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Abstract. We introduced the concept of C-space entropy recently in [1–3] as a
measure of knowledge of C-space for sensor-based path planning and exploration for
general robot-sensor systems. The robot plans the next sensing action to maximally
reduce the expected C-space entropy, also called the maximal expected entropy re-
duction, or MER criterion. The expected C-space entropy computation, however,
made two idealized assumptions. The first was that the sensor field of view (FOV)
is a point; and the second was that no occlusion (or visibility) constraints are taken
into account, i.e., as if the obstacles are transparent. We extend the expected C-
space entropy formulation where these two assumptions are relaxed, and consider a
generic range sensor with non-zero volume FOV and occlusion constraints, thereby
modelling a real range sensor. Planar simulations show that (i) MER criterion re-
sults in significantly more efficient exploration than the naive physical space based
criterion (such as maximize the unknown physical space volume), (ii) the new for-
mulation with non-zero volume FOV results in further improvement over the point
FOV based MER formulation.

1 Introduction

While most research in sensor-based path planning and exploration has con-
cerned itself with mobile robots, our recent work has concentrated on general
robot-sensor systems, where the sensor is mounted on a robot with non-trivial
geometry and kinematics [1–3,5]. See also [6–10]. This class of robots is broad
and includes robots ranging from a simple polygonal robot to articulated
arms, mobile-manipulator systems, and humanoid robots [11]. The sensor is
assumed to be an “eye” type sensor that is capable of providing distances
from a given vantage point (actual implementation may be a laser range scan-
ner, passive stereo vision, etc.). Figure 1 shows a simple example of such a
robot-sensor system — an eye-in-hand system — an articulated arm with a
wrist mounted range sensor. The robot must simultaneously plan paths and
sense its environment for obstacles. Unlike for a simple mobile robot (often
modelled as a point, see [13] for next best view planning for mobile robots),
where the robot can move (path planning) and what it should sense (view
planning), has a much more complex relationship here [5]. “Where to move”
is best posed and answered in configuration space, the natural space for path
planning. In [1,2], we showed that the view planning problem is also appro-
priately posed in the configuration space of the robot — the next view should
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be planned to give maximum knowledge or information (whether a config-
uration is free or in collision with an obstacle) of the C-space of the robot.
What this implies is that the sensing action, which obviously senses physi-
cal space, must be (implicitly or explicitly) transformed to the configuration
space. Treating the unknown environment stochastically, we introduced the
notion of C-space entropy, measure of the robot’s knowledge of C-space. The
next best view is then the one that maximizes the expected entropy reduc-
tion (MER criterion) or, equivalently expected information gain. In contrast,
earlier approaches had simply used a naive criterion, such as maximize un-
known physical space volume (MPV) in the sensor FOV, to choose the next
best view [6].

Fig. 1. An eye-in-hand system — a two-link robot with a wrist mounted range
sensor (with triangle FOV) moving in an unknown environment. A key question
(the view planning problem) is: where should the robot sense next?

We derived closed form expressions for expected C-space entropy reduc-
tion, or information gain under a Poisson point process model of the envi-
ronment [12]. However, two idealized assumptions were made regarding the
sensor in that paper: (i) the sensor has a point field of view (FOV), i.e., it
senses a single point and (ii) no occlusion constraints were taken into ac-
count, i.e., as if the sensor would “see” (get range measurement) through
the obstacles. The next best view is planned using this formulation, i.e., the
algorithm computes the point (say, xmax) which, if sensed, would yield max-
imum expected information gain and places the sensor so that the center of
the actual FOV (a cone) coincides with xmax.

In this paper, we relax the above two assumptions and present the MER
criterion computation for a generic range sensor with a non-zero volume FOV
while respecting occlusion constraints, thereby modelling real range sensors.
This computation is valid for a Poisson point process model of the environ-
ment, admittedly a simplification, but the resulting closed form expressions
give us insights and are useful at least as approximations. We present simu-
lations that show clear improvement in the efficiency of exploration with the



View Planning via Maximal C-space Entropy Reduction 3

new formulation. Our initial simulations are planar for ease of visualization.
We emphasize that our formulations and results are valid for 3D environments
and are currently being implemented on a real six-dof SFU eye-in-hand sys-
tem consisting of a PUMA 560 with a wrist mounted area-scan laser range
sensor that has been developed in our lab and was reported in [5]. We expect
to report these experimental results in the near future.

