
Abstract
In this paper we propose an approach - we call it a “Blind
Man’s” approach - to shape description in which tactile
information is sensed from the fingertips of a dexterous
hand. Using this contact information, we investigate two
complementary methods for curvature estimation. The first
method is based on rolling one finger to estimate curvature
at a point on the surface. We use Montana’s equations for
estimating curvature at a point using simulations and ana-
lyze the sensitivity of the approach to noise. The second
method uses multiple fingers to slide along a surface while
sensing contact points and surface normals. We present a
method to extract the shape properties of a patch obtained
by fitting a B-spline surface to this multi-fingered sweep
across the surface of the object. The method enables us to
extract higher level shape information based on the curva-
ture properties of patch.

1  Introduction
Unlike vision, haptic sensing can extract information
about many attributes of an object: shape, mass, volume,
rigidity, texture, and temperature to name a few. When the
hands manipulate an object they often occlude it from
view. This would be a problem if vision was the only sens-
ing modality.
We adopt a “Blind Man’s” approach in which tactile infor-
mation from the tips of the fingers is the only sensing
modality. This enables us to sense the contact point, and
surface normal because the geometry of the probe and the
configuration parameters of the manipulator are known.
Human’s sense of touch is rich in the amount of informa-
tion it can acquire simultaneously. However, humans use
specialized Exploratory Procedures (EPs) to extract spe-
cific information about an object as described by Klatzky
and Lederman [8]. Their investigations also found that
shape was the most highly diagnostic property for recogni-
tion. They describe a Contour Following EP which
humans use to determine the exact and local shape proper-
ties of an object.
We investigate two EPs for shape perception using finger-
tip tactile sensors: one based on rolling and the other based
on gliding on the surface of the unknown object. Both of
these EPs were discussed by Hemami, Bay, and Goddard
in [7], however their focus was on the sensory require-
ments for performing these two EPs. Our methodology for
obtaining more global shape information has been moti-
vated by researchers in computer vision [4], [5], [10], [12],
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[13] who have investigated aspects of shape description
and modelling based on curvature properties.
Using these two EPs, local and more global shape proper-
ties of the object can be explored. Global data refers to the
shape properties which are common to a surface patch or
to regions of the patch. We assume that a dexterous robot
hand with semi-spherical fingertip tactile sensors is used
to probe an object. The curvature at a point on the surface
can be estimated from rolling a finger tip on the surface of
the object. More global shape properties a patch on a sur-
face can be obtained by sweeping multiple fingers of the
dexterous hand across the surface, fitting a patch to the
locus of contact points, and then analyzing the curvature
properties of the patch. The information gathered about
the shape of the object could be used to orient the patch,
guide further exploratory actions, or be used toward auton-
omous shape description or object recognition.
The scope of this paper is twofold: to investigate the feasi-
bility of Montana’s [9] approach for estimating local cur-
vature using EP1, and to propose a method using EP2 to
determine higher level shape properties.
Montana‘s presentation of estimating curvature from roll-
ing did not include in its scope, a performance analysis of
his method. In this paper we investigate the sensitivity of
the approach to resolution and measurement error.
Allen and Michelman [1] have investigated the usage of
EPs to find global shape and recognize surfaces of revolu-
tion from their contours. In this research, we are investi-
gating a way to analyze more general curved surfaces and
extract higher level shape information. Fearing [6] has
also investigated recovering shape from extremely sparse
tactile data. He attempted to recover a much restricted
class of shape models from convex Linear Straight Homo-
geneous Generalized Cylinders (LSHGC) from three fin-
ger contacts. Using the position, surface normal, and
curvature information at the contacts, Fearing attempted to
solve the constraint equations of the LSHGC.
Unlike range images, tactile data is generally sparse and
noisy. Curvature estimates at the contact points cannot be
readily obtained based on the difference of adjacent
points. We propose using multiple fingers to track a sur-
face and then fitting a smoothing spline [3] to it. The con-
tact normal information is also incorporated to assist in the
approximation of the shape of the surface.
The structure of the paper is as follows. Section 2 provides
an overview of the two EPs described earlier. In section 3
the equations used to estimate the local curvature and the



curvature at points on the B-spline surface are presented.
Section 4 describes the simulation studies for curvature
estimation from rolling and curvature based shape descrip-
tion of the B-spline surfaces. Conclusions are provided in
Section 5.

