
View Planning Problem with travel costs: Program

Formulation, Hardness of Approximation, and

Approximation Algorithms

Pengpeng Wang

School of Engineering Science

Simon Fraser University

Burnaby, B.C., Canada

Ramesh Krishnamurti

School of Computing Science

Simon Fraser University

Burnaby, B.C., Canada

Kamal Gupta

School of Engineering Science

Simon Fraser University

Burnaby, B.C., Canada

Technical Report TR 2006-17
School of Computing Science

Simon Fraser University

Abstract

In this report, we tackle the problem of view planning with travel
cost, denoted by Traveling VPP. It refers to planning a sequence of
sensing actions with minimum total cost by a robot-sensor system to
completely inspect the surfaces of objects with known geometries in a
known workspace. The cost to minimize is a combination of the view
cost, proportional to the number of viewpoints planned, and the travel
cost for the robot to realize them. We show that the Traveling VPP is
equivalent to “Set Covering on a Graph” via reductions from both di-
rections. We use the recent result on the hardness of approximations to
show that Traveling VPP is poly-log inapproximable. We give a linear
program based rounding algorithm that achieves an approximation ra-
tio of the order of view frequency. Also, we show, via a reduction to the
group Steiner tree problem, that the existing approximation algorithm
applies to Traveling VPP, thereby providing a poly-log approximation
ratio. This parallels the approximation ratio results to the set covering
problem, i.e., the best approximation ratio for the set covering prob-
lem is either the frequency or the logarithm of the number of elements,

1

whichever is smaller. We then show that our rounding algorithm has a
similar frequency factor approximation ratio for other related combi-
natorial optimization problems by giving the necessary reductions. We
also consider several generalizations of Traveling VPP for more real-
istic models, where image registration constraints and visibility range
and angle constraints are accounted for.

1 Traveling VPP: Introduction and Formulation

In this section, we introduce the problem of view planning with travel cost,
and formulate as a combinatorial optimization problem.

1.1 Motivations from robotic applications

In applications ranging from surveillance to object inspection, an autonomous
robot is required to inspect the surfaces of objects or boundaries of the
workspace in a large and/or cluttered 2D or 3D environment. Every surface
of the objects of interest (which could be the whole environment) must be
viewed/covered via at least one planned viewpoint of the range sensor. Here
we assume line of sight for the sensor which may be subject to occlusions
and visibility range. It is desired that the total cost of the plan, comprising
the travel cost (the total distance traveled by the robot along the planned
path, which is proportional to the total amount of energy consumed by the
robot) and the view cost (proportional to the number of viewpoints planned
where each viewing overhead is due to image acquisition, processing, and
registration), is minimized, thus corresponding to intelligent robot behavior.
We call this problem Traveling View Planning Problem, or Traveling VPP in
short, and formulate it as an optimization problem. Here we assume the ob-
ject and environment are of known geometries and call it the “model-based”
case.

See Fig. 1 for a simple Traveling VPP example where the robot sensor
system, a mobile manipulator with a range sensor mounted at the manipu-
lator end effector, is required to inspect the surface of a large object. The
six robot configurations that realize the planned viewpoints are also shown,
and the dotted lines between these configurations is the traveling path of
the robot. The dotted triangles that are attached to the robot end-effector
are the sensor’s field of view (FOV) at different configurations. The total
cost of such a plan includes the total view cost, proportional to the number
of viewpoints planned (six in this case), and the travel cost, proportional to
the length of the path travelled by the robot.

2

Object of insterst

Robot traveling path

Viewpiont

Sensor
FOV

Robot start
position

Figure 1: A Traveling VPP instance. It shows 6 planned sensor viewpoints
that totally cover the surface of the object of interest, and the robot traveling
path to realize them.

3

The Traveling VPP is clearly a generalization of the view planning prob-
lem (VPP), i.e., the problem of planning the minimum number of viewpoints
to completely inspect an object surface, considered in the robot vision area
[18], where often a sensor positioning system is used within a well controlled
and limited workspace. These formulations do not consider the travel cost
of the robot, a critical cost, particularly for large workspaces and remote
autonomous missions, where power consumption is a critical factor. The
Traveling VPP is also a generalization of the watchman route problem, i.e.,
the problem of planning the shortest tour to inspect the interior of a 2D
polygonal region, considered in the computational geometry area [3, 21].
The watchman route problem, however, does not consider view cost, again
a critical cost, particularly for the inspection tasks considered here, where
each sensor view and the consequent processing are time-consuming. Also,
unlike the watchman route problem being restricted in 2D environment,
Traveling VPP uses a graph to encode the traveling. In addition, since we
do not assume metrics for the graph, thus Traveling VPP is applicable to
more general cases. Such graphs, called roadmaps in the root configuration
space, are commonly used for the high-dimensional path planning problem
in robot motion planning literature [12, 13].

There are several existing works on combining the view and travel cost
in the literature, but not in a unified and global fashion. For example,
in [7, 11], the authors considered a local version of the robot exploration
problem, “to look around a corner”, i.e., to detect an object hidden behind
a corner while minimizing the sum of the robot travel and the sensor scan
time. The problem is considerably simpler since the goal is local, i.e., the
objective is not to cover the whole object surface.

In [4], the authors considered the optimization in a global fashion, how-
ever, in a “weak sense”, since no view cost is considered, thus corresponding
to a special case of Traveling VPP. They propose to solve the problem
by a decoupled two level approach, i.e., to plan the minimum number of
viewpoints without considering robot travel cost first and then to solve (ap-
proximately) the Metric TSP using the shortest path graph. This two level
decoupled approach works well for cases where the views considered do not
have overlap between their coverage (they become the only choice for a view
plan.), or those with large coverage overlap are close to each other (they
correspond to similar travel costs). However, this is not true for a general
Traveling VPP setting. For example, as shown in Fig. 2, even assuming
that at each level the respective optimization problem, obtaining the min-
imum number of viewpoints or the shortest path tour, is solved optimally
(as opposed to solving it using approximation algorithms), this two level

4

decoupled approach can perform arbitrarily poorly by pulling the leftmost
viewpoint even further apart from the rightmost ones. This issue occurs
because the planned viewpoints at the first level are too far apart for the
robot to realize a plan efficiently since no travel cost is considered at the
first stage. This motivates the approach we take in this report, to model
the Traveling VPP in a unified formulation and design fast algorithms with
guaranteed performances.

1.2 Traveling VPP: abstraction to set covering on a graph

In this section, we pose Traveling VPP as a combinatorial optimization
problem using and generalizing the two well-known problems, namely the set
covering problem (SCP) and the metric traveling salesman problem (Metric
TSP). We show the equivalence of the view planning problem (VPP) and
the SCP via reductions. Considering that the Traveling VPP combines
both VPP and the Metric TSP, or in other words, VPP is a special case of
Traveling VPP ignoring travel costs, we can also name the Traveling VPP
as “set covering on a graph”.

First, let us show the reduction from VPP to SCP. By considering each
object surface patch as the subset of the viewpoints that can cover it [17],
an arbitrary VPP instance is immediately an SCP instance. Since the VPP
has an inherent geometric structure, one might hope that VPP is a simpler
version of SCP. In the following, we show a simple reduction that takes any
SCP instance and constructs a VPP instance1, thus showing the equivalence
of the SCP and VPP.

An arbitrary SCP instance is given by a universe of elements S = {sj, j =
1, . . . ,m} and a collection of its subsets V = {vi : vi ⊆ S, j = 1, . . . , n}. (It
should be clear from the above why we use the same notation for viewpoints
in VPP and for subsets in SCP.) We construct a 2D VPP instance (i.e.,
viewpoints and objects reside in a 2D Euclidean space populated with ob-
stacles) as in Fig. 3. We first draw a circle and draw a line L (This line
does not correspond to any obstacle.) to divide the inner boundary of the
circle into two parts. We put n surface patches on the circle’s inner surface
in only one part, each of which corresponds to an element of the universe of
the SCP instance. We denote the surface patches using the same labels as
those for the elements in the SCP instance, sj, j = 1, . . . ,m, to imply this
correspondence. We then create viewpoints, corresponding to the subsets
in the SCP instance, and put them R distance from line L. (See left figure

1In [17], the authors claimed the VPP is isomorphic to the SCP but did not give a
concrete reduction from an arbitrary SCP instance to a VPP instance.

5

Obj. of Interest

v4 = s

v1

v3

 v2

100

1
s1

s3
s2

e2

e3

1

e1

(i) Optimal solution

v2

v4

(ii) Two level solution

v4

v1

v3

Figure 2: A planar example shows the arbitrarily poor performance of the
two-level decoupled approach. The object to inspect, the triangle, has three
surface patches, s1, s2 and s3; the four possible sensing positions, or view-
points, are v1, v2, v3 and v4, all shown in the top figure. v4 coincides with
the robot start position s. The shaded sensing triangles show the covering
relations: viewpoints v1, v3 and v4 cover the surface patches s1, s2 and s3

respectively, while v2 (sensing triangle of which is not shown) covers both
s1 and s2. The line segments connecting the views, e1, e2 and e3, denote
the robot’s traveling path; the numbers on each segment are the respective
travel costs (distances). (The distances are not drawn to scale.) We assume
the view and travel cost are equally weighted in the objective function, i.e.
the unit viewing cost (cost for each view) is the same as the unit travel cost
(cost for unit travel distance). Thus the total cost is the sum of the number
viewpoints planned and the total distance of the path planned. The dashed
lines shown in the two bottom figures are the planned paths connecting the
planned viewpoints. The optimal solution is to take three views at s, v1 and
v2 using the dashed line segments as the traveling path. The solution given
by the decoupled cost can be made arbitrarily poor by pulling v2 farther to
the left.

6

s
1 s

2

s
m

v
1

v
2

v
n

R

Cover si1

Cover si2

r

L

parallel to L

Figure 3: Reduction from an arbitrary SCP instance to a VPP instance.
See the text for the reduction.

in Fig. 3.) The interior of the circle is free of obstacle other than those
ones we construct around the viewpoints. We construct a half (cut by a
line parallel to L) ring of obstacles of radius R and thickness r, with visi-
bility openings, around each viewpoint, such that the viewpoint covers only
the surface patches corresponding to those elements in the viewpoint’s corre-
sponding subset. For example, in the upper-right zoomed figure in Fig. 3, for
viewpoint v1 corresponding to subset {si1, si2 . . .}, we make some openings
in the half ring of obstacles around v1 such that it is visible to those surface
patches corresponding to elements si1, si2, We further make R and r
sufficiently small such that each viewpoint is only occluded by the ring of
obstacles around itself, but not by obstacles around other viewpoints. (Since
all the viewpoints are on the same line L, one viewpoint can only occlude
the other from viewing the surface patch on L, and the surface patches we
construct are not on L.) The resulting VPP instance is to ask a plan of the
minimum number of viewpoints that cover all the surface patches. This is
equivalent to asking for the minimum number of subsets the union of which
is the universe. Thus, the reduction from SCP to VPP is constructed.