2 Notation

Let A denote the robot and q denote a point in its configuration space, C.
A(q) then denotes the region in physical space, P, occupied by the robot.
Let S denote a sensor attached to the robot. We attach a coordinate frame
to the sensor’s origin. Let s denote the vector of parameters that completely
determine the sensor frame, i.e., sensor’s configuration. For instance, assum-
ing the sensor is attached to the end-effector of the robot, for planar case,
s = (x, y, θ); for 3D case, s = (x, y, z, α, β, γ). Let V(s) ∈ P denote the re-
gion to be sensed (sensor FOV) by the sensor at configuration s. We discuss
three different sensor FOV’s: (i) an idealized point FOV sensor, i.e., V(s) =
x, a point ∈ P, (ii) a beam FOV sensor, i.e., V(s) = L, a line segment ∈ P,
and (iii) a non-zero volume FOV sensor, such as an area scan range sensor,
i.e., V(s) = B, an open set ∈ P. Subscripts free, obs, 1 and u denote the
known free, known obstacle and unknown regions, respectively in physical
and configuration space. So, for example, Pobs denotes the known obstacles
in physical space, Au(q) denotes the part of robot lying in unknown physi-
cal space at configuration q, and Cfree denotes the known free configuration
space.

3 C-space Entropy and MER criterion

In the following, first we overview the notion of C-space entropy and the
closed form expression for point FOV sensor derived in [1,2], followed by the
closed form expression for the beam FOV sensor. We then present the closed
form expression for the generic FOV sensor.

We assume that the obstacles’ distribution in the physical environment
is modelled with an underlying stochastic process (e.g., the Poisson model
used later). The kinematics and geometry of the robot, embodied by func-
tion A(q) map the probability distribution in physical space to a probability
distribution over the C-space. Shannon’s Entropy then provides a measure of
the robot’s ignorance of the status of C-space [2]. One can then compute the
expected entropy reduction (or, equivalently, expected information gain) if a
region V(s) ∈ P was sensed (obstacle/free). The next best view (the region

1 Ideally, these two subscripts should be known-free and known-obs. But we omit
known for brevity.
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to be sensed) is then the one that maximizes the expected entropy reduction
(MER criterion), or equivalently, expected information gain (IG).

The information gain (IG) function is defined as

IGC(s) = −E{�
s
H(C)}

where H(C) denotes the current C-space entropy, E{�
s
H(C)} = E{H(C |

V(s)} − H(C) denotes the expected entropy change after V(s) is sensed.

3.1 Environment Model

We use a simple probabilistic model of physical space — the Poisson point
process, essentially characterized by uniformly distributed points in space
[12]. From a motion planning point of view, these points, denoted by pt, are
obstacles in the physical space of the robot. Given the density parameter of
this model, λ, the void probability of an arbitrary set B ∈ P — the probability
that there is no pt (obstacle) in B — denoted by p(B), is given by

p(B) = Pr[B ⊆ Pfree] = e−λ·vol(B) (1)

3.2 Point FOV Sensor

For a point FOV sensor model, which only senses a point (or an infinitesi-
mal ball) in physical space, rather than compute information gain, it is more
appropriate to compute the corresponding density function, i.e., expected en-
tropy reduction (or, equivalently, expected information gain) per unit volume
if a point x ∈ P was sensed (obstacle/free). The reason is as follows [1,2].
The information gain occurs either because the status of an unknown point
becomes obstacle or free. While the absolute information gain due to a sin-
gle point becoming free is zero almost everywhere, the corresponding density
function is non zero and finite! Thus, it gives a more complete picture of the
information gain.

The information gain density (IGD) function for a point FOV sensor is
defined as

IGDC(x) = lim
vol(B(x))→0

−E{ �
B(x)

H(C)}

vol(B(x))

where, consistent with earlier notation, H(C) denotes the current C-space
entropy, E{ �

B(x)

H(C)} = E{H(C|B(x))}−H(C) denotes the expected entropy

change after B(x), a ball centered at point x, is sensed.
In order to get efficiency in computing, we neglect the mutual entropy

terms2, essentially treating each (discretized) configuration as an independent

2 Please see section 6 for more discussion on this.
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random variable, i.e., H̃(C) =
∑
q∈C

H(Q). In this equation, Q denotes the

binary random variable (r.v.) corresponding to configuration q being free
(=0) or in collision (=1); H(Q) denotes the entropy of r.v. Q, i.e.,

H(Q) = p(q) · log(p(q)) + (1 − p(q)) · log(1 − p(q)) (2)

where p(q) = Pr[q = free] = e−λ·vol(Au(q)) is the marginal probability
that configuration q is collision-free, also called the void probability of q.
With this simplification one can show that:

