
1 Copyright © #### by ASME

IMECE99/DSCD, Proceedings of the ASME
Virtual Environment and Teleoperator System symposium

November 1999. Nashville

DSC-3-1

HAPTIC RENDERING: PRACTICAL MODELING AND COLLISION DETECTION

ZhuLiang Cai
Experimental Robotics

Laboratory (ERL)

John Dill
 Graphics and Multimedia

Research Laboratory(GMRL)

Shahram Payandeh
Experimental Robotics

Laboratory(ERL)

ABSTRACT
3D collision detection and modeling techniques can be

used in the development of haptic rendering schemes which
can be used, for example, in surgical training, virtual assembly,
or games. Based on a fast collision detection algorithm
(RAPID) and 3D object representation, a practical haptic
rendering system has been developed. A sub-system determines
detailed collision information. Simulation results are presented
to demonstrate the practicality of our results.

1. INTRODUCTION
With multimedia developing through graphical animation,

stereo sound and live video imaging technology, a technological
revolution is now taking place in which user interaction with
computers is mediated by an artificial virtual reality. Virtual
reality is enhanced by the addition of communication modalities
such as stereo, 3D sound, force/tactile feedback, and even taste
and smell. In this paper we focus on aspects of tactile feedback,
i.e. haptic feedback.

Haptic, a word derived from the Greek word haptiesthai,
means touch. A haptic interface is composed of three
subsystems: Haptic Rendering, Haptic Device, and Haptic
Display.

Haptic Rendering, by simulating the forces generated by
contact with a virtual model, provides a means of interrogating
the model by touch, an additional means of interacting with a
virtual environment.

Haptic Devices are the physical means of providing this
communication. Such devices should have the dynamic range
of touch receptors, with particular emphasis on their adaptation
to certain stimuli [1]. They are employed for interacting with
virtual tasks that are usually performed using hands in the real
world [2]. Examples include SensAble Technologies'
PHANToM, developed by MIT [3], a 3D haptic interface
device, and Haptic Technology's CAT® (Computer-Assisted-
Touch) family of primarily 2D devices .

Haptic Display means a graphical rendering with the
object's haptic properties (e.g. material properties) represented
along with it's visualization.

These have been used in special-purpose applications such
as in a real-time surgery simulation system in medicine [4].
Faraz and Payandeh [5] also developed an endoscopic haptic
device for applications in medical training and remote
medicine.

This paper describes a general practical method for haptic
rendering of objects in virtual environments. For the sake of
simplification, we restrict the results of the paper to static
environments composed of rigid objects. The paper is organized
as follows:

Section 2 presents the graphics object modeling data
conversion. This includes a practical method for modeling 3D
objects and for conversion to a hierarchical data set to construct
collision detection and force profiling models. The output form
CAD tools is used for rendering and integrated with fast
collision detection.

Section 3 discusses collision detection. We include a brief
survey of collision detection algorithms and the reasons for
adopting RAPID, a fast multi-object collision detection method.

Section 4 describes collision reconstruction and our contact
detection algorithm. We contribute an algorithm for detecting
accurate contact collision points, edges and faces on the
colliding objects and a reconstruction method for rigid object
collision.

Finally, section 5 presents experiments and results.
The proposed technique can be used for simulating haptic

interactions between a tool and 2D or 3D objects. The graphical
models are tessellated with triangular elements. The hardware
components of our set-up include a PC running a general
graphical software package to display the graphical model of
the 3D virtual environment, and normal input devices
(keyboard, mouse) to convey to the user a sense of moving and
feel of virtual objects (see fig. 1) in this environment.

2. OBJECT MODELING
Our objective is to use high level design tools to model the

environment and high level graphics tool to visualize the
environment. So we propose a fast collision detection
technique between 3D objects as a part of haptic rendering.

2 Copyright © #### by ASME

This subsystem utilizes exact contact localization method and
reconstruction algorithm for contact detection. We display a
graphical model of the 3D polygonal objects and update their
location as the user manipulates the input devices, detect any
collisions between the objects and give exact collision
positions. The proposed method is more suitable for the
simulating non-convex/convex object collision detection than
earlier techniques which are only suitable for convex objects
[6].