7

On the other hand, assuming the planned viewpoints are given (or the
VPP is already solved), Traveling VPP is reduced to the Metric Traveling
Salesman Problem (Metric TSP) by constructing the shortest path graph on
the planned viewpoints [4]. (The shortest path graph is defined as the com-
plete graph between the planned viewpoints in which the edge cost between
two viewpoints is the shortest path length the robot travels to realize them.)
Since the two problems, SCP (without metrics) and Metric TSP (with met-
rics), have fundamentally different structures and solving techniques, Trav-
eling VPP is an interesting and non-trivial generalization. (Please see the
appendix for a brief recapitulation of Metric TSP.)

Thus, in the abstract sense, Traveling VPP can also be termed as “Set
Covering on a Graph”. As an immediate result, Traveling VPP must be at
least as hard as both SCP and Metric TSP.

1.3 Related work

In addition to the related works in the robotics and vision literature men-
tioned above, here we survey some of the related works in the combinatorial
optimization literature, especially the problems of connected facility loca-
tion, and errand scheduling. (Two other problems, group Steiner tree and
traveling purchaser, are also related and will be discussed in the following
sections.)

In [20], the problem of connected facility location is addressed, which,
given a set of facilities and a set of clients both residing in a metric space,
asks for a set of open facilities connected by a Steiner tree and the service
assignments between these open facilities and all the clients, such that the
total costs, including both the summation of the service assignment costs
and the tree cost, is minimized. Using the metric heuristics in their algo-
rithm, the authors give a greedy algorithm with constant approximation
ratio. By regarding the clients as the surface patches in the Traveling VPP
and regarding the facilities as the viewpoints, the connected facility location
problem is related to the Traveling VPP. However, the visibility relation
between viewpoints and surface patches does not assume a metric, and the
heuristic in [20] is not applicable to the Traveling VPP.

Given a graph G = (V,E) with metrics (the edge weights of which satisfy
the triangular inequality), where each vertex is associated with a subset of
errands, the problem of errand scheduling asks for a short tour such that
the subsets of the vertices visited is the whole errand set [19]. In [19], the
author gives an algorithm with the approximation ratio of 3ρ/2, where ρ is
the maximum number of nodes one errand is associated.

8

Traveling VPP clearly generalizes ESP in the following senses: the graph
in Traveling VPP does not assume metrics; there is no view cost in ESP; and
there is no distinction in ESP of viewpoint and Steiner node on the graph.
(In Traveling VPP, even some viewpoints are in the final tour planned, the
robot does not need to take a view at them, and they are simply for travel
use, hence termed as Steiner nodes [22].)

1.4 Integer program formulation of Traveling VPP

In this section, we give an integer linear program (ILP) formulation for the
Traveling VPP.

In our unified formulation of travelling VPP, we make assumptions to
abstract out and focus on certain key ingredients in the unified formulation,
in particular the interplay between SCP and Metric TSP. We assume that
the surface patches to be inspected are given, the viewpoints from which
a surface can be inspected are also given, and that a graph which encodes
the possible robot movements connecting the viewpoints and the robot start
position, is also given. We assume binary covering relationship, i.e., a view-
point either covers a surface patch or does not cover it. These assumptions
are based on a realistic scenario and algorithms from literature can be uti-
lized to derive these quantities. For instance, the set of viewpoints can be
derived from the aspect graph [1], partial coverage between viewpoints and
surface patches can be incorporated by subdividing the surface patch, sen-
sor field of view constraints can be incorporated via viewpoint and surface
patch visibility computations, and the encoding graph would essentially be
a roadmap built on the configuration space of the robot [12, 13].

The Traveling VPP chooses a subset of the viewpoints and a Steiner tree
on the graph to connect them, under the (covering) constraint that every
surface patch is covered by at least one planned viewpoint and the (con-
nection) constraint that every planned viewpoint is connected to the robot
start position via the planned Steiner tree. The objective is to minimize
the total cost of the plan, defined as the sum of the view cost and the tree
cost (the sum of all edge costs in the Steiner tree). The reason for using the
(rooted) Steiner tree problem instead of Metric TSP is it is easier to combine
the (rooted) Steiner tree formulation with covering constraints. Moreover,
Metric TSP can be easily approximated using the solution to the Steiner
tree problem. (See the appendix for details.)

We denote the set of all viewpoints by V and index them by i. We
denote the set of surface patches by S and index them by j. We use the
notation i ∈ V and j ∈ S to imply the “ith viewpoint” and “jth surface

9

patch”, respectively. For i ∈ V, let S(i) denote the subset of the surface
patches that viewpoint i covers; and for j ∈ S, let V(j) denote the subset of
viewpoints that cover surface patch j. The robot movements are restricted
to the graph G = (V, E), where the node set V is the set of all viewpoints
and s, the starting position of the robot. (In case the robot start position
does not correspond to a sensing action, we simply assign the empty set as
the set of surface patches it sees.) The edge e between two views vi1 and vi2

represents the path from vi1 to vi2 . We use ce to denote the cost (length) of
edge e. We also use T ⊂ V : s /∈ T to denote a cut or subset of the graph
that does not include the robot start position. We use δ(T) to denote the
set of edges that “crosses” T , having one end inside T and the other outside
T , i.e., e = < v1, v2 > ∈ δ(T) ⇐⇒ v1 ∈ T ∧ v2 /∈ T OR v2 ∈ T ∧ v1 /∈ T .
We use wv, the unit view cost or cost per viewpoint, and wp, the unit travel
cost or cost per unit traveling distance, to allow users to specify the relative
weights between sensing and traveling. Further, we use F to denote the
view frequency, defined as the maximum number of viewpoints that cover a
single surface patch, i.e., F = maxj∈S |V(j)|. (|A| denotes the cardinality of
a discrete set A.)

In the ILP setting, binary integer variables are used to denote a solution.
In the following, we define the binary variable, yi, as the indicator whether
to take a view at view cell i, corresponding to yi = 1, or not, corresponding
to yi = 0; we define the binary variable, ze, as the indicator whether to
include the edge e in the robot traveling path, corresponding to ze = 1, or
not, corresponding to ze = 0. Thus, the ILP formulation for the traveling
VPP is given as:

Traveling VPP (ILP): (1)

min wv

∑

i∈V

yi + wp

∑

e∈E

ceze

Subject to: ∀j ∈ S ,
∑

i∈V(j)

yi ≥ 1 (2)

∀i ∈ V , ∀T ⊂ V : i ∈ T ∧ s /∈ T,
∑

e∈δ(T)

ze ≥ yi (3)

yi, ze ∈ {0, 1}, i ∈ V , e ∈ E

The coverage constraints, (2), require that for each surface at least one
view is chosen from its viewpoint set. The connection constraints, (3), re-
quire that for each planned view i (implicitly specified by coverage con-

10

straints), yi = 1, and for every cut T of the vertex set that separates i from
the robot start position s, at least one edge that crosses T must be chosen
to connect the cut. Such connection constraints are used in the standard
(rooted) Steiner tree problem ILP formulation [9], and essentially express the
notion that each selected node must be reached from the start node. Note
that the above ILP formulation (1) is not the most compact one, since there
are a large number of constraints corresponding to the cuts in the graph.
In the following, we will also give a polynomial-sized formulation (especially
useful to solve the corresponding relaxed LP). Nonetheless, this formulation
gives us a lot of intuition, since it works directly with the edge assignments,
and becomes handy when we analyze the algorithmic performance.

2 Hardness Analysis of Traveling VPP

Although as the generalization to both SCP and Metric TSP, Traveling VPP
is immediately an NP-complete problem, its hardness of approximation, i.e.,
the best approximation ratio any polynomial algorithm can achieve. In this
section, we use the result in [10] to show the hardness of approximation for
Traveling VPP via reductions to the group Steiner tree problem (GST).

GST is defined as follows. Given a graph G = (V,E), where the vertex
set V is divided into k distinct groups, g1, g2, . . . , gk, construct the mini-
mum cost Steiner tree to connect at least one vertex from each group. The
GST generalizes both the SCP and the Stener tree problem where the best
known approximation ratio are O(log n) and O(1) respectively. In [8, 2],
the authors used an LP-based randomized rounding algorithm and a greedy
algorithm respectively to achieve the best known poly-log approximation
ratio, O(log |V | log log |V | · log k log N), where |V |, k and N are the number
of graph nodes, the number of groups and the maximum cardinality of the
groups respectively. As an interesting robotic application, in [16], the au-
thors use the approximation GST algorithm in [2] to solve the problem of
planning tours for the robot arm to achieve at least one configuration from
each distinct group of configurations that achieve the same end-effector pose.

It was open whether the gap between the best known SCP and GST ap-
proximation ratios could be closed until that recently, Halperin and Krauthgamer
show the poly-log inapproximality hardness result for GST, i.e., the opti-
mal solution to GST cannot be approximated by any polynomial algorithm
within the O(log2−ǫ k) ratio, for any ǫ > 0 [10]. In what remains in this
section, we show that the Traveling VPP is not approximable within the
same poly-log ratio via the reduction given in [8].

11

By considering each group in any GST instance as the viewpoint set
of a surface patch in the Traveling VPP, GST is reduced to a special case
of the Traveling VPP where the viewpoint sets that cover different surface
patches are exclusive, i.e., they do not share common viewpoints. Thus,
the Traveling VPP is certainly a harder problem than GST and cannot be
approximated within log2−ǫ |S|. The question remains whether the hardness
of Traveling VPP is of higher order. We show in the following that the inap-
proximalities of Traveling VPP and GST are of the same order by showing
the reduction from Traveling VPP to GST via two steps.