ĨGDC(x) = lim
vol(B(x))→0

−E{ �
B(x)

H̃(C)}

vol(B(x))
=

∑
q∈C

igdq(x)

where igdq(x) is given by:

igdq(x) = lim
vol(B(x))→0

−E{ �
B(x)

H(Q)}

vol(B(x))
(3)

When B(x) is sensed, the sensed information affects the C-space entropy
via each configuration q. igdq(x) is then the marginal contribution to infor-
mation gain density via configuration q, if a point x ∈ Pu were to be sensed.
Furthermore, igdq(x) equals 0 when Au(q) does not contain x. So we need
only compute the above summation over those q’s such that x ∈ Au(q), also
called the unknown C-zone of x [2,3], and denoted by χu(x). Intuitively, C-
zone of x is the set of configurations such that the robot when placed in such
a configuration contains point x. One could think of this as a generalization
of inverse kinematics that applies to the entire robot body.3 Therefore one
can write:

ĨGDC(x) =
∑

q∈χu(x)

igdq(x) (4)

In [1,2], we showed that

igdq(x) =

{
λ · H(Q) − λ · p(q) · dH(Q)

dp x ∈ Au(q)
0 otherwise

The above expression consists of two terms that contribute to expected
entropy reduction per unit volume. The first term, λ · H(Q) is the expected
contribution when B(x) contains an obstacle. Note that in this case, for each
such event, the entropy would reduce to zero, since robot in configuration
q would now be in collision. The change in entropy is therefore H(Q), the

3 [14] used a similar concept but in a different context. Their aim was to come up
with a C-space representation that is easy to modify.
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entropy before scanning. The scaling factor λ simply reflects the probability
(per unit volume) of the event that B(x) contains an obstacle under Poisson
model. The second term, λ·p(q)· dH(Q)

dp is the contribution when B(x) changes
to free. In this event, the absolute amount of entropy reduction is zero almost
everywhere, however, the derivative w.r.t. vol(B(x)) is non-zero and is equal
to λ ·p(q) · dH

dp . The probability of this event under Poisson model is very high
and approaches unity in the limit.

Substituting for H(Q) and its derivative (differentiating expression 2
w.r.t. p(q)), the final expression for igdq is

igdq(x) =
{−λ log(1 − p(q)) x ∈ Au(q)

0 otherwise (5)

Combining Eq. (4) and (5), we get

ĨGD(x) =
∑

q∈Xu(x)

−λ · log(1 − p(q)) (6)

This expression, combined with the expression for void probability p(q)
in Eq. (1) completely determines the IGDF for a point FOV sensor assuming
a Poisson point process for obstacle distribution. The point to be scanned
next is the one that maximizes ĨGDc(x).

The closed form expression for expected entropy reduction for a point
FOV sensor assumes that there are no occlusion constraints, i.e., a point
to be sensed will always result in a free/obstacle status. We now discuss
the beam FOV sensor that models the occlusion constraints in the expected
entropy formulation.

3.3 Beam Sensor Model: Occlusion Constraint

The beam sensor, as the name implies, senses along a beam (ray) of finite
length, L, emanating from the sensor origin (See Figure 2). It returns the
distance of the first hit point (obstacle) along the beam. Points along the
beam that are in front of the hit point (i.e., closer to the origin than the
hit point) are in free space. Points along the beam behind the hit point
(i.e., farther from origin than the hit point) are deemed to be un-sensible
(by occlusion constraints) in this particular sensing action and their status
(obstacle/free/unknown) remains the same as it was before the sensing action.
Therefore, for a particular sensing action, a point along the beam may acquire
one of three possible states: 0 (free), 1 (obstacle) or u (unsensible).

For this more general case, when a region V(s) is being sensed, the IGD
function is now defined over the space of all sensor configurations. Note that
since the volume of the sensor FOV is still zero, it is the density function that
is still relevant. For each sensor configuration, s, the IGD function assigns a
real value that corresponds to the expected information gain per unit volume
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Fig. 2. The beam sensor model.

of sensor FOV with the sensor placed at configuration s. Using the same
simplifications as for a point sensor (i.e., ignoring mutual entropy terms),

ĨGDC(s) = lim
vol(V(s))→0

E{�
s
H̃(C)}

vol(V(s))
=

∑
q∈χu(s)

igdq(s)

and

igdq(s) = lim
vol(V(s))→0

−E{�
s
H(Q)}

vol(V(s))
(7)