 Figure 1: Overview of modeling and collision
detection system

For ease of model construction, we chose a widely
available CAD system (AutoCAD), and for flexibility and
control of the visual display, we chose to use OpenInventor [7].
However, OpenInventor cannot read Autocad's dxf file format.
We thus needed to use a conversion utility to generate a
readable file format (VRML or OpenInventor file format .wrl,
.iv) from the dxf file.

The data structure requirements of most current collision
detection algorithms are not compatible with the current
graphical data file's structure. Further, the structures used in
these algorithms often presents problems for generating force
profiles; thus we devised a more appropriate data structure to
better support collision detection and evaluation of force
profiles.

Current 3D graphic data structures (e.g. Open Inventor,
VRML etc.) is an array of triangle structures, each of which
contains of three indices into an array of vertices.
Disadvantages of this data structure for haptic rendering
applications include

a) Complex interface to the collision detection algorithm: A
conversion process is needed between the 3D data and the
collision detection algorithm.

b) Unable to support material properties. The material
property data structure is based on element plates. However, the
3D geometric graphic data structure is based on vertices. The
element plate data must be constructed via mapping index
parameters. As a result, a complex and robust algorithm will be
needed to convert the data structure used in the applications.

To meet this need for a better data structure for haptic
rendering applications, we developed a new hierarchical data
structure, called a Haptic Data Structure. This data structure,
illustrated in fig. 2, supports the collision detection algorithm,
material properties and deformation requirements.

Figure2: The data structure for the 3D Geometric and
material property data

Other advantages of the haptic data structure are:
 a) Simple interface to the collision detection algorithm.
 b) Supports dynamic modification of the object's geometry

information.
 c) Supports material properties.

3. A COLLISION DETECTION ALGORITHM
Collision detection is a critical component of haptic

rendering and a number such algorithms have been developed.
Each has its own limitations and advantages with respect to
collision detection performance. A brief discussion of collision
detection algorithms will help motivate algorithm selection
criteria.

A good survey of collision detection algorithms has been
done by Lin and Gottschalk [9]. Relative to our work, a brief
survey categorized with respect to polyhedra and volume
modeling is as follows:

Type I) Convex planar/curve polyhedra: Minkowski
difference and convex optimization techniques are used [10] to
compute the distance between convex polyhedra by finding the
closest points. Geometric Coherence has been exploited to
design algorithms for convex polyhedra based on local features
[11][12][13] in applications involving rigid motion. Other
structured polygon algorithms include cone-tree, k-d tree and
octrees [14], 4-D testing, spatial partitioning based space-time

Collision
Detection

Reversing
Algorithm

Yes

No

VRML Data
Conversion

Haptic Data
Conversion

Data Conversion

Real Probe
Data

AutoCad
Data

x, y, z

3 Copyright © #### by ASME

bounds or local overlap region testing for swept solid object
[15].

More recent work seems to have focused on tighter-fitting
bounding volumes. RAPID [6] is a fast algorithm for
interference detection based on oriented bounding boxes which
approximate geometry better than do axis-aligned bounding
boxes. Barequet, etal. [16] have also developed a collision
detection algorithm based on using oriented bounding boxes for
computing hierarchical representations of surfaces for
performing collision detection.

Type II) Polygon soups1 with complex intertwined
objects (i.e. multiple objects colliding separately): Only
RAPID can efficiently and robustly provide this type of
collision detection. The RAPID algorithm can also deal with
non-convex polygonal objects.

Type III) Constructive Solid Geometry(CSG): Efficient,
accurate and robust computation of bounding volumes remains
a hard problem for CSG models described using curved
primitives [17][18]. Cameron [19] introduced "S-bounds" as a
means of speeding up intersection evaluation which is sufficient
to determine whether or not the intersection is empty. Based on
space partitioning and bounding boxes, M.A.Ganter and
B.P.Isaraukura [15] introduce an S-bounds algorithm whose
key technique is to reduce collision detection test points/faces
by subdividing the space containing a given object into a set of
partitions.

Type IV) Volume Rendering model: In contrast to the
surface-based graphical formats, collision detection for voxel-
based objects is conceptually simple and does not require any
mathematical analysis.

Collisions are detected automatically when a voxel address
from one object tries to write into an occupancy map cell that is
already occupied by the voxel address of another object [20].
The volume rendering model's collision detection algorithm is
simple, but requires a large memory and special hardware
acceleration.

Before choosing a particular collision detection algorithm,
the collision detection's preliminary problem must be
understood clearly: i.e. the simulation environment is regarded
as a key point for seeking an efficient algorithm.

