set described
as follows.) and add edge < w1, wi > with 0 edge cost. The warehouse wi

will cover only the product in its product set that has the price of d(w)i, i.e.,
P(wi) = {p ∈ P(w) : d(w, p) = d(w)i}. By this construction, each warehouse
has a unique price for all the products in its product set. This corresponds to
an instance of the weighted Traveling VPP. Note that the frequency bounds
for both instances are the same, since we have not increased the number of
warehouses that offer a single product.

Thus, by solving the resulting weighted Traveling VPP instance, we can get
the O(F) approximation ratio for TPP, where F is defined as the maximum
number of warehouses that sell a single product.

6 Issues Towards Implementation

In this section, we discuss several issues and constraints towards implementing
our algorithm on a real robotic system.

Our Traveling VPP formulation assumes the viewpoint set V and the travel-
ing graph G connecting these viewpoints are given. For given scenes, these view-
points can be derived from the aspect graph of the scene [25], or by randomly
sampling the sensor configuration space, the space of the sensor configurations
that uniquely determines the viewpoints [26]. We assumed a binary coverage
relationship mentioned, i.e., a viewpoint can either cover a surface patch or not.
In reality, a viewpoint may cover a surface patch only partially. By subdividing
surface patches, we can maintain binary coverage relationship. Realistic sensor
field of view constraints such as the line of sight constraint (i.e., a viewpoint sees
a surface patch only if the line segment that connects them is not occluded), the
range constraint (a viewpoint sees a surface patch only if the distance between
them is within a range), and the incidence constraint (i.e., a viewpoint sees a
surface patch only if the angle between the line connecting them and the sur-
face normal is in a range) can be incorporated via viewpoint and surface patch

20

visibility computations. The Traveling graph would essentially be a roadmap
built in the configuration space of the robot. This is a standard and well-studied
technique for robot motion planning [5, 6].

For accurate registration, it is desirable that two planned consecutive view-
points should have enough overlap in the surface patch sets they cover [2]. This
can be incorporated using a set multicover constraint, i.e., each element in the
universe needs to be covered by a specified number of subsets in the solution.
The idea is as follows. We create new surface patches that are composed of
unions of parts of original consecutive patches. The viewpoint set of these cre-
ated patches are those covering both consecutive patches. By requiring that
the viewpoints cover these created surface patches twice, i.e., changing r.h.s.
of (2) from 1 to 2 for these patches added, these viewpoints can register them
w.r.t. each other and thus the overall viewpoints can all satisfy the overlapping
constraints.

7 Conclusion and Future Work

In this paper, we introduced the Traveling VPP, the problem of view planning
with traveling costs. We formulated the problem for the model-based case where
the geometry of the object to inspect is known. By appropriate reductions, we
showed the Traveling VPP is a combination of set covering and TSP. We also
showed that it is at least as hard as the GST problem, and hence it is log-
square inapproximable. We gave an LP-based rounding algorithm that has the
frequency factor approximation ratio. Together with the poly-log approxima-
tion ratio achieved via LP-based randomized rounding, Traveling VPP can be
approximated within the minimum of a constant times frequency and a poly-
logarithmic function of the input size. This parallels the approximation ratio
result for the set covering problem. We then discuss several realistic issues and
constraints towards implementing our algorithm for a real system.

In the future, we would like to generalize our result to the case where the
surface patches to cover and the robot traveling graph are not known in advance,
hence the term sensor-based Traveling VPP. It is also interesting to apply the
algorithm designed in this paper to where the viewpoint set is a continuous
space, for example, the watchman route problem [3]. The idea is to identify the
critical points in a watchman route problem and consider the resulting problem
using these critical points as the viewpoints in a Traveling VPP instance [27].

Appendix

Reduction from SCP to VPP

An arbitrary SCP instance is given by a universe of elements S = {sj , j =
1, . . . , m} and a collection of its subsets V = {vi : vi ⊆ S, j = 1, . . . , n}. We
construct a two-dimensional VPP instance (i.e., viewpoints and objects reside
in a two-dimensional Euclidean space populated with obstacles) as in Fig. 6. We

21

first draw a circle of radius RC and let L be a diameter dividing the boundary of
the circle into two halves. For one half of the circle, we divide it equally into three
parts as shown and put m equally-sized surface patches in the perimeter of the
middle part, each of which corresponds to an element of the universe of the SCP
instance. The size of each is less than RCπ