As before, igdq(s) is the marginal contribution to IGD via configuration
q when the sensor senses at configuration s. Similar to the point FOV sensor,
the summation is restricted to the unknown C-zone of Vu(s) (defined in the
next paragraph), denoted by χu(s), and defined as the set of q’s such that
Au(q) ∩ Vu(s) �= φ. 4

For mathematical formulation, we will assume that the sensor FOV, V(s),
is a thin cylinder of infinitesimal radius (or equivalently, infinitesimal cross
sectional area denoted by �a) and length L. We discretize this cylinder into
n “disks”, each of length �l, by planes orthogonal to its axis, as shown in
Figure 3. As �a and �l approach zero, the cylinder becomes an ideal beam.

Let Vu(s) 5 denote the portion of sensor FOV that lies inside Punk and
is in front of the first known obstacle along the sensing direction, i.e., Vu(s)
denotes the largest possible sensing region the beam sensor can sense at
4 This extends the notion of C-zone to that of a set in physical space rather than

a single point x.
5 There is a slight abuse of notation for simplicity. Subscript u in Vu(s) denotes not

only unknown part of V(s) but also further excludes those portions of unknown
environment in V(s) that are occluded by known obstacles.
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s. Vu(s) ≈ x1 ∪ x2 ∪ . . . ∪ xm where xi, i = 1, . . . , m are the disks lying
inside Vu(s) (we are concerned with only the unknown portion of sensor FOV
and label only those disks). Note that Vu(s) may be a multiply connected
set. If a disk (say, xi) contains the hit point, its status would become 1
(obstacle). All disks xj , j < i, would become 0 (free), and all disks xk, k > i
would keep their status u (unknown) as shown in Figure 3. So we will get a
“0, 0, . . . , 0, 1, u, u, . . . , u” sequence.

Fig. 3. The beam sensor model with infinitesimal width and discretized into
“disks”. The hit point lies in disk xi with i = 3. Disks x1 and x2 become free
and disks x4 onwards remain unknown.

The location of the hit point is a random variable. The event that the ith

disk contains the hit point, denoted by xi = h, corresponds to first (i − 1)
disks, x1, x2, . . . , xi−1, being all in Pfree and the ith disk, xi, containing an
obstacle point, i.e., {xj = 0, j = 1, . . . , i − 1 ∧ xi = 1} where i ∈ {1, . . . , m}.
The corresponding probability, denoted by p(xi = h) is then given by using
Eq. (1):

p(xi = h) = e−λ·(i−1)·�a·�l · (1 − e−λ·�a·�l) (8)

with 1 ≤ i ≤ m, and �a · �l being the volume of each disk.

3.3.1 Compute igdq(s)
The numerator (expectation) in igdq(s) in Eq. (7) is:

E{�
s
H(Q)} = E{ �

xi∈A(q)

H} + E{ �
xi /∈A(q)

H} + E{ �
∃ no hit pt

H}

⇔ igdq(s) = (igdq)1 + (igdq)2 + (igdq)3 (9)

The r.h.s. in the above expression consists of three terms: the first one
corresponds to an xi being a hit point and belonging to A(q) for the given
q (event 1); the second term corresponds to an xi being a hit point but not
belonging to A(q) for the given q (event 2); the last term corresponds to there
being no hit point in the sensed beam, i.e., all xi’s are sensed free (event 3).
The three cases are shown schematically in Figure 4. The robot (solid line) is
holding the sensor at a given sensor configuration s. For a given q, the region
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occupied by the robot, A(q) is shown in dotted. The hit point may lie inside
A(q), outside A(q), or there may not be any hit point, i.e., the entire beam
is free.

Fig. 4. Computation of igdq(s). The three terms on the r.h.s. in equation 9 cor-
respond to the above three events. (top) When hit point is inside A(q). The hit
point may lie anywhere inside the dark strip. (middle) When hit point is outside
A(q). The hit point may lie anywhere inside the dark strip. (bottom) There is no
hit point, i.e., the entire beam is sensed free.

Computing the 1st Component (E{�H1}) Derivation omitted.
When the hit point lies inside A(q), we have

(igdq)1 =
λ

L
· len(A(q) ∩ Vu(s)) · H(Q) (10)

The expression makes intuitive sense. Since it is the expected contribution
from those cases where a sensed hit point lies inside A(q), we know that
in each such outcome, the entropy would reduce to zero since the status of
Q would become known (in collision) and hence the entropy reduction will
be H(Q), the entropy before sensing. The multiplying factor λ

L · len(A(q) ∩
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Vu(s)) simply represents the expectation (per unit length) of such an event
happening under Poisson model.
Computing the 2nd Component (E{�H2}) Derivation Omitted.