It is well known that different simulation environments lead
to different collision detection algorithm choices. For practical
environments, the basic requirements of the environment are:
1. Planar polygonal approximation of the objects.
2. The objects may be very complex shape (e.g. intertwined

objects).
3. Non-convex objects must also be considered.

Based on the collision detection algorithm survey, a
collision detection algorithm which is practical for collision
detection in a haptic rendering system is the RAPID algorithm.

1 Polygon soups mean the models contain no adjacency information and

obey no topological constraints.

RAPID is a robust and accurate polygon interference
detection library for pairs of unstructured polygonal models. It
is most suitable for close proximity configurations between
smooth surfaces [6]. RAPID is only one algorithm for non-
convex objects and can solve multiple object collision
problems.

4. CONTACT LOCALIZATION AND RECONSTRUCT-
ION ALGORITHM
Two things must be considered for detecting the point(s) of

contact in collision detection simulation:
• the first contact points, edges or surfaces
• the object's trajectory and velocity.
However, because the motion is a sequence of discrete

steps, collisions occur under three cases:(fig. 3):
a) The objects interpenetrate.
b) Their boundaries touch.
c) One object passes completely through another.

Figure 3: Three situations for object’s collision

For case c), the collision detection algorithm cannot
produce the correct collision result. The solution here is to
reduce the step length to be less than the bounding box's
minimum edge length for all objects. For cases a) and b), a new
algorithm will be developed which:
 a) Finds whether the objects penetrate or touch.
 b) Finds the correct reversing vector if they penetrate.
 c) Finds the first contact points, lines and polygons.

Figure 4: Projections for a 3D object to 2d planes.

X

Z

Y

4

To simplify the algorithm complexity for 3D space, a 2D
projection method is considered. This method is stable and
simple. Using this method, 3D polyhedra are projected onto the
three 2D planes (fig. 4). A 3D vector can be decomposed into
the three 2D vectors respectively in x-y, y-z, x-z planes (the
three 2D vectors can be correspondingly composed into a single
3D vector).
 The x-y plane projection is used to illustrate the contact and
reconstruction algorithm (fig 5).

Figure 5: The collision projection on 2D plane

Definitions:
• Vf[i] and Vm[i] represent the ith vertex on the fixed and

moving objects respectively;
• Lm[j] and Lf[j] represent the jth line segment on the

moving and fixed objects, respectively;
• lm[i] and lf[j] represent the ith (jth) line through vertex

Vm[i] (Vf[i]) where the line's direction is the moving
object's velocity vector D.

 First consider the relation between the vertex Vm[i] and the
Line segment Lf[j]. Pij is the intersection point for the line lm[i]

and the Line segment Lf[j]. Then test if point Pij is inside the line
segment Lf[j]. If not, the point Pij will be ignored.

Second find the penetrating vectors Vij where
 Vij = (Pij. - Vm[i]).

Third find the maximum penetrating distance and reversing
vector. The penetrating distance values dij are given by
dij = Vij • D . If dij ≥ 0, the corresponding vertex Vm[i] penetrates
the fixed polyhedron. From the set of dij's, a maximum value
can be found. The maximum value corresponds to at least one
vertex. corresponding array of vertices Vm[i]'s (with the same
maximum d) is regarded as the set of contact points. If
neighboring contact points are independent, then they are the
touch vertices. If neighboring contact points are vertices for the
same line segment of a polyhedron, an edge touches. If
neighboring contact points form a polygon, a face (polygon)
contact is said to occur.

The complete contact problem is now solved, except for
certain singular situations as shown in fig. 6. When the moving

object's colliding vertex/vertices is/are not inside the fixed
object, the singular situation would happen.

Figure 6
plane

How
problem.
vertex is
object's V
Lf[j] to the
moving o
the direct
vector is

5. EXP
This

fast colli
based rec
algorithm

Mult
serial coll
only simu
but also i
state of th

V_f[1]

Vf[2]Vf[3]

Vf[4]

V_m[0

Vm[1]Vm[2]

P12

P10
P00

P02P22

P20

Lf[1

Lf[0]

Lf[3]

�2 �1 �0

V10

X

D

F

M

O b j e c t Y

L fDl2Vm[2]Vm[1]Vm[0]l1l0 F
M o
e
T

b

-

E

s
o

i

s

: A sigular situatio

ver, a similar proced
his procedure is very s

changed from the mov
f[i], the Line segments c
 moving object's Lm[j], c
ject lm[i] also changed to

ion vector D must be re
D. Detailed pseudo-cod

RIMENT SETUP AN
implementation uses a
ion algorithm (RAPID
nstruction algorithm. F

.