3m
. We denote the surface patches using

the same labels as those for the elements in the SCP instance, sj , j = 1, . . . , m,
to imply this correspondence. We then create viewpoints, corresponding to the
subsets in the SCP instance, and put them on L with distances between two
consecutive ones greater than RO. (See Fig. 6(c).) The interior of the circle
is free of obstacles other than those we construct around the viewpoints. We
construct a half ring of obstacles of radius RO and negligible thickness (cut by
L). To accommodate n viewpoints, we require that n · 2RO < 2RC . For the
half ring of obstacles around each viewpoint, we make some visibility openings,
such that the viewpoint covers only the surface patches corresponding to those
elements in the viewpoint’s corresponding subset. For example, in Fig. 6(b), for
viewpoint v1 corresponding to subset {si1, si2 . . .}, we make some openings in
the half ring of obstacles around v1 such that it is visible to those surface patches
corresponding to elements si1, si2, As show in Fig. 6(c), for viewpoint vi+1,
the obstacle around neighboring viewpoints can only occlude its viewing angle of
less than 30o, which implies s1, . . . , sm can only be occluded by obstacle around
vi+1. The resulting VPP instance is to plan the minimum number of viewpoints
that cover all the surface patches. This is equivalent to asking for the minimum
number of subsets, the union of which is the universe. Thus, the reduction from
SCP to VPP is constructed.

Alternative polynomial-sized LP relaxation formulation for
Traveling VPP

Note that for our Traveling VPP formulation (1), it is the large number of
connection constraints using cuts that prevents us from working with its LP re-
laxation directly and solving for the optimal solution. In the following, we show
how to use flow formulation (rather than the cut) for these types of constraints.
Thus the resulting LP formulation for Traveling VPP will have a polynomial
size.

We first double the edges in our undirected graph G in the Traveling VPP
formulation and build a digraph to direct the flows in the graph. With slight
abuse of notation, we denote the resulting digraph by G = (V , E). For each
vertex, or viewpoint, i, let I(i) denote the set of edges having i as their endpoint
and let O(i) denote the set of edges having i as their start-point. We then
define the commodity flow for each viewpoint and edge pair, fi,e, i ∈ V , e ∈
E to reinforce the connection between s and i if i is chosen, i.e., we require
∑

e∈O(i) fi,e ≥ yi. The idea is to define each viewpoint i as the source of the
commodity i and s as the terminal for all the commodities. We require that yi

amount of commodity i flow from source i to s. Then each edge assignment has
to guarantee the flow capacity, i.e., ze ≥ fi,e, ∀i ∈ V . In addition, we require
flow conservation for each flow and for each vertex on the graph that is not

22

s1 s2

smv1
v2

vn

RO

Cover si1

Cover si2

L

RC

60o

<30o

(a)

(b)

(c)

vi

vi+1

RO

Figure 6: Reduction from an arbitrary SCP instance to a VPP instance. See
the text for the reduction.

the terminal of that flow, i.e.,
∑

e∈I(i′) fi,e =
∑

e∈O(i′) fi,e, ∀i′ /∈ {i, s}. So the
overall relaxed LP is given as:

Traveling VPP : (8)

min wv

∑

i∈V

yi + wp

∑

e∈E

ceze

Subject to: ∀j ∈ S ,
∑

i∈V(j)

yi ≥ 1

∀i ∈ V
∑

e∈O(i)

fi,e ≥ yi (9)

∀i ∈ V
∑

e∈I(s)

fi,e ≥ yi

∀i, ∀i′ /∈ {i, s},
∑

e∈I(i′)

fi,e =
∑

e∈O(i′)

fi,e (10)

∀e ∈ E, ∀i ∈ V , ze ≥ fi,e (11)

yi, fi,e, ze ≥ 0

In the following, we show the equivalence of the above flow-based formula-
tion (8) to the one we give before (1) by showing the feasible solution to one

23

formulation corresponds to a feasible solution to the other.

Lemma 4 The flow based relaxed LP formulation for Traveling VPP (8) is
equivalent to the graph cut based formulation (1).

Proof. We first show that any feasible solution yi, ze, fi,e to (8), corresponds
to a feasible solution yi, ze to (1). Since the covering constraints are the same
for both formulations, we only need to show the connection constraints. For any
cut that separates viewpoint i from s, via the flow conservation law, we know
the total amount of commodity flow i crossing the cut (from i to s) is at least
the amount emanating from i, which in turn is lower bounded by the viewpoint
assignment, (9). Since the edge assignment is lower bounded by the flow going
through it, (11), we have the total number of edges crossing T is at least yi.

Second, for any optimal LP solution yi, ze to (1), we can pick for each yi > 0
the unique path from i to s in the solution (Note that the optimal LP solution
must be a tree, i.e., the positively assigned edges form a tree connection rooted
at s, since otherwise we simply delete, and thus reducing the overall cost, some
edges while maintaining connectivity. It follows there exists a unique path from
any tree node to the root.), and assign the flow for commodity i and edges
(directing towards s) on the path to be yi. It is clear that this construction
gives a feasible flow solution to (8).