When the hit point lies outside A(q), we have

(igdq)2 = 0 (11)

This implies for outcomes comprising event 2 (the hit point is sensed but
does not lie within A(q) for a given q), the marginal information gain den-
sity due to configuration q is zero. We can think of (igdq)2 as essentially a
summation (over outcomes comprising event 2) of “derivatives” of entropy
w.r.t. volume weighted by the corresponding probability of such an outcome
happening. The derivative is finite but the probability of the outcome hap-
pening (a hit point lying outside the robot but within the sensing beam) is
very low and approaches zero under Poisson model as ∆a approaches zero.
(igdq)2 being a summation of these product terms, is also zero.

Computing the 3rd Component (E{�H3}) Derivation omitted.
When the whole beam is sensed free of hit points, we have

(igdq)3 = −λ

L
· len(A(q) ∩ Vu(s)) · p(q) · dH(Q)

dp
(12)

(igdq)3 is essentially the “derivative” of entropy w.r.t. volume weighted
by the probability of the event 3 (when the sensor does not sense any hit
point). The derivative is again finite, however, the probability event 3 is very
high and approaches unity as ∆a approaches zero under Poisson model. The
(igdq)3 being the product of the two, is therefore finite.

We can easily get igdq(s) from Eq. (10), (11) and (12),

igdq(s) =


λ
L · len(A(q) ∩ Vu(s)) · (H(Q) − p(q) · dH(Q)

dp )
= − λ

L · len(A(q) ∩ Vu(s)) · log(1 − p(q)) x ∈ Au(q)

0 otherwise

And finally,

ĨGDc(s) = −λ

L
·

∑
q∈Xu(s)

len(A(q) ∩ Vu(s)) · log(1 − p(q))

Note that the beam sensor result is as if occlusion does not matter within
entropy computation and the net result is effectively a “summation” of point
sensors along the beam. Moreover, we can easily see that as L, the length
of the sensing beam, goes to zero, this result agrees with the one obtained
for the point FOV sensor, i.e., we have lim

L→0

A(q)∩Vu(s)
L = 1, and therefore,

igdq(s) = λ · (H(Q)−p(q) · dH(Q)
dp ), precisely the result we obtained in [1–3]6.

6 Please note that there is an algebraic error in earlier papers for the point FOV
case. This is the corrected result.
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3.4 Generic Range Sensor with Non-zero Volume FOV

We now consider the general case, that of a range sensor whose FOV has non-
zero volume, i.e., V(s) is an open set in R3, and the the actual volume sensed is
governed by occlusion constraints. Most commercially available range sensors
that provide range images (such as the area scan laser range sensor used in
SFU eye-in-hand system [5]) fall into this category. Fig. 5 shows a schematic
diagram as the sensor senses an unknown region within its FOV. As before,
let Vu(s) denote the portion of the FOV that intersects Pu and is not occluded
by known obstacles. Note that Vu(s) might be a multiply-connected set. In
the figure, Vu(s) consists of regions A, B, C and D (region E is excluded
from Vu(s) since it is occluded by a known obstacle). After sensing, regions
A, B and C become free; region D remains unknown because it is occluded
by the sensed obstacles (shown in dark). Of course, the sensor also provides
the distances from the sensor’s origin to the sensed obstacles.

Fig. 5. Illustration of a generic range sensor’s FOV V(s). After this sensing action,
regions A, B and C become free, the black contour is a sensed obstacle and region D,
occluded by the sensed obstacle remains unknown. Region E also remains unknown,
but it is occluded by an already known obstacle.

Since the volume of the sensor is non-zero, clearly it is the information
gain (IG) function (rather than the density) that is relevant. Making similar
approximations as earlier,

ĨGC(s) = −E{�
s
H̃(C)} =

∑
q∈χu(s)

igq(s)

where igq(s) is given by:

igq(s) = −E{�
s
H(Q)} (13)
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3.4.1 IGc(s) Computation
With occlusion constraint, the sensor can only detect the very first obstacle

pt, called the hit point, along each sensing ray. Again, for a given q, igq(s) is
composed of two components, i.e., igq = (igq)1 + (igq)2.