Figure 7: Algorit

ple collisions within o
isions in one simulation
ltaneous collisions as a
 suited for non-convex
e objects immediately a
Co

n fo

ure
imil
ing
hang
orre
 the
ver

e is

D R
fixed
) an
ig. 7

hm

ne s
 step
serie
shap
fter a
pyright © #### by ASME

r collision based 2D

can solve this singular
ar to the above, except the
object's Vm[i] to the fixed
ed from the fixed object's
sponding the lines for the
 fixed object's lf[j]. Finally,
sed and the new direction
shown in the appendix.

ESULTS
 step length technique, a

d the collision response-
 shows an overview of the

overview.

tep can be processed as
. The algorithm solves not
s of individual collisions,
es objects. It updates the
 collision.

i x e d O b j e c t

o v i n g

[2] i x e d O b j e c t
v i n g O b j e c t

5 Copyright © #### by ASME

A test environment containing user-defined virtual objects
has been built. An environment containing fixed (static) objects
and moving (dynamic) objects has been tested. Users can build
and edit test object models using commercial 3D CAD software
such as AutoCad. During the experiment, the user can
manipulate (move/rotate) the objects using the mouse and
keyboard and see virtual collisions on the screen.

Test 1

Test 2

Test 3 Test 4

•

••

Figure 8. Experimental test cases.

Fig. 8 shows four test cases of varying difficulty ranging
from a simple one-point collision of two convex objects through
a line collision to multiple point collision of non-convex
objects. The contact points, edges and faces are highlighted in
the figure (and on the screen). Detailed contact coordinate
information is displayed to the user on the screen, along with
the reversing vector. The algorithm's performance is shown in
Table 1. The experiment was run on an NT workstation with a
Pentium II-333 CPU and 128MB of memory.

Table 1. Performance of reconstruction algorithm.

Example No. #1 #2 #3 #4
of colliding lines 32 54 409 1062

of colliding vertices 22 31 205 502
Running Times(sec) .00015 .00031 .991 5.00

6. CONCLUSIONS
This paper proposes a practical approach for efficient

collision detection, object reconstruction for the rigid object
collision. The proposed approach enables us to simulate
complex non-convex objects (even for intertwined shapes) free
moving and colliding in 3D space in real time. As our
contribution, a realistic animation of rigid object collision can
be simulated via the RAPID collision detection algorithm and
the reconstruction algorithm. In additional, a practical data
structure for graphical and force data is introduced in this paper.
Using this data structure, a practical and efficient interface is

built between the algorithm and the 3D graphical modeling
data.

For future research, we plan to improve RAPID algorithm
for working with the deformable object collision detection. We
will also try to combine the approach with deformation analysis
such as spring-matrix elastic model [21] or thin plate
deformation analysis [22] with fast collision detection and
reconstruction algorithm combine with real data measurements.

REFERENCES
[1] Burdea,C.G., D.Gomez, N.Langrana, E.Roskos, and
P.Richard,"Virtual Reality Graphics Simulation with Force
Feedback" International Journal in Computer Simulation,
ABLEX Publishing, Vol. 5, pp.287-303. 1995

[2] C.Basdogan, C.H.Ho, and M.A.Srrinivasan, "A Ray-Based
Haptic Rendering Technique for Displaying Shape and Texture
of 3D Objects in Virtual Environments" Proceedings of the
Dynamic System And Control Division, DSC-Vol.61, ASME,
pp.77-84. 1997.

[3] Massie,T. and K.Salisbury, "The PHANToM Haptic
Interface: A Device for Probing Virtual Objects," ASME Winter
Annual Meeting, DSC-Vol.55-1, ASME, New York, pp.295-
300. 1994.

[4] S.Cotin, H.Delingette, "Real-time Surgery Simulation with
Haptic Feedback using Finite Elements" International
Conference on Robotics & Automation, Proceedings of the
1998 IEEE pp.3739-3744. 1998.

[5] A.Faraz and S.Payandeh, "Design and Analysis of Tunable
Springs in Haptic Interface of Endoscopic Graspers,"
Proceedings of the Dynamic System And Control Division,
DSC-Vol.61, ASME, pp.69-76. 1997.