We first show how to reduce a GST instance from a special case of a
Traveling VPP instance with 0 view cost. The idea is to duplicate each
viewpoint many times (equal to the number of surface patches it covers) to
make the resulting viewpoint sets exclusive. Consider any Traveling VPP
instance, i.e., the viewpoint set V = {vi, i = 1, . . . , n}, the surface patch set
S = {sj , j = 1, . . . ,m}, the viewpoint set V(sj) ⊆ V for each surface patch
sj, and the graph G that connects V. We first construct a group gj for each
surface patch sj and construct a vertex for each pair of a surface patch sj

and one viewpoint from its viewpoint set, i.e., (sj, vi), vi ∈ V(sj), sj ∈ S.
We modify the graph G of Traveling VPP accordingly by first construct-
ing a tree with 0-cost edges between the vertices corresponding to the same
viewpoint, i.e., {(sj , vi) : sj ∈ S(vi)} (picking an arbitrary vertex (sj , vi) as
the tree root) and then placing the tree root at the node vi on G. Thus,
we have a GST instance on the graph over vertices in the form (sj, vi) and
groups corresponding to the surface patches sj . And it is easy to see that an
optimal GST solution that picks vertices (sj, vi) and Steiner tree between
them correspond to an optimal solution to Traveling VPP of picking view-
points vi and the resulting Steiner tree connection by collapsing the 0-cost
edges. The above GST instance construction produces O(|V||S|) number of
vertices and O(E + |V||S|) number of edges.

We now show how to reduce an arbitrary Traveling VPP instance to a
Traveling VPP instance with 0 view cost. For an arbitrary Traveling VPP
instance with unit view cost and unit travel cost wv and wp respectively, we
add a new viewpoint vi′ , for each original viewpoint vi, with identical surface
patch set, make the surface patch set for vi to be empty, and connect vi′ to
vi via an edge with cost of wv

wp
. It is easy to see an optimal solution to the

reduced (0 view cost) version of Traveling VPP corresponds to an optimal
solution to the original Traveling VPP instance since view costs are encoded
in the edge costs of the reduced Traveling VPP instance. (Since the surface
patch set of the original viewpoint is made empty, the new solution has to

12

go to the new copy of the viewpoint, thus incurring the travel cost wv

wp
which

is equivalent to adding wv

wp
· wp = wv in the objective function.) The size of

the resulting instance has 2|V| number of viewpoints and |V| + |S| number
of edges.

By cascading the two reductions above, an arbitrary Traveling VPP in-
stance with viewpoint set V and surface patch set S is reduced to a GST
instance with a graph having O(|V||S|) vertices, O(|V||S|) edges, and |S|
groups. As a result, the Traveling VPP is inapproximable within O(log2−ǫ |S|)
ratio of the optimal using any polynomial algorithm. Also the best known
approximation algorithms mentioned at the beginning of this section can
be applied to the Traveling VPP (after the reductions given above) and the
approximation ratio is O(log |V| log log |V| · log |S| log F), where again F is
the view frequency.

3 LP based Algorithms for Traveling VPP

In this section, we first give the LP relaxation for Traveling VPP, introduce
a novel rounding algorithm to get an integral solution from the LP solution,
give the approximation ratio analysis, and then discuss how to solve the LP.
We also compare the approximation ratio attained by our algorithm and
that by randomized rounding in [8] after the reduction from Traveling VPP
to GST is done.

3.1 Relaxed LP for Traveling VPP

By relaxing the binary integral variables, yi and ze, to be positive reals, we
have the relaxed linear program (LP) formulation given as:

LP Relaxation: min wv

∑

i∈V

yi + wp

∑

e∈E

ceze

Subject to: ∀j ∈ S :
∑

i∈V(j)

yi ≥ 1 (4)

∀i ∈ V , ∀T ⊂ V : i ∈ T ∧ s /∈ T :
∑

e∈δ(T)

ze ≥ yi (5)

yi, ze ≥ 0, i ∈ V , e ∈ E

We call the optimal (fractional) solution and the corresponding cost of
the above LP relaxation the LP optimal solution and LP optimal value re-
spectively. The LP optimal solution corresponds to the fractional LP optimal

13

viewpoint assignments and the fractional LP optimal edge assignments. We
call the optimal (integral) solution and corresponding cost to the original
ILP the ILP optimal solution and ILP optimal value, respectively. The ILP
optimal solution correspond to the integral ILP optimal viewpoint assign-
ments and the integral ILP optimal edge assignments.

3.2 Rounding Algorithm

Let y∗i and z∗e denote the LP optimal viewpoint assignments and the LP
optimal edge assignments respectively, and let OPT ∗ denote the LP opti-
mal value, i.e., OPT ∗ = wv

∑

j∈V y∗i + wp
∑

e∈E cez
∗
e . Let y′i, z

′
e denote the

algorithmic integral solution by the algorithm Round and Connect given be-
low, and let cost′ denote the corresponding cost, i.e., cost′ = wv

∑

j∈V y′i +
wp
∑

e∈E cez
′
e. Throughout this paper, we use the superscript ∗ to denote

the LP optimal solution/cost to the corresponding problem instance; and
use superscript ′ to denote the ILP solution/cost that may or may not be
optimal. The algorithm Round and Connect is listed as follows,

Algorithm 1 Round and Connect: (take LP optimal y∗i , z
∗
e as input and

output y′i, z
′
e)

Step 1. Initialize viewpoint choice set Vc to include all the viewpoints,
i.e., Vc ← V; the viewpoint solution set V ′ to be empty, i.e., V ′ ← ∅; the
uncovered surface patch set Su to include all surface patches, i.e., Su ← S

Step 2. Select the viewpoint imax ∈ V
c that covers some uncovered

surface patch(es) and has the largest LP optimal viewpoint assignment,
i.e., imax = arg max

i∈Vc: S(i)∩Su 6=∅
y∗i , and add it to V ′, i.e., V ′ ← V ′ ∪ {imax}

Step 3. Delete the surface patch(es) that imax covers from the
uncovered surface patch set, i.e., Su ← Su \ S(imax); and delete imax from
the viewpoint choice set, i.e., Vc ← Vc \ {imax}

Step 4. Stop and output V ′ if Su is empty, i.e., set y′i = 1 for i ∈ V ′,
and set y′i = 0 for i /∈ V ′; otherwise, go to Step 2.

Step 5. Connect V ′ by the optimal Steiner tree solution. Set z′e 1 for
edges in the Steiner tree solution, and 0 otherwise.

In the above algorithm, we iteratively choose the viewpoint with the
largest (fractional) LP optimal viewpoint assignment until all the surface
patches are covered. We then feed these chosen viewpoints to a Steiner tree
algorithm to get the optimal integral solution, Step 5. Note that the Steiner
tree problem is again an NP-complete problem for a general graph. So

14

practically speaking, we can use a constant ratio approximation algorithm,
for example the one in [9], and incur an additional bounded performance
degradation. It is easy to see that the rounding part of the above algorithm
(up to Step 5) runs in polynomial time, O(|V||S|).

3.3 Approximation ratio for algorithm Round and Connect

It is trivial to see that the solution given by algorithm Round and Connect
is a feasible integral solution. In the following, we analyze the performance
of the algorithm using the fact that the LP optimal value is a lower bound
on the ILP optimal value. We first show that the view part of the cost of
the solution given by the algorithm is bounded and then bound the total
cost using a feasible hybrid solution with integral viewpoint assignments and
fractional edge assignments.

3.3.1 View cost analysis

In the following, we show that the LP optimal viewpoint assignments of
the chosen viewpoints are lower bounded by 1

F , Lemma 2. This follow
immediately from a simple observation based on the feasibility of the LP
optimal solution, Proposition 1. The results are then used in bounding the
view cost part of the algorithmic solution, Corollary 3.

Proposition 1 For any surface patch, there exists a viewpoint that covers
it with the corresponding LP optimal viewpoint assignment greater than 1

F ,
i.e., ∀j ∈ S, ∃i ∈ V(j) : y∗i ≥

1
F .

Proof. We show this by contradiction. Assume that for some surface patch
j ∈ S, all the LP optimal viewpoint assignments are strictly less than 1

F ,

i.e., y∗i < 1
F ,∀i ∈ V(j). By recalling that view frequency F is the maximum

number of viewpoint that covers any surface patch (i.e., |V(j)| ≤ F,∀j ∈ S),
we must have,

∑

i∈V(j)

y∗
i <

∑

i∈V(j)

1

F
= |V(j)| ·

1

F
≤ 1

The above implies that for j ∈ S, the sum of covering viewpoint as-
signments is strictly less than 1, or in other words, surface j is not covered.
This contradicts the feasibility of the LP solution, specifically the constraints
(4).

Lemma 2 The LP optimal viewpoint assignment for each viewpoint chosen
by Algorithm Round and Connect is lower bounded by 1

F , i.e., y∗i ≥
1
F ,∀i ∈

V ′.

15

Proof. It is equivalent to show that the above algorithm cannot choose
any viewpoint whose LP optimal viewpoint assignment is less than 1

F . We
show this by contradiction. Assume we choose one viewpoint i with y∗i < 1

F .
By the Round and Connect algorithm, Step 2, at the iteration when i is
picked, it has the maximum LP optimal viewpoint assignment among the
viewpoints that covers the remaining uncovered surface(s). We arbitrarily
choose one uncovered surface patch that i covers. By Proposition 1, there
exists another i′ for which y∗i′ ≥

1
F . This implies y∗i′ > y∗i . i′ has not yet

been chosen, since otherwise all its covering surface pathes including this
uncovered one would have been deleted from uncovered surface patch set.
This contradicts that i has the largest LP solution, y∗i , among unchosen
viewpoints that cover uncovered surface patch(es).

Lemma 2 implies that the view cost part of the algorithmic solution is
bounded by the view cost of the LP optimal, as stated in Corollary 3.

Corollary 3 Algorithm Round and Connect gives an integral solution with
view cost at most F times the view cost of the LP optimal solution, i.e.,
wv
∑

i∈V y′i ≤ F · wv
∑

i∈V y∗i .

Proof. By Lemma 2, we have Fy∗i ≥ 1, for all the chosen viewpoint i ∈ V ′.
It follows that

wv

∑

i∈V

y′ = wv

∑

i∈V′

1 ≤ F · wv

∑

i∈V′

y∗ ≤ F · wv

∑

i∈V

y∗

3.3.2 Total cost analysis

In the following, after stating the half integrality gap result of the Steiner
tree problem [22], we show that the solution given by the algorithm Round
and Connect has a total cost at most 2F times the LP optimal value. Since
the LP optimal value is a lower bound on the ILP solution, we now show
that the algorithm Round and Connect has approximation ratio of 2F .