The first component, denoted by (igq)1, corresponds to those outcomes
where the sensor would sense at least one hit point inside A(q) ∩ Vu(s), i.e.,
hitpt ∈ A(q)∩Vu(s), for a given configuration q. Let this set of outcomes be
denoted event 1. After sensing, the robot, were it to be placed at configuration
q, A(q), would be in collision with an obstacle (the sensed hit point). So
H(Q | event 1) = 0 and �

event 1

H(Q) = H(Q | event 1) − H(Q) = −H(Q).

It turns out (not unexpectedly in the light of beam sensor result) that
the probability of event 1, Pr[hitpt ∈ A(q) ∩ Vu(s)], is the same as Pr[pt ∈
A(q) ∩ Vu(s)], as if occlusion does not matter! Theorem 1 states this result
formally.

Theorem 1. Pr[hitpt ∈ B] = Pr[pt ∈ B] = 1 − e−λ·vol(B) where B ⊆ Vu(s)
is any open set and pt are point obstacles whose distribution is governed by
a Poisson point process.

Proof. Omitted. We outline the basic approach. We first discretize V(s) into
N number of nearly-identical infinitesimal cones, V1, V2, . . . , VN , as shown in
Fig. 6. Consider a cone (with apex at sensor origin) which contains V(s). Lay
a discrete grid of size ε and connect the boundary of these cells to the sensor’s
origin. Thus, we get N infinitesimal cones. As ε → 0, N → ∞, discretized
sensor approaches original range sensor.

Now consider an open set B ⊆ Vu(s). Indeed B will intersect M ≤ N of
these infinitesimal cones. Wlog, we label them VB1, VB2, . . . , VBM . Also we
denote the intersection of these VBi’s with B by B1, B2, . . . , BM respectively
and use front(Bi) to denote the part of VBi that is in front of Bi along the
sensing direction. We use these infinitesimal cones to compute Pr[hitpt ∈ B].
Note that the occlusion for each pt in Bi will happen in front(Bi). Again,
since the obstacles are point obstacles, the probability of a pt being occluded
approaches zero, although the actual proof is somewhat detailed and tedious
and is omitted here for lack of space.

Fig. 6. The generic range sensor FOV discretized into N infinitesimal cones.
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So we have

(igq)1 = Pr[hitpt ∈ A(q) ∩ Vu(s)] · H(Q)
= Pr[pt ∈ A(q) ∩ Vu(s)] · H(Q)
= (1 − e−λ·vol(A(q)∩Vu(s))) · H(Q) (14)

The second component, denoted by (igq)2, corresponds to a set of out-
comes in which there does not exist any hit point inside A(q)∩Vu(s). In this
case, the status of A(q) would either remain unknown, albeit the unknown
portion (volume) may have decreased, or it may become completely free; but
it will not be known to be in collision. Let us denote this set of outcomes by
event 2. Using the discretized FOV as in Figure 6, let us denote a possible
state of A(q)∩ Vu(s) after sensing by J . Event 2 then corresponds to the set
of outcomes {J : no hitpt ∈ A(q) ∩ Vu(s)}. By definition, then we have

(igq)2 =
∑

J∈event 2

Pr[J ] · (H(Q) − H(Q | J)) (15)

where Pr[J ] is the probability of A(q)∩Vu(s) being in state J after sensing.
We show that the above expectation turns out to be that of the event

(let us call it event 3) that there does not exist any pt in A(q) ∩ Vu(s), or
equivalently that the region A(q) ∩ Vu(s) is free! This implies that occlusion
does not matter in the expectation computation! It is not entirely unexpected
in the light of beam sensor result. Theorem 2 states this result formally.

Theorem 2.∑
J∈event 2

Pr[J ] · H(Q | J) = Pr[event 3] · H(Q | event 3)

= e−λ·vol(A(q)∩Vu(s)) · H(Q | event 3) (16)
Proof. Omitted.

Thus, expanding the summation in Eq. (15), we have,

(igq)2 = H(Q) ·
∑

J∈event 2

Pr[J ] −
∑

J∈event 2

Pr[J ] · H(Q | J) (17)

The first term (the first summation) above is 1−Pr[hitpt ∈ A(q)∩Vu(s)].
The expression for it is given by Theorem 1 if we substitute A(q)∩Vu(s) for
B. Furthermore, substituting from Theorem 2 for the second term, we get

(igq)2 = H(Q) · Pr[event 3] − Pr[event 3] · H(Q | event 3)

= e−λ·vol(A(q)∩Vu(s)) · (H(Q) − H(Q | event 3)) (18)

So summing the two components together, we will have

igq = (igq)1 + (igq)2 = H(Q) − e−λ·vol(A(q)∩Vu(s)) · H(Q | event 3) (19)