Note that the size of the formulation (8) has |V| + |E| number of variables
and |S|+ O(|V||E|) constraints.

References

[1] Y. Mei, Y. Lu, Y. Hu, and C.S. Lee. “A case study of mobile robot’s en-
ergy consumption and conservation techniques”. In Proc. of International
Conference on Advanced Robotics 2005.

[2] W. Scott, G. Roth, and J. Rivest. View planning for automated three-
dimensional object reconstruction and inspection. ACM Computing Sur-
veys, 35(1), March 2003, pp. 64-96.

[3] W. Chin and S. Ntafos. Watchman routes in simple polygons. Discrete
Comput. Geom., 6(1): 9-31, 1991.

[4] X. Tan. Approximation algorithm for the watchman route and zookeeper’s
problems. Discrete Applied Mathematics. 136(2-3): 363-376.

[5] L. Kavraki, P. Svestka, J. Latombe and M. Overmars, Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4): 556-580, 1996.

[6] J. Latombe. Robot motion planning. Kluwer Academic Publishers, Boston,
1991.

24

[7] S. Fekete, R. Klein, and A. Nuchter. “Online searching with an autonomous
robot”. In Proc. of Workshop on Algorithmic Foundation of Robotics, 2004.

[8] V. Isler, S. Kannan, K. Daniilidis. “Local exploration: online algorithms
and a probabilistic framework”. In Proc. of IEEE ICRA 2003.

[9] T. Danner and L. Kavraki. Randomized planning for short inspection
paths. In Proc. of IEEE International Conference on Robotics and Au-
tomation, 2002.

[10] V. Vazirani. Approximation algorithms. Spinger, 2001.

[11] N. Garg, G. Konjevod, and R. Ravi. A polylogorithmic approximation
algorithm for the group Steiner tree problem. Journal of Algorithms. 37(1):
66-84, 2000.

[12] C. Chekuri, G. Even, G. Kortsarzc. A greedy approximation algorithm
for the group Steiner problem. Discrete Applied Mathematics 154 (2006),
pp.15-34.

[13] R. Ravi and F. Salman. “Approximation Algorithms for the Traveling
Purchaser Problem and its Variants in Network Design”. In Proc. of the
7th Annual European Symposium on Algorithms. pp. 29-44, 1999.

[14] W. Scott, G. Roth, and J. Rivest. View planning with a registration con-
straint. In Proc. 3rd International Conference on 3D Digital Imaging and
Modeling, 2001, pp. 127-134.

[15] C. Swamy and A. Kumar. Primal-dual Algorithms for Connected Facility
Location Problems. Algorithmica 40 (2004), pp. 245-269.

[16] P. Slavik. The Errand Scheduling Problem. Techical Report 97-02. Depart-
ment. of Computer Science and Engineering, SUNY Buffalo, 1997.

[17] G. Pataki. Teaching Integer Programming Formulations Using the Travel-
ing Salesman Problem. SIAM Review 2003. 45(1), pp. 116-123.

[18] C. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithm
and complexity. Prentice Hall, 1982.

[19] M. Goemans and D. Williamson. A general approximation technique for
constrained forest problems. SIAM Journal on Computing. 24(2): 296-317,
1992.

[20] E. Halperin and R. Krauthgamer. “Polylogarithmic inapproximability”. In
Proc. of STOC 2003.

[21] P. Bessiere, J. Ahuactzin, E. Talbi, and E. Mazer. The Ariadne’s Clew
Algorithm: Global Planning with Local Methods. In K. Goldber, D.
Halperin, J. Latombe, and R. Wilson, editors, Algorithmic Foundation
of Robbotics, pp. 39-47. A K Peters, Ltd., 1995.

25

[22] S. LaValle and J. Kuffner. Randomized Kinodnamic Planning. In Proc.
IEEE Int’l Conf. on Robotics and Automation, pp. 473-479, 1999.

[23] G. Desaulniers, J. Desrosiers, and M. Solomon. Column Generation.
Springer, 2005.

[24] P. Wang, R. Krishnamurti, and K. Gupta. View planning with combined
viewing and traveling costs. Technical Report TR 2006-17, School of Com-
puting Science, Simon Fraser University, Burnaby, BC, Canada, May 2006.

[25] K. Bowyer, and C. Dyer. Aspect graphs: an introduction and survey of
recent results. International Journal of Imaging Systems and Technology,
2:315–328, 1990.

[26] H. Gonzalez-Banos and J. Latombe, A randomized art-gallery algorithm
for sensor placement. In Proc. of ACM Symp. on Computational Geometry,
pp. 232–240, 2001.

[27] P. Wang, R. Krishnamurti, and K. Gupta. Generalized watchman route
problem with discrete view cost. In preparation.

26