Lemma 4 For the Steiner tree problem, the integrality gap between the IP
and its relaxed LP is 2.

Proof. See Chapter 22 of [22].
Note that Step 5 of the algorithm Round and Connect corresponds to

the Steiner tree problem of connecting V ′, the ILP optimal solution to which
is z′e. We use OPT ′

tree to denote the corresponding optimal value, i.e.,

16

OPT ′
tree =

∑

e∈E cez
′
e. Again, we use OPT ∗

tree to denote the correspond-
ing relaxed LP optimal value. Now we are ready to show the approximation
ratio of algorithm Round and Connect.

Theorem 5 Algorithm Round and Connect has the approximation ratio of
2F , i.e., cost′ ≤ OPT ∗ · 2F .

Proof. To prove the approximation ratio result, we utilize an inter-
mediate solution with integral viewpoint assignments and fractional edge
assignments. (We emphasize this solution is only used in the proof and not
computed in the algorithm.) This solution is denoted by y′i, z

s
e . The view-

point assignments are the same as in the algorithm output y′i, and the edge
assignments are scaled by F , i.e., zs

e = Fz∗e . The superscript s denotes it is
a solution after scaling. We call it the hybrid solution, and denote the total
cost of this solution costh. By Lemma 2 and the edge scaling, we have,

costh = wv

∑

i∈V

y′
i + wp

∑

e∈E

cez
s
e ≤ F · wv

∑

i∈V

y∗
i + F · wp

∑

e∈E

cez
∗
e ≤ F ·OPT ∗.

Now, we claim that the hybrid solution is a feasible solution to the LP
relaxation of Traveling VPP. Sine the viewpoint assignments of the hybrid
solution is exactly the same as in the solution given by the algorithm Round
and Connect, all the covering constraints, (4), are satisfied by the solution
viewpoint set V ′. The connection constraints, (5), are also satisfied, since

∑

e∈δ(T)

zs
e =

∑

e∈δ(T)

Fz∗e ≥ Fy∗
i ≥ y′

i.

The first inequality above is due to the feasibility of the LP optimal
solution, and the second is due to Lemma 2.

Since all y′i are integral, zs
e is a feasible LP solution to the Steiner tree

problem to connect V ′. It follows immediately that the connection cost
∑

e∈E cez
s
e is at least the LP optimal value to connect V ′, i.e.,

∑

e∈E

cez
s
e ≥ OPT ∗

tree.

Note that the algorithm Round and Connect (Step 5) gives an optimal
integral Steiner tree solution to connect V ′. By the integrality gap result for
Steiner trees, Lemma 4, this tree cost is at most twice the LP optimal value
for the Steiner tree problem to connect V ′, i.e.,

∑

e∈E cez
′
e = OPT ′

tree ≤
2 ·OPT ∗

tree. So we have, (The last equality below is due to the edge scaling.)

17

∑

e∈E

cez
′
e ≤ 2 ·OPT ∗

tree ≤ 2 ·
∑

e∈E

cez
s
e = 2F ·

∑

e∈E

cez
∗
e

Combined with the view cost part of the algorithmic solution, Corol-
lary 3, we have,

cost′ = wv

∑

i∈V

y′
i + wp

∑

e∈E

cez
′
e ≤ F · wv

∑

i∈V

y∗
i + 2F · wp

∑

e∈E

cez
∗
e ≤ OPT ∗ · 2F,

which implies the algorithm Round and Connect has approximation ratio of
at most 2F .

3.3.3 Integrality gap for Traveling VPP

Theorem 5 shows that the algorithm Round and Connect, recovers an in-
tegral solution from any LP optimal solution to Traveling VPP and the
solution cost is within 2F times the optimal value. This implies that the
integrality gap between ILP optimal and LP optimal for Traveling VPP is
at most 2F . In the following, we show that 2F is also the integrality gap
for Traveling VPP by giving an example that achieves this ratio.

Theorem 6 The integrality gap of the Traveling VPP is 2F .

Proof. We show the integrality gap of Traveling VPP is at least 2F
by giving an example where the 2F ratio is achieved. In the Traveling
VPP instance in Fig. 4, viewpoints iC1,1, iC1,2, . . . , iC1,F , . . . , icn,1, . . . , icn,F

are grouped into n clusters, denoted by C1, . . . , Cn respectively. There are n
surface patches. All the F viewpoints in a single cluster only view one surface
patch, labeled by the cluster index, i.e., V(j) = {iCj ,k, k = 1, . . . , F}, j ∈
S. There are two types of edges, e1 and e2, in the graph. Here we use
superscripts 1 and 2 to denote the edge type. e1 edges have the common
edge cost of ǫ≪ 1 and e2 edges have the common cost of 1. e1 edges in each
cluster form a complete graph; and e2 edges form a complete graph between
the clusters. We also use an e1 edge to connect the robot start position s
to a single viewpoint of a single cluster. We further assume the view cost is
negligible compared with traveling cost, wv ≪ wp.

It is not difficult to see that the ILP optimal solution is to choose a single
viewpoint from each cluster and construct a tour using n−1 e2 edges, and the
corresponding ILP optimal value is approximately (n− 1) · 1 (by neglecting
view cost and e1 edge costs). The LP optimal solution, however, is to assign

18

s

ic1,1 ic1,F

c1

c2

c3

cn

e1

e2

e1

Figure 4: A Traveling VPP instance. There are n · F viewpoints, grouped
into n clusters (circled by dashed curves). Each cluster contains exactly
F viewpoints. For example, cluster C1 contains viewpoints iC1,1, . . . , iC1,F .
There are n surface patches (not drawn). All viewpoints in a cluster, i ∈ Cj ,
only cover one surface patch indexed the same as the cluster, j ∈ S. Two
types of edges, labeled by e1 and e2, connect the viewpoints. Inside each
cluster, e1 edges form a complete graph. Between clusters, e2 edges form
another complete graph among the representative viewpoints of the clusters,
one representative per cluster.

1
F to each viewpoint and 1

n−1 ·
1
F to each e2 edge. (Since e1 edges do not

contribute much in the objective function, we can simply ignore all the e1

edges in the solution.) This solution is feasible since for any viewpoint, the
cuts that separate it from other clusters have at least n−1 e2 edges, and the
sum of such edge assignments is at least (n− 1) · 1

n−1 ·
1
F = 1

F , the viewpoint
assignment. The corresponding LP optimal value is thus approximately

1
(n−1)F ·

(

n
2

)

= n
2F . (There are all together

(

n
2

)

number of e2 edges.)

So the ratio between ILP and LP optimal values approaches 2F assuming
n is large, and integrality gap for the general problem is at least 2F .

In conclusion, since both the upper and lower bounds are 2F , the inte-
grality gap of Traveling VPP must be 2F .

The integrality gap result for Traveling VPP, Theorem 6, suggests that
the 2F approximation algorithm Round and Connect is the best possible for
the LP relaxation given above.

19

3.4 Solving the relaxed LP

With the algorithm Round and Connect, we can recover an integral solution
from a relaxed LP optimal solution, with the approximation ratio of 2F for a
general Traveling VPP. However, the corresponding relaxed LP formulation
may have exponential number of connection constraints, (5). We suggest
two ways here: to adopt the column generation approach, [5], to practically
solve the LP; or to use an alternative LP relaxation formulation. In the
following, we first consider a special but important case, the Traveling VPP
on a Tree.

3.4.1 Traveling VPP on a Tree

First, we claim that the approximation ratio of algorithm Round and Con-
nect improves to F for Traveling VPP on a Tree. This is because there is no
integrality gap for “Steiner tree on a tree”, since both the ILP optimal and
LP optimal solutions of “Steiner tree on a tree” correspond to taking the
union of the unique paths on the tree that connect the planned viewpoints
to the start position.

However, we emphasize that Traveling VPP on a Tree is not a simple
problem. First, note that the counterexample given in the introduction
is also a Traveling VPP on a Tree instance. Second, in the following, we
analyze the performance of a greedy algorithm based on amortized costs,
and show via a counterexample that this algorithm can perform arbitrarily
poorly on the Traveling VPP on a Tree (linear approximation ratio). The
algorithm is to iteratively pick a viewpoint with the least amortized cost,
i.e., the sum of the view cost and the shortest path cost to connect to
the existing tree, divided by the number of uncovered patch(es) it covers,
and iteratively grow the existing tree using this shortest path. Although
amortized cost based greedy algorithms have been shown to achieve the
logarithmic approximation ratio (the best approximation ratio) for the SCP,
it is not so for Traveling VPP on a Tree as we show in Fig. 5. In this
example, we have to choose either viewpoint i1 (which covers all the surface
patches, but connected to the start via a long edge) or all the remaining
viewpoints (connected via much shorter edges). It is not difficult to see that
the optimal solution is to choose i2, . . . , in and edges e2, ei2 , . . . , ein , and the
cost is roughly 1, the edge cost of e2. The algorithm, however, will choose
i1 since the amortized cost of i1, roughly n−1

n−1 = 1 is less than that of any

other viewpoint, 1+ǫ
1 = 1 + ǫ. The algorithmic solution cost is thus (n− 1),

arbitrarily worse than the optimal value (1). Intuitively, this is because the

20

large cost edge is “underestimated” by the large number of surface patches
in the amortized cost.

s

i1

e2

e1ei2

i2 i3 in

ei3
ei n

Figure 5: An instance of the Traveling VPP on a Tree. There are n view-
points, labeled by i1, i2, . . . , in, and n − 1 number of surface patches (not
drawn). Viewpoint i1 covers all the surface patch. Each of viewpoints
i2, . . . , in covers only one surface patch, but all together they cover all the
patches. Viewpoint i1 is connected to s via a long edge e1 with the cost
of n − 1. The remaining viewpoints are first connected to a common node
(these connections have negligible costs) and then to s via a short edge e2

with the cost of 1 + ǫ, where ǫ is a small positive number. We also assume
the traveling cost dominates, and the view cost is negligible.

LP formulation for Traveling VPP on a Tree

The Traveling VPP on a Tree admits a polynomial sized relaxed LP
formulation. Since LP is in P [14], we have a polynomial time and view
frequency factor approximation algorithm for Traveling VPP on a Tree by
solving first its LP and using Round and Connect to recover an integral
solution. In the following, we show the polynomial sized formulation. In-
tuitively, for a viewpoint to be connected, only the cuts corresponding to
the edges on its unique path (to the start s) are needed in the connection
constraints, (5), thus reducing dramatically the LP size.