Both H(Q | event 3) and H(Q) in the above equation are determined
using Eq. (2) and that p(q | event 3) = e−λ·vol(Au(q)\Vu(s)), where \ denotes
set difference.
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4 Algorithm for View Planning

Now that we have computed an expression for IG over sensor’s configuration
space, we can use the MER criterion to decide the next scan, i.e., choose the
sensor configuration smax such that smax = max

s
{

∑
q∈Xu(s)

igq(s)}. The algorithm

then is as follows:

for every s /* according to a certain resolution */
determine Vu(s)

ĨG(s) = 0 /* initialize */
for every q

if (Au(q) overlaps with Vu(s))
compute igq(s)

ĨG(s) = ĨG(s) + igq(s)

smax = max
s

(ĨG(s))

Determining quantities such as Au(q), Vu(s) involves straight forward
geometrical computations7. For instance, determining Vu(s) corresponds to
determining the intersection of the sensor FOV with Pu while excluding por-
tions of Pu occluded by already known obstacles (before sensing action), a
relatively simple geometric computation. igq(s) for given s and q is therefore
easily computed. The iteration over q, i.e., summation over C-space of the
robot to determine IG(s), may be prohibitive for robots with many degree of
freedoms. In this case, the summation can be carried out over a large enough
set of random samples [2]. The iteration over s, i.e., maximization over the
sensor configuration space to determine smax will be directly proportional to
the number of discretized sensing configurations.

5 Simulation Results

In order to test the effectiveness of our formulae, we conducted a series of
experiments on the simulated two-link eye-in-hand preliminary system shown
in Figure 1. The task for the robot is to explore its environment, starting from
its initial configuration. The overall planner used is SBIC-PRM (sensor-based
incremental construction of probabilistic road map) reported in [3,5]. Briefly,
SBIC-PRM consists of an incrementalized model-based PRM [15], that oper-
ates in the currently known environment; and a view planner that decides a
reachable configuration within the currently known environment from which
to take the next view. The two sub-planners operate in an interleaved man-
ner. The simulation program, written in C++, runs on a Pentium III 800,
and it takes about 53 seconds for each view planning iteration, corresponding
to the algorithm in Section 4.

7 The representation of the robot and the physical space in this algorithm is similar
to [5,8].
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We now compare the results of four different view planning criteria for
efficiency of exploration of the physical and configuration space. The first
strategy, denoted by RV (random views), is to randomly choose a viewpoint
as the next scan. The second strategy, denoted by MPV (maximum unknown
physical volume) is to choose the next viewpoint so as to maximize the un-
known physical volume inside the scan [6]. The third strategy is to use point
FOV based MER criterion for view-planning [1,2], and place the centre of the
actual FOV (the cone) at xmax, the single point that results in maximum en-
tropy reduction. The fourth is to use the generic non-zero volume FOV based
MER criterion derived in this paper. In all these cases, the robot started off
as in Figure 1.

As shown in Figure 7, the first two strategies expand the known C-space
much less than the last two MER criterion based strategy. Using RV gives us
about 8% expansion of known C-space in 5 scans, and the robot reached its
goal in 36 scans. MPV results in C-space expansion by about 54% in 5 scans.
The point FOV based MER criterion gives us much better results, resulting in
about 73% expansion in 5 scans. The general FOV based MER criterion was
the best, better than point FOV based MER. It made the C-space expand by
about 82% in 5 scans. For reader’s information, although not relevant here,
black dots in all these figures are the nodes of the probabilistic roadmap,
bulit by SBIC-PRM planner and used for planning paths for the robot.

Figure 8 plots known C-space vs. number of iterations for the above four
view-planning criteria. We can easily see that the generic range sensor based
MER is the most efficient one, which expanded known C-space to about 90%
in 7 scans; point FOV based MER needed 11 scans; RV needed 33 scans; and
MPV needed 19 scans respectively.

6 Conclusions

We presented closed form solutions for computing the expected C-space en-
tropy reduction for a general non-zero volume FOV range sensor while taking
into account the occlusion constraints inherent in range sensors. This extends
our previous results that applied to a point FOV sensor and did not account
for occlusion constraints. Planar simulations show that our new results lead
to more efficient exploration of the robot configuration space. As mentioned
in the introduction, our next step is to implement these results for six-dof
SFU eye-in-hand system, a PUMA 560 with a wrist mounted area scan laser
range finder, reported in [5].