[6] S. Gottschalk, M. Lin, and D. Manocha. "Obb-tree: A
hierarchical structure for rapid interference detection" Proc.. of
ACM Siggraph'96,pp.171-180, 1996.

[7] Josie. Wernecke, et al "The Open Inventor Mentor:
Programming Object-Oriented 3D Graphics with Open
Inventor, Release 12" Addison-Wesley Developers Press ISBN
0-201-62495-8. 1994.

[8] Keith, Rule. "3D Graphic File Formats: A Programmers
Reference" Addison-Wesley Developers Press,
ISBN 0-201-48835-3. 1996.

[9] M. Lin, and S. Gottschalk. "Collision detection between
geometric models: a survey" Proceedings. of IMA Conference
on Mathematics of Surfaces 1998.

[10] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. "A fast
procedure for computing the distance between objects in three-

6 Copyright © #### by ASME

dimensional space". IEEE J. Robotics and Automation, vol. 4
pp.193-203, 1988.

[11] D. Bara. "Curved surfaces and coherence for non-
penetrating rigid body simulation". ACM Computer Graphics,
24(4) pp.19-28, 1990.

[12] M.C. Lin and John F. Canny. "Efficient algorithms for
incremental distance computation". In IEEE Conference on
Robotics and Automation, pp.1008-1014, 1991.

[13] M.C. Lin. "Efficient Collision Detection for Animation and
Robotics". PhD thesis, Department of Electrical Engineering
and Computer Science, University of California, Berkeley,
December 1993.

[14] H.Samet. "Spatial Data Structures: Quadtrees, Octrees and
Other Hierarchical Methods." Addison Wesley, 1989.

[15] M.A.Ganter, B.P.Isarankura " Dynamic Collision Detection
Using Space Partitioning" In transactions of the ASME,
150/Vol.115, March 1993.

[16] G. Barequet, B. Chazelle, L. Guibas, J. Mitchell, and A.
Tal. "Box-tree: A hierarchical representation of surfaces in 3d."
In Proc. of Eurographics'96, 1996.

[17] C.M. Hofmann. "Geometric and Solid Modeling." Morgan
Kaufmann, San Mateo, California, 1989.

[18] J. Keyser, S. Krishnan, and D. Manocha. "Efficient and
accurate brep generation of low degree sculptured solids using
exact arithmetic." In ACM/SIGGRAPH Symposium on Solid
Modeling, pp.42-55, 1997.

[19] S. Cameron. "Approximation hierarchies and s-bounds".
In Proceedings. Symposium on Solid Modeling Foundations
and CAD/CAM Applications, pp.129-137, Austin, TX, 1991.

[20] S F.Frisken Gibson. "Beyond Volume Rendering:
Visualization, Haptic Exploration, and Physical Modeling of
Voxel-based Objets" Mitsubishi Electric Research
Laboratories, Cambridge Research Center, Technical Report
95-04.

[21] Ugur. Gudukbay, Bulent. Ozguc, Yilmaz. Tokad. "A
Spring Force Formulation For Elastically Deformable Models"
Computer And Graphics, Vol.21 No.3 pp.335-346, 1997.

[22] Hong Qin, D. Terzopoulos. "D-Nurbs: A Physics-Based
Framework for Geometric Design" Visualization and Computer
Graphics, Vol.2, No.1, pp.85-96, March 1996.

APPENDIX

PSEUDO-CODE FOR RECONSTRUCTION ALGORITHM

Initialize Vf[i], Vm[i], Lm[j], Lf[j]. Set velocity vector D for moving
object and initialize lm[i] and lf[j]. Initialize maximum distance
dmax.
// calculate dmax for the fixed object:
Pij =Intersection (Lf[j] , lm[i]) ;
If Pij inside Line segment Lf[j], keep the Pij ;
 Else Pij = NULL;
Vij = (Pij. - Vm[i]) when Pij = Null;
for (m=0; m ≤ i; m++) \{

for (n=0; n ≤ j; n++)
{ if dij = Vij • D ≥ 0.

{ if dij ≥ dmax {
{dmaxf = Vij • D ;

Add Pij I to contact array;
Set reversingVector Vij r;

}
}

 }
}
// calculate dmax for the moving object (dmaxm) similarly
dmax =max(dmaxf , dmaxm)