Let pi denote the unique path connecting viewpoint i to s. For an edge
e =< i1, i2 >, with i1 closer to the root of the tree, s, than i2, we use Te

to denote the subtree rooted at i2, i.e., the subset of tree vertices that are
connected to s via e. Note that e is the only edge that crosses the subset
Te, i.e., δ(Te) = {e}. The LP for Traveling VPP on a Tree is then given as:

Traveling VPP on a Tree (LP): min wv

∑

i∈V

yi + wp

∑

e∈E

ceze

Subject to: ∀j ∈ S,
∑

i∈V(j)

yi ≥ 1 (6)

∀i ∈ V , ∀e ∈ E : e ∈ pi, ze ≥ yi (7)

21

yi, ze ≥ 0, i ∈ V , e ∈ E

Since the covering constraints for the above formulation and for Traveling
VPP are the same, we only need to show the equivalency of the connection
constraints, (5) and (7). We show this equivalency by reductions from both
directions. First, for i ∈ V and e ∈ pi, since Te is a cut that separates
viewpoint i from the start position s and e is the only edge crossing Te,
according to (5), we have

∑

e′∈δ(Te) ze′ = ze ≥ yi, (7). Second, for any cut
T that separates i and s, there must be at least an edge e ∈ pi that crosses
T , i.e., e ∈ δ(T). (Otherwise i and s will not be separated by T .) So
ze ≥ yi =⇒

∑

e′∈δ(T) ze′ ≥ ze ≥ yi, hence (5) and (7) are equivalent for the
tree case.

Note that in the above formulation, the number of constraints is O(|S|+
|E||V|), much smaller than the formulation for the general graph case.

3.4.2 Column generation technique applying to Traveling VPP

In this section, we give the dual program for Traveling VPP as follows, and
derive the column generation rules for solving the dual program and use the
complementary slackness conditions (CSCs) to get the solution.

a. Dual program and complementary slackness conditions for

Traveling VPP

Corresponding to the constraints (4), we associate the dual variables,
αj , to each surface patch j; and corresponding to the constraints (5), we
associate the dual variables, βiT , to each pair of view node i and cut T that
includes i but excludes s. The corresponding dual linear program (DLP) is
given as:

DLP: max
∑

j∈S

αj

Subject to:

∀i ∈ V :
∑

j∈S(i)

αj −
∑

T :i∈T

βiT ≤ wv (8)

∀e ∈ E :
∑

i∈V

∑

T :i∈T∧e∈δ(T)

βiT ≤ wp ce (9)

αj , βiT ≥ 0

As per the duality theorem, a feasible solution to the primal linear pro-
gram (its dual) provides bounds on the optimal solution to the dual (primal)

22

and achieve the same optimal value when the complementary slackness con-
ditions (CSCs) are satisfied.

CSC of Traveling VPP:

Primal CSC: yi > 0⇒
∑

j∈S(i)

αj =
∑

T :i∈T

βiT + wv

ze > 0⇒
∑

i∈V

∑

T :i∈T∧e∈δ(T)

βiT = wpce

Dual CSC: αj > 0⇒
∑

i∈V(j)

yi = 1

βiT > 0⇒
∑

e∈δ(T)

ze = yi

In the column generation paradigm, we are working with the DLP, which
contains a large number of variables, αj associated with surface patches and
βiT associated with view point i and a cut T of view set V that contains
i. The idea is simple and related to the Simplex method: we always work
with a reduced version of the LP by only considering a small number of dual
variables, corresponding to the basic variables in the Simplex algorithm for
LP, and add columns/non-zero dual variables whenever the dual solution
can be improved. From the primal program point of view, after solving the
LP relaxation using only the basic varialbes, we can use the CSCs to get
the corresponding primal variable solution; we check the infeasibility of the
primal constraints and for infeasible constraint, add the corresponding dual
variable (25). (Please see the appendix for a brief recap for the column
generation method.)

b. Column generation algorithm
The infeasibility of the constraint (4) for a surface patch j, or the rule to

add αj , says that we should add αj to the reduced LP if the sum (over its
viewpoint set) of the (fractional) viewpoint assignments is less than 1. We
can simply add the fractional assignments of the views that can see surface
patch j and compare it with 1. So assuming we have the optimal primal
solution to the reduced LP, this takes O(|V||S|) time, where |V| and |S| are
the numbers of surface patches and views respectively. (By some additional
data structures, for example the links between surface patch and the views
that see it, we can have even faster checking time.)

The rule for adding βiT for a specify viewpoint i asks to check for all the
cuts whether there exists one cut T such that the number of edge crossing

23

T is less than the viewpoint assignment yi. In the following, we show this
corresponds to the classic min-cut problem.

Proposition 7 The column generation rule for adding the dual variable
βiT for a viewpoint and cut pair, for a specific viewpoint i is equivalent to
requiring the minimum value of such summation for all possible cuts T to
be strictly less than the viewpoint assignment, i.e.,

min
T⊂V :i∈T∧s/∈T

∑

e∈δ(T)

ze < yi (10)

Proof. First, if min
T⊂V :i∈T∧s/∈T

∑

e∈δ(T)
ze < yi and supposing T ′ is such a

minimizer cut, i.e.,

βiT ′ < yi, T ′ = arg min
T⊂V :i∈T∧s/∈T

∑

e∈δ(T)

ze,

the primal constraint corresponding to the dual variable βiT ′ is not feasible
and βiT ′ should be added.

Second, for any dual variable βiT if the primal constraint is infeasible,
i.e.,

∑

e∈δ(T)
ze < yi, by fixing viewpoint i, we have

min
T ′⊂V :i∈T ′∧s/∈T ′

∑

e∈δ(T ′)

ze ≤
∑

e∈δ(T)

ze < yi

By recalling the definition of the min-cut problem as finding the s − t
cut (i.e., the cut or partition of the graph vertices separating the vertices s
and t on the graph) with the minimum cut capacity (defined as the sum of
the capacities of the edges crossing the cut), the subproblem of adding βiT

for a specific i is equivalent to the min-cut problem.

Lemma 8 The subproblem of adding βiT for a specific i is equivalent to
min-cut problem by assigning the edge assignments ze as the capacities for
the edges.

Proof. The proof proceeds by constructing the min-cut problem from
the primal solution ze. By assignment the edge capacities ce as the edge
assignments ze for all the edges, we have a min-cut problem instance,

Min-Cut Problem Minimize
∑

e∈δ(T)

ze, ∀T ⊂ V : i ∈ T ∧ s /∈ T

24

The solution of the above min-cut problem is clearly min
T⊂V :i∈T∧s/∈T

∑

e∈δ(T)
ze.

So according to the subproblem formulation of adding dual variable βiT for
a specific i, (10), we can decide whether to add such dual variable βiT by
comparing the optimal solution with yi.

By identifying the second type of subproblem, adding βiT , to be the min-
cut problem, we can apply efficient algorithms for solving min-cut problems.
Specifically, according to the duality between min-cut and max-flow prob-
lems [14], the existing efficient max-flow algorithms can be readily applied.

3.4.3 Alternative polynomial-sized LP relaxation formulation for
Traveling VPP

Note that for our Traveling VPP formulation (1), it is the large number
of connection constraints using cuts that prevents us from working with its
relaxed LP and solving for the optimal solution. In the following, we show
how to use flow formulation (rather than the cut) for this type of constraints.
Thus the resulting LP formulation for Traveling VPP will have a polynomial
size.

We first double the edges in our undirected graph G in the Traveling
VPP formulation and build a digraph to direct the flows in the graph. With
slight abuse of notation, we denote the resulting digraph by G = (V, E).
We denote the start and end viewpoints of an edge e by start(e) and end(e)
respectively. For each vertex, or viewpoint, i, let I(i) denote the set of edges
having i as their endpoint and let O(i) denote the set of edges having i as
their start-point. We then define the commodity flow for each viewpoint
and edge pair, fi,e, i ∈ V, e ∈ E to reinforce the connection between s and
i if i is chosen, i.e., we require

∑

e∈O(i) fi,e ≥ yi. The idea is to define each
viewpoint i as the source of the commodity i and s as the terminal for all
the commodities. We require the yi amount of commodity i to be flowed
from source i to s. Then each edge assignment has to guarantee the flow
capacity, i.e., ze ≥ fi,e,∀i ∈ V. In addition, we require flow conservation for
each flow and for each vertex on the graph that is not the terminal of that
flow, i.e.,

∑

e∈I(i′) fi,e =
∑

e∈O(i′) fi,e,∀i 6= i′ ∈ V. So the overall relaxed LP
is given as:

Traveling VPP (ILP using flows): (11)

min wv

∑

i∈V

yi + wp

∑

e∈E

ceze

Subject to: ∀j ∈ S ,
∑

i∈V(j)

yi ≥ 1 (12)

25

∀i ∈ V
∑

e∈O(i)

fi,e ≥ yi (13)

∀i ∈ V
∑

e∈I(s)

fi,e ≥ yi (14)

∀i,∀i′ 6= i,
∑

e∈I(i′)

fi,e =
∑

e∈O(i′)

fi,e (15)

∀e ∈ E,∀i ∈ V, ze ≥ fi,e (16)

yi, fi,e, ze ≥ 0

In the following, we show the equivalence of the above flow-based for-
mulation (11) to the one we give before (1) by showing the feasible solution
to one formulation corresponds to a feasible solution to the other.

Lemma 9 The flow based relaxed LP formulation for Traveling VPP (11)
is equivalent to the graph cut based formulation (1).

Proof. We first show that any feasible solution yi, ze, fi,e to (11), cor-
responds to a feasible solution yi, ze to (1). Since the covering constraints
are the same for both formulations, we only need to show the connection
constraints. For any cut that separates viewpoint i from s, via the flow
conservation law, we know the total amount of commodity flow i crossing
the cut (from i to s) is at least the amount emanating from i, which in
turn is lower bounded by the viewpoint assignment, (13). Since the edge
assignment is lower bounded by the flow going through it, (16), we have the
total number of edges crossing T is at least yi.

Second, for any optimal LP solution yi, ze to (1), we can pick for each
yi > 0 the unique path from i to s in the solution2, and assign the flow for
commodity i and edges (directing towards s) on the path to be yi. It is clear
that this construction gives a feasible flow solution to (11).