There are two simplifications in the current formulation. The first is that
it assumes a Poisson point process for obstacle distribution that treats ob-
stacles as points. Extending our formulation for a Boolean stochastic model
[12] where geometric shape of obstacles is taken into account would be the
next step. The second simplification is that we ignored mutual entropy terms
for computational efficiency. Computation of these terms will involve com-
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puting the intersection of robot’s volume for pairs (and triplets, and so on)
of unknown configurations. Even for second order mutual entropy terms, the
computational complexity would be O(N2), where N is the number of robot
configurations with the C-space discretized at a certain resolution. It will
indeed be computationally expensive to calculate these terms [2]. The effect
of these mutual entropy terms on the efficiency of exploration needs to be
further investigated.

Fig. 7. Known Physical and C-space after 5 scans: (a) RV criterion, (b) MPV
criterion, (c) Point FOV based MER criterion, (d) Generic non-zero volume FOV
based MER criterion.

Fig. 8. The comparison of C-space exploration efficiency for the four view-planning
algorithms: RV, MPV, Point FOV Based MER and Generic FOV Based MER



View Planning via Maximal C-space Entropy Reduction 17

References

1. Y. Yu and K. Gupta. An Information Theoretic Approach to View Planning
with Kinematic and Geometric Constraints. Proc. IEEE Int. Conf. on Robotics
and Automation, Seoul, Korea, May 21-26, 2001, pp. 1948-1953.

2. Y. Yu. An Information Theoretical Incremental Approach to Sensor-based Mo-
tion Planning for Eye-in-Hand Systems. Ph.D. Thesis, School of Engineering
Science, Simon Fraser University, 2000.

3. Y. Yu and K. Gupta. View Planning via C-Space Entropy for Efficient Ex-
ploration with Eye-in-hand Systems. Proc. VII Int. Symp. on Experimental
Robotics, 2000. Available as lecture notes in Control and Information Sciences,
LNCIS271, Springer. pp. 373-384.

4. Y. Yu and K. Gupta. Sensor-Based Motion Planning for Manipulator Arms: An
Eye-in-Hand System. Video Proc. IEEE Int. Conf. Robotics and Automation ,
2000.

5. Y. Yu and K. Gupta. Sensor-based Probabilistic Roadmaps: Experiments with
an Eye-in-hand System. Advance Robotics,2000, Vol.14, No.6, pp.515-537.

6. E. Kruse, R. Gutsche and F. Wahl. Effective Iterative Sensor Based 3-D map
Building using Rating Functions in Configuration Space. Proc. IEEE Int. Conf.
on Robotics and Automation. 1996, pp.1067-1072.

7. P. Renton, M. Greenspan, H. Elmaraghy, and H. Zghal. Plan-n-Scan: A Robotic
System for Collision Free Autonomous Exploration and Workspace Mapping.
Journal of Intell. And Robotic Systems, 1999. 24:207-234.

8. J. Ahuactzin and A. Portilla. A Basic Algorithm and Data Structure for Sensor-
based Path Planning in Unknown Environment. Proc. Of IROS 2000, Vol. 2,
pp. 903-908.

9. E. Cheung and V. J. Lumelsky. Motion Planning for Robot Arm manipulators
with Proximity Sensors. Proc. IEEE Int. Conf. on Robotics and Automation,
1988, Vol. 2, pp. 740-745.

10. H. Choset and J. W. Burdick. Sensor based Planning for a Planar Rod Robot.
Proc. of the IEEE Int. Conf. on Robotics and Automation, 1996, Vol. 4, pp.
3584-3591.

11. K. Hirai, M. Hirose, M. Haikawa and T. Takenaka. The Development of
HONDA Humanoid Robot. Proc. Of ICRA 1998, pp. 1321-1326.

12. D. Stoyan and W.S. Kendall. Stochastic Geometry and Its Applications. J. Wi-
ley, 1995.

13. H. G. Banos and J. C. Latombe. Robot Navigation for Automatic Construction
using Safe regions. Preprints Proc. ISER 2000. pp. 395-404.

14. P. Leven abd S. Hutchinson. Toward Real time Motion Planning in Chang-
ing Environmets. New Directions in Algorithmic and Computational Robotics
(WAFR 2001). A. K. Peters, pp. 363-376.

15. L. Kavraki, P. Svestka, J. Latombe and M. Overmars, Probabilistic Roadmaps
for Path Planning in High-dimensional Configuration Spaces, IEEE Transac-
tions on Robotics and Automation, Aug. 1996, 12(4):556-580.