Note that the size of the formulation (11) has |V|+|E| number of variables
and |S|+ O(|V||E|) constraints.

Simulation result on counterexample Fig. 2 We formulated the
relaxed LP corresponding to the counterexample given in the introduction,
Fig. 2, and used the Matlab optimization toolbox, specifically the linprog()

2Note that the optimal LP solution must be a tree, i.e., the positively assigned edges
form a tree connection rooted at s, since otherwise we simply delete, and thus reduce the
overall cost, some edges while maintaining connectivity. It follows there exists a unique
path from any tree node to the root.

26

function, for our simulation [?]. 3 Albeit simple, it showcases the power
of the LP formulation for Traveling VPP on a Tree: the solutions to the
LP make close to optimal decisions (within the approximation ratio of F)
according to different preferences between traveling and viewing (different
choices for wv and wp).

We associate decision variables yi, i = 1, 2, 3 to viewpoints vi, i = 1, 2, 3
respectively, and associate zk, k = 1, 2, 3 to edges ek, k = 1, 2, 3. (Viewpoint
v4 coinciding with the robot start s is already in the solution and no decision
needs to be made for it.) The resulting LP formulation can be put in the
standard form:

min ~c T ~x

s. t. A~x ≤ ~b; and ~x ≥ ~0;

where ~c =

wv

wv

wv

wp · 1
wp · 100
wp · 1

A =

−1 −1 0 0 0 0
0 −1 −1 0 0 0
1 0 0 −1 0 0
0 1 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

~x =

y1

y2

y3

z1

z2

z3

~b =

−1
−1
0
0
0
0

In the above formulation, the first two rows of ~A and ~b correspond to
the covering constraints. For example, the first low, −y1−y2 ≤ −1, requires
that for surface patch s1, we must choose at least one of the viewpoints
that cover it, v1 and v2. The remaining rows of ~A and ~b correspond to the
connection constraints. For example, the third row, y1 − z1 ≤ 0, requires
that for viewpoint v1 and cut Te1 , we must choose the only crossing edge e1,
if v1 is chosen.

The results are listed in Table 1 for different wv and wp. The first row
in Table 1, wv = wp = 1, corresponds to the precise case of Fig. 2, same
(unit) costs for traveling and viewing. The LP solution (in this case already
integral) gives the optimal decision. The last row, wv = 1000, wp = 1,

3We tried both Simplex and Interior Points as the LP solving algorithms. Both converge
to the optimal solution really fast: Simplex took around 5 iterations, and Interior Point
took around 8 iterations.

27

wv, wp y1 y2 y3 z1 z2 z3 cost

1,1 1 0 1 1 0 1 4

...

97, 1 1 0 1 1 0 1 196

99, 1 0.5 0.5 0.5 0.5 0.5 0.5 199.5

. . .

101, 1 0 1 0 1 1 0 202

...

1000, 1 0 1 0 1 1 0 1101

Table 1: Simulation results on exam-
ple in Fig. 2: the LP solutions.

s

v1

v3

wv = wp = 1

s

v1

v3

v2

wv = 99, wp = 1

s

v2

wv = 1000, wp = 1

Figure 6: Corresponding Traveling
VPP solutions. (It is the worst pos-
sible solution given by the algorithm
Round and Connect for wv = 99, wp =
1.)

corresponds to the case where the view cost is much higher than traveling
cost. In this case, the LP solution (again integral), taking viewpoint v2 that
covers more surface patches, again gives the correct decision. The middle
row is an interesting case, where the two plans, to take viewpoint v2 and
traveling e1 and e2, and to take viewpoints v1 and v3 and traveling e1 and
e3 have exactly the same cost of 200. However, the LP solution makes
the choice of distributing equally the task among the two plans. Since the
edge assignments (specifically e1 in this case) need only satisfy the largest
assignment of viewpoints connected (y1 and y2), half of the edge cost of e1

is saved in the LP solution. Note also that when applying the algorithm
Round and Connect for this case, it may choose all the viewpoints and edges
and the corresponding total cost is 99 ∗ 3 + 102 = 399, roughly twice the
optimal value.

28

3.5 Randomized rounding algorithm

By the reduction mentioned above, we can construct from an arbitrary Trav-
eling VPP instance a GST instance with O(|V||S|) vertices, O(|V||S|) edges,
and |S| groups. We then apply the randomized rounding algorithm in [8]
to achieve a O(log |V| log log |V| log |S| log F), a poly-log, approximation ra-
tio. (See also the appendix for an alternative LP formulation for Traveling
VPP and the corresponding direct application of the randomized rounding
algorithm that achieves the poly-log approximation ratio.)

In conclusion, using both the LP based algorithms, deterministic and
randomized rounding algorithms respectively, we have the approximation ra-
tio of either O(F) or O(log |V| log log |V| log |S| log F), whichever is smaller.
This approximation result parallels that for SCP.

4 Applications of Algorithms to Related Problems

In this section, we apply the algorithm Round and Connect to several related
problems and extend the best known approximation ratios for these problem
from polylogarithmic to the minimum of poly-log and the frequency.

4.1 GST

Note that a GST instance is a Traveling VPP instance with 0-view cost. So
the frequency bound is just the largest cardinality of the groups and applying
the first LP based rounding algorithm gives us a frequency approximation
ratio. Thus by applying the algorithm Round and Connect above and LP
randomized rounding in [8], the optimal solution to GST is approximated
within the ratio of min(O(F), O(log |V | log log |V | log k log N)).

4.2 Traveling Purchaser Problem (TPP)

Given a set of warehouses, W, connected by a graph G = (W, E), E ⊆
2W×W , and a set of products P with requirements and the prices of buying
a product at a warehouse, dw,p, w ∈ W, p ∈ P, the (unlimited capacitated)
Traveling Purchaser problem (TPP) asks for certain warehouses for each
product and the tour connection between the planned warehouses with the
minimum total cost, the sum of the product purchase cost and the tour
cost [15]. The Traveling VPP is a special case of TPP where the prices are
uniform for all the product and warehouse pairs. In [15], the authors give a
poly-log approximation ratio for TPP.

29

Now we show how to reduce an arbitrary TPP instance to an instance
of a weighted version of Traveling VPP. By “weighted”, we mean the view
costs associated with the viewpoints are not uniform. Since the frequency
bound approximation ratio still holds for weighted set covering, the rounding
algorithm above still has the frequency bound approximation ratio. The
reduction is done by “duplicating” a warehouse according to the number of
different product prices it offers and connecting them via 0-cost edges.

To make it formal, we define the price set of a warehouse to the set of
different prices it offers for different products, i.e., D(w) = {dw,p, w ∈ W, p ∈
P(w)}. We order the set D(w) according to the price entities, and denote
the ith smallest price as d(w)i. We then add warehouses wi, i = 2, . . . , |D(w)|
to the warehouse set W, (We replace the viewpoint w by w1 with different
product set described as follows.) and add edge < w1, wi > with 0 edge
cost. The warehouse wi will cover only the product in its product set that
has the price of d(w)i, i.e., P(wi) = {p ∈ P(w) : d(w, p) = d(w)i}. By
this construction, each warehouse has a unique price for all the products in
its product set. This corresponds to an instance of the weighted Traveling
VPP. Note that the frequency bounds for both instances are the same, since
we have not increase the number of warehouses that offer a single product.

Thus, by solving the resulting weighted Traveling VPP instance, we can
get the O(F) approximation ratio for TPP, where F is defined as the max-
imum number of warehouses that sell a single product.

5 Special Cases of Traveling VPP

In the following, we briefly discuss several generalizations of Traveling VPP
for more realistic models.

5.1 Image registration constraints

Image registration constraints refer to any two viewpoints planned should
have enough overlap in the surface patch sets they cover. This is a crucial
requirement in the robot vision application. Here we model it as a set
multicover problem, i.e., each element in the universe needs to be covered
by a specified number of subsets in the solution.

The idea is as follows. We create new surface patches for the intersection
of the overlapping surface patches. By requiring the viewpoints cover these
created surface patches twice, i.e., changing r.h.s. of (2) from 1 to 2 for
these patches added, these viewpoints can register them w.r.t. each other
and thus the overall viewpoints can all satisfy the registration constraints.

30

5.2 Metric Traveling VPP with visibility range

Now we investigate a restricted version of Traveling VPP where a point
robot is equipped with a range sensor with limited range, i.e., a viewpoint
can cover certain surface patches only if they are within a certain visibility
range. We call this special case the Metric Traveling VPP with Visibility
Range. These constraints are motivated from the vision application where
range sensors have certain physical limitations. Note that for this special
case, the O(log n) approximation ratio is a lower bound for its hardness of
approximation, since one easily construct such a reduction from the SCP as
in Fig. 3.

We first give some additional notations for the Metric Traveling VPP
with Visibility Range. We denote the environment where both robot and
surface patches reside by P. We assume P is either the two-dimensional
or the three-dimensional Euclidean space populated by obstacles, denoted
by P2 and P3 respectively. For any two entities x1 and x2, we denote
the Euclidean distance between them by ‖x1, x2‖P . For robot traveling,
we again use a complete graph G = (V, E) with metrics where the edge
distance ce, e =< i1, i2 > between two viewpoints i1, i2 ∈ V is the shortest
distance the robot traveling. Note that the edge cost is lower bounded by
the Euclidean distance, i.e., ∀e =< i1, i2 >: ce ≥ ‖i1, i2‖P . We denote the
visibility range by D. By definition, the necessary condition for a viewpoint
i to cover a surface patch j is that the distance between them is upper
bounded by D. With a slight abuse of notation, we use ‖i, j‖P to denote
this distance. Rigorously, for a surface patch j that occupies a region R(j)
(of co-dimension 1) in P, the distance ‖i, j‖P is the upper bound on the
distances between any point belonging to surface patch j and the viewpoint
i, i.e., ‖i, j‖P = supx∈R(j) ‖x, i‖P . Again, we use wv, the unit view cost or
cost per viewpoint, and wp, the unit traveling cost or cost per unit traveling
distance, to allow users to specify the relative weights between sensing and
traveling.

With the above notations and settings, the Metric Traveling VPP with
Visibility Range is formulated as to plan a subset of the viewpoints, denoted
by V ′, and a traveling path connecting them on G, denoted by E′, such that
the total cost, wv|V

′|+wp
∑

e∈E′ ce, is minimum. (|A| denotes the cardinality
of set A.)

31

5.2.1 A Two-level Decoupled Algorithm for Metric Traveling VPP

with Visibility Range

In this section, we give a very simple algorithm for Metric Traveling VPP
with Visibility Range. It solves the problem in two steps. At the first level,
it solves the VPP or SCP part of the Metric Traveling VPP with Visibility
Range greedily, i.e., iteratively picks viewpoint that cover the most uncovered
surface patches until all surface patches are covered. At the second level, it
solves the Metric TSP to connect these picked viewpoints.

5.2.2 Algorithm Analysis

In this section, we analyze the approximation ratio of the two level algorithm
presented. We present an alternative algorithm whose performance is no bet-
ter than the algorithm presented before and then analyze the approximation
ratio of this alternative algorithm, which also serves as the approximation
ratio of the two level greedy algorithm. In the following, we first give a few
definitions to clarify the algorithm and the consequent analysis.

Alternative algorithm: We call 2D, the double of the visibility range,
the virtual range. Intuitively, this is the range to locate the viewpoints with
related covering functionalities, since for any surface patch j that viewpoint
i covers, the other viewpoints covering it must lie within the virtual range of
i according to the visibility range. For viewpoint i, we define the free region
within its virtual range, i.e., where i can reach using the shortest path of
length less than 2D, the virtual domain of i. We call two viewpoints depen-
dent if their virtual domains intersect; or independent if the virtual domains
do not share common part. Note that if two viewpoints are independent,
they cannot both cover any surface patch, since otherwise by traveling via
the surface patch they would have a shortest path less than the virtual range.

In the following, we give the pseudo codes of the alternative algorithm.

Algorithm 2 Algorithm for Metric Traveling VPP with Visibility Range

Step 1. Solve the SCP greedily:
Iteratively choose the viewpoint that covers the most uncovered

surface patches until all surface patches are covered.
Output the chosen viewpoint set V ′.

Step 2. Choose independent viewpoints:
Iteratively choose a viewpoint from V ′ that is independent from

already chosen viewpoints in this step.
Output the chosen viewpoint set V ′′.

32

Step 3. Solve the Metric TSP to connect V ′′

Step 4. Connect the viewpoints in V ′ \ V ′′ to its nearest neighbor in V ′′

using the shortest path.

Note that the above solution takes |V ′| number of viewpoints, same as in
the simple greedy algorithm, and constrains that the solution tour is to go
to V ′′ first and then to detour to V ′ \ V ′′. So the solution cost is clearly no
better than the simple greedy algorithm presented in the previous section.
We also call the viewpoints in the set V ′′ centers (since they act like the
cluster center of the viewpoints in V ′) and thus V ′′ the center set.

Analysis: In the following, we first show that the optimal solution has
to travel to every virtual domain of V ′′. We then lower bound the optimal
solution cost and upper bound the algorithmic solution cost. Combining
both bounds gives us the algorithmic approximation ratio. We use OPTSCP

to denote the optimal SCP solution cost to cover all the surface patches,
i.e.,

OPTSCP = min
U⊆V : ∪

i∈U

S(i)=S
|U|.

We call the tour that connect virtual domains of V ′′ a domain tour, i.e., a
tour to connect at least one viewpoint lying in each of the virtual domains
of V ′′. We use OPTTour to denote the optimal domain tour distance. We
use OPTTV PP to denote the optimal solution cost to Metric Traveling VPP
with Visibility Range. We denote the algorithmic solution cost by cost′, the
view cost and traveling parts of which are denoted by cost′view and cost′travel

respectively.
Lower bound on OPTTV PP : In this section, we give a lower bound on

optimal solution cost to Metric Traveling VPP with Visibility Range. This
lower bound is based on the simple observation that any feasible solution
has to choose at least one viewpoint in the virtual domain of every viewpoint
in V ′′. This implies that the tour in the solution has to visit every virtual
domain.

Proposition 10 Any feasible solution has to choose at least one viewpoint
from every virtual domain of V ′′.

Proof. For any viewpoint i ∈ V ′′, we arbitrarily pick one surface patch
from its surface patch set j ∈ S(i). Note that due to visibility range con-
straints, any viewpoint i′ of its viewpoint set, i.e., ∀i′ ∈ V(j), has to lie in
the virtual domain of i. We show this by the metric (triangular) constraints,
‖i, i′‖ ≤ ‖j, i‖ + ‖j, i′‖ ≤ D + D = 2D.

33

As the immediate consequence, we have that the traveling cost of the
optimal solution to Metric Traveling VPP with Visibility Range is the opti-
mal tour cost to visit every virtual domain of the centers. So we have the
following,

Lemma 11 The optimal cost to Metric Traveling VPP with Visibility Range
is at least the sum of the minimum view cost (ignoring traveling) and the
optimal tour cost to visit every virtual domain of the centers, i.e.,

OPTTV PP ≥ wvOPTSCP + wpOPTTour (17)

Upper bound on algorithmic solution cost: Note that we use the
greedy SCP algorithm to get V ′. Assume the best approximation ratio for
the SCP is A. Note that A = min(F, log |S|), where F is the frequency
bound on the SCP, i.e., the maximum number of viewpoints that covers a
single surface patch, F = maxj∈S |V(j)|. We have [22]

|V ′| ≤ OPTSCP ·A.

So the view cost of the algorithmic solution is upper bounded, i.e.,

cost′view ≤ wv ·OPTSCP ·A (18)

In analyzing the traveling cost of the algorithmic solution, note that we
can easily get a tour to connect the centers by traveling first on the optimal
domain tour and then detouring to the centers if needed. So the solution to
Step 3. above is at most OPTTour +|V ′′|·4D. By (if needed) again detouring
from the centers to the remaining viewpoints V ′ \V ′′, incurring for each such
viewpoint a detour cost of 8D, we have a lower bound on the travel cost of
the algorithmic solution, i.e.,

cost′travel ≤ wp[OPTTour+4D|V ′′|+8D(|V ′|−|V ′′|)] ≤ wp[OPTTour+8D|V ′|].
(19)

In conclusion, by both Eqs. (18,19), the total cost of the algorithmic
solution is upper bounded, i.e.,

cost′ ≤ (wv ·OPTSCP)A + (wp ·OPTTour) + wp · 8D ·OPTSCP ·A, (20)

Total cost analysis: Combining the lower bound of the optimal so-
lution cost and the upper bound of the algorithmic solution cost, we have

34

the approximation ratio of the alternative algorithm is (1 +
wp

wv
8D)A, where

again A = min(F, log |S|).
Again, this alternative algorithm chooses the same number of viewpoints

as the two-level algorithm and uses the optimal domain tour plus detours,
first to the centers and then to the remaining viewpoints V ′′, rather than
the optimal tour between V ′′ chosen by the two-level algorithm. So the
cost of solution by the two-level algorithm is at most that of the alternative
algorithm. And we conclude that the approximation ratio for the two-level
algorithm is also (1 +

wp

wv
8D)A.

Note that the above approximation ratio showed above nicely factors
the tradeoff between view and travel: on the one hand, if the view cost
is dominant, wv ≫ wp, the problem is dominated by the associated view
planning part and the approximation ratio is that of the view planning
problem; on the other hand, if the range D is small, the problem is reduced
to simply the traveling part, since A in this case is approximately 1 (the
viewpoint has to be at the same location as the surface patch in order to
cover it, which is only possible solution).

5.3 View travel costs tradeoff

We now consider the restricted version where viewpoints can be clustered,
i.e., they can be grouped such that the union of surface patches covered by
different groups are exclusive from each other. If the viewpoint distances
within each group are upper bounded by D, the approximation ratio is
wpD
wv

log |S| if we use the greedy algorithm for set covering. The reason is
that for any Steiner tree connection the number of edges chosen is upper
bounded by the number of viewpoints chosen minus one. Thus the travel
cost is upper bounded by the optimal view cost times

wpD
wv

. And the overall

cost, as the sum of the view and travel costs, is bounded by
wpD
wv

log |S|.

6 Conclusion and Future Work

In this report, we cover the problem of view planning with travel costs, Trav-
eling VPP. We formulate the problem for the model-based case where the
geometry of the object to inspect is known. By reduction from the set cover-
ing problem to the 2D VPP, we show the Traveling VPP is a combination of
set covering and Metric TSP. As a problem harder than GST, Traveling VPP
is poly-log inapproximable. We show our LP-based deterministic rounding
algorithm has the frequency factor approximation ratio. Together with the

35

poly-log approximation ratio achieved via LP-based randomized rounding,
Traveling VPP can be approximated within the minimum of constant times
frequency and a poly-logarithmic function of the input size. This parallels
the approximation ratio result for set covering problem. We then discuss
several special cases of Traveling VPP and give some weak approximation
ratio results using the set covering heuristics.

In the future, we would like to generalize our model based result to
the case where the surface patches to cover and the robot traveling graph
are not known in advance, hence the term sensor-based Traveling VPP. It
is also interesting to apply the algorithm designed in this paper to where
the viewpoint set is a continuous space, for example, the watchman route
problem. The idea is to identify the critical points in a watchman route
problem and consider the resulting problem using these critical points as
the viewpoints in a Traveling VPP instance.

7 Appendix

7.1 LP-based method for solving IP

For integer linear programs, it is generally convenient to relax the integral
variables to be fractional, solve the corresponding relaxed LP, and recover
the integral solution from the fractional solution. Integral solution recovery
can be done for example by (randomly) rounding the fractional LP solution
to integers, called LP rounding. This LP-based approach plays a central role
in the design of approximation algorithms. See [22] for a detailed treatment
of this topic. The intuitive idea is that the relaxed LP corresponds to a
constrained continuous optimization that can be solved efficiently. The in-
tegral solution can be relatively easily recovered without much performance
sacrifice, if the original IP optimal solution is not far from this relaxed LP
solution. This is characterized by the important concept of integrality gap,
defined as the supremum of the ratio between optimal value to the ILP and
to its LP-relaxation. It is generally believed that any LP-based approxima-
tion algorithms will have at least the integrality gap as the approximation
ratio. Also, in analyzing LP relaxation based approximation algorithms,
the optimal value of the LP relaxation is used as a lower bound on the IP
optimal value. For example, if a rounding algorithm is shown to increase
within a certain ratio the fractional LP optimal solution to get the integral
solution, this ratio is an upper bound on the approximation ratio. This is
exactly what we did for the Round and Connect algorithm analysis.

36

7.2 Column generation method

As a quick recap, let us consider the following generic LP in its matrix form.
(All the matrices and vectors are of suitable dimensions.)

Generic LP: max cT x

Subject to Ax = b (21)

By decomposing x into basic and nonbasic variables, denoted by xB

and xN respectively, x =

[

xB

xN

]

, (Remember that basic variables assume

nonzero values and nonbasic variables have to be zero.) the above LP can
be represented by:

Generic LP: max cT
BxB + cT

NxN

Subject to ABxB + ANxN = b

xB , xN ≥ 0 (22)

In the above, we decompose the constraint matrix A into two blocks of
columns A = [AB , AN] according to the corresponding basic and nonbasic
variables.

The Simplex method first finds the optimal solution to a reduced problem
described by only basic variables, and then adds one or several variables of
xN if the corresponding coefficient is positive (Remember we are working
with a maximization problem.), i.e.,

cT x = cT
BA−1

B b + (cT
N − cT

BA−1
B AN)xN .

For xj ∈ xN , if the corresponding coefficient, cj − cBA−1
B Aj is positive,

xj will be included in the basic variables. (After solving the reduced LP,
zero valued basic variables will be dropped out of basic variables and become
nonbasic.) So the rule to add columns or new variables is

cT
BA−1

B Aj < cj (23)

To get a better understanding of the above column generation rule, let
us take a look at the DLP to the above given LP (using dual variables y)

DLP: min yT b

Subject to yT (AB |AN) ≥ cT

yT ≥ 0 (24)

37

Using the complementary slackness conditions (CSCs), since the basic
primal variable xB are strictly positive, the corresponding dual variables
satisfy

yT AB = cT
B

So the column generation rule, after solving the CSCs, is also given by:

yT Aj < cj (25)

Equivalently, the infeasibility of the dual program is checked.

7.3 An alternative relaxed LP formulation for Traveling VPP
and the randomized rounding algorithm

Now we define a commodity j associated with each surface patch j. By
connecting each surface patch j to all the viewpoints in its viewpoint set V(j)
by directed edges (surface patch as the start of the edge and the viewpoint
as the end), and by doubling the graph edges to make them directed, we
have a digraph G′ = (V ′, E′) with V ′ = V ∪ S and E′ = E ∪ {< j, i >:
j ∈ S, i ∈ V(j)}. The number of nodes in the graph is |V| + |S| and the
number of edges is O(|V||S|). We then define each surface patch as a source
to flow its commodity to the common terminal s, the robot start position.
We then define the commodity flow variables fie for commodity j for the
pairs of surface patch j and those edges e either in the original graph or
between j and its viewpoint set members. Similarly, for a node in the graph
G′, we define I(v) as the set of edges having v as their endpoint and let O(v)
denote the set of edges having i as their start-point. Now v can be either a
surface patch, for which there are only outgoing edges, or a viewpoint.

The ILP is given as follows:

min wv

∑

i∈V

yi + wp

∑

e∈E

ceze

s.t. ∀j ∈ S ,
∑

e∈O(j)

fj,e ≥ 1 (26)

∀j ∈ S ,
∑

e∈I(s)

fj,e ≥ 1 (27)

∀j ∈ S,∀i ∈ V,
∑

e∈I(i)

fj,e =
∑

e∈O(i)

fj,e (28)

∀e ∈ E,∀j ∈ S, ze ≥ fj,e (29)

38

∀i ∈ V,∀j ∈ S, yi ≥ fj,<j,i> (30)

yi, fj,e, fj,<j,i>, ze ∈ {0, 1},

i ∈ V, j ∈ S, e ∈ E,< j, i >: j ∈ S, i ∈ S(j)

It is not difficult to see the equivalence of our Traveling VPP IP to the
above IP. On the one hand, first, for any feasible IP solution to the above
flow formulation, for any surface patch j, there exist an unity flow fj,e for
an edge e connecting j to one viewpoint in its viewpoint set. By choosing
the viewpoint e connecting in the Traveling VPP solution, the surface patch
covering constraints are all satisfied. Second, for any viewpoint thus chosen,
let us follow the flow fj,e, by flow conservation law, there must exist a path
connecting j, the source of the commodity flow j, to s the terminal of all
commodity flows. By picking all such paths we have a valid tree connection
between chosen viewpoints. On the other hand, for any feasible IP solution
to Traveling VPP, i.e., a set of viewpoints that cover all the surface patches
and a tree connection connecting the viewpoints, for a surface patch j, we
can arbitrarily pick a chosen viewpoint i that covers it and assign a unity
commodity flow fj,<j,i> = 1; then we simply follow the tree connection from
i to s, path(i, s) and assign unity flows for all the edges directing to s on the
path, i.e., fj,e = 1, e ∈ path(i, s). This way, we have a feasible solution to
the above flow formulation. In conclusion, the above IP formulation based
on flows is equivalent to the Traveling VPP.

By relaxing the above viewpoint edge assignment variables and commod-
ity flow variables to be positive reals, we have the relaxed LP formulation.

In the following, we use the same rounding technique as in [8] and achieve
a poly-log approximation ratio.

7.3.1 Randomized rounding algorithm and performance analysis

First assume the Traveling VPP instance is for tree cases, and denote the
parent edge of an edge e by p(e), the path, i.e., union of edges, from edge
e to s including e by path(e). (Again, if it is a general graph, we embed
it into a tree and have an additional O(log |V|) loss in the approximation
ratio [6].) We denote the LP optimal solution to the above formulation
by f∗

i,e, z
∗
e , y∗i and the corresponding LP optimal cost by OPT ∗. We round

the edge assignment to 1 using probability z∗e
z∗
p(e)

. Those edges that do not

have parent edges, i.e., connect directly to the root s are rounded to 1 with
probability of z∗e . We round the viewpoint assignment to 1 with probability
y∗

i

ze(i)
, where e(i) is the edge incident on i that leads to the tree root s. We

39

then choose only those edges that are connected to s by chosen edges, i.e.,
the chosen edges form a connected component that includes s, and we choose
those chosen viewpoints that is connected to s via the chosen edges. We then
choose the viewpoint i such that f∗

j,<j,i> = z∗e , e ∈ O(i). We discard those
chosen edges and viewpoints that are not connected to s via chosen edges.
So the probability of an edge e chosen in the solution is

∏

e′∈path(e)
ze∗
z∗
p(e)

= z∗e .

Similarly the probability of a viewpoint i chosen in the solution is y∗i . And
the expected cost of the solution is

∑

i∈V wvy
∗
i + wp

∑

e∈E cez
∗
e = OPT ∗.

Using the same technique as in [8], one can show that the by run-
ning O(log F log |S|) rounding iteration, all the surface patches are cov-
ered by some viewpoints connected via the constructed tree to s. Rather
than repeating, we refer [8] for the detailed analysis. This implies the
approximation ratio for this randomized algorithm is O(log F log |S|) and
O(log F log |S| log |V|) for graphs.

References

[1] K. Bowyer, and C. Dyer. Aspect graphs: an introduction and survey
of recent results. International Journal of Imaging Systems and Tech-
nology, 2:315–328, 1990.

[2] C. Chekuri, G. Even, G. Kortsarzc. A greedy approximation algo-
rithm for the group Steiner problem. Discrete Applied Mathematics
154 (2006), pp.15-34.

[3] W. Chin and S. Ntafos. Optimum watchman routes. In Proc. of Annual
Symposium on Compuational Geometry, 1986.

[4] T. Danner and L. Kavraki. Randomized planning for short inspection
paths. In Proc. of IEEE International Conference on Robotics and Au-
tomation, 2002.

[5] G. Desaulniers, J. Desrosiers, and M. Solomon. Column Generation.
Springer, 2005.

[6] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approx-
imating arbitrary metrics by tree metrics. In Proc. of STOC 2003,
California, USA.

[7] S. Fekete, R. Klein, and A. Nuchter. “Online searching with an au-
tonomous robot”. In Proc. of Workshop on Algorithmic Foundation of
Robotics, 2004.

40

[8] N. Garg, G. Konjevod, and R. Ravi. A polylogorithmic approximation
algorithm for the group Steiner tree problem. Journal of Algorithms.
37(1): 66-84, 2000.

[9] M. Goemans and D. Williamson. A general approximation technique
for constrained forest problems. SIAM Journal on Computing. 24(2):
296-317, 1992.

[10] E. Halperin and R. Krauthgamer. “Polylogarithmic inapproximabil-
ity”. In Proc. of STOC 2003.

[11] V. Isler, S. Kannan, K. Daniilidis. “Local exploration: online algo-
rithms and a probabilistic framework”. In Proc. of IEEE ICRA 2003.

[12] L. Kavraki, P. Svestka, J. Latombe and M. Overmars, Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4): 556-580, 1996.

[13] J. Latombe. Robot motion planning. Kluwer Academic Publishers,
Boston, 1991.

[14] C. Papadimitriou and K. Steiglitz. Combinatorial optimization: algo-
rithm and complexity. Prentice Hall, 1982.

[15] R. Ravi and F. Salman. “Approximation Algorithms for the Traveling
Purchaser Problem and its Variants in Network Design”. In Proc. of
the 7th Annual European Symposium on Algorithms. pp. 29-44, 1999.

[16] M Saha, T. Roughgarden, J. Latombe, and G. Sánchez-Ante. Planning
tours of robotic arms among partitioned goals. International Journal
of Robotics Research. 25(3) March 2006, pp. 207-224.

[17] W. Scott, G. Roth, and J. Rivest. View planning with a registration
constraint. In Proc. 3rd International Conference on 3D Digital Imag-
ing and Modeling, 2001, pp. 127-134.

[18] W. Scott, G. Roth, and J. Rivest. View planning for automated three-
dimensional object reconstruction and inspection. ACM Computing
Surveys, 35(1), March 2003, pp. 64-96.

[19] P. Slavik. The Errand Scheduling Problem. Techical Report 97-02. De-
partment. of Computer Science and Engineering, SUNY Buffalo, 1997.

[20] C. Swamy and A. Kumar. Primal-dual Algorithms for Connected Fa-
cility Location Problems. Algorithmica 40 (2004), pp. 245-269.

41

[21] X. Tan. Approximation algorithm for the watchman route and
zookeeper’s problems. Discrete Applied Mathematics. 136(2-3): 363-
376.

[22] V. Vazirani. Approximation algorithms. Spinger, 2001.

42