2  Overview of EP1 and EP2
The rolling EP (EP1), and surface tracking EP (EP2) form
the basis for curvature based shape estimation of an object
using tactile sensing. EP1 estimates local curvature at a
point on the surface, and EP2 explores a region of the sur-
face whose shape can then be analyzed from its curvature
properties. The following section describes these two EPs
in greater detail.

2.1  Estimating Local Curvature (EP1)
The surface curvature at a point can be estimated from
small rolling motions (we call them probes) in the neigh-
borhood of the contact point. Montana derived the kine-
matics for two rigid bodies in rolling contact and
described a method to determine the surface curvature at a
point. We have verified this approach in simulation and
analyzed its sensitivity to measurement error and sensor
resolution.
Using this approach, it is required to rotate at a known
angular velocity around a fixed axis in the instantaneous
contact frame. The contact frame will be determined by
the point of contact, the surface normal, and the initial
contact configuration. The surface normal can be inferred
from the point of contact when the geometry of the probe
is known. The accuracy of the calculation of the contact
frame will be determined by the resolution of the tactile
sensor, the robot joint encoders and the calibration of the
robot.

Fig. 1.  Input and Output of Curvature Estimator

The surface is parameterized byu andv based on its gauss
map. The curvature at a point on the surface is estimated
from eight probes: two in each of theu, -u, v, and -v direc-
tions.  and  are the approximations of the sums
of the instantaneous rotations about the x-axis and y-axis
of the instantaneous contact frames for a particular probe.

 is the change of the contact point on the surface of the
probe. The eight samples of , , and  are used
to determine the minimum error solution of the curvature
form. The equation governing the evolution of the point of
contact requires the angular velocity (ω) to be known.
This equation is presented in section 3.1. Figure 1 shows
the inputs and outputs of the curvature estimation proce-
dure.

K2 ku kv,⇒
Curvature
 Estimator

∆θyk
ωj∆tj

j
∑=

∆p1k

∆θx ∆θy

∆p1
∆θx ∆θy ∆p1

The returned valuesku andkv are the normal curvatures in
theu andv directions.
We define  as the length of the curve traced on the sur-
face of the probe for a particular rolling motion. The evo-
lution of the contact point on the probe as it rolls on the
surface of the object is used to determine the curvature in
the direction of motion. Probes in two independent direc-
tions are sufficient to determine the curvature although if
more probes are performed a least squares fit can be calcu-
lated for greater confidence. This approach was tested in
simulation and was able to recover the correct curvature
form of the object being probed.
The normal curvature in a particular tangent direction is
the reciprocal of the radius of curvature in that direction.
We define the relative curvature ratio (RCR) as the normal
curvature of the object at the point of contact in a particu-
lar tangent direction divided by the normal curvature of
the probe.

2.2  Estimating Shape Over a Region (EP2)
Sweeping multifinger probes are used to extract patches
from the surface of the object in order to approximate a
large portion of the surface using a small number of data
points. A B-spline surface can be fit to the locus of points
and the shape properties of the patch can be determined. A
B-spline surface was chosen for its compact representation
and because the B-spline representation of the scalar fields
of the derivatives is known once the knots for the approxi-
mating surface have been calculated. This enables the
Gaussian and mean curvatures to be easily calculated at a
given point on the fitted surface.
In order to hypothesize the shape of the probed patch, the
surface curvature must be determined. The shape of the
patch is invariant to scale and orientation. Shape proper-
ties will be determined from the estimated Gaussian and
mean curvatures over the patch. The signs of Gaussian and
mean curvatures (Kg andKa) yield a set of eight surface
primitives. These primitives are: peak, pit, ridge, valley,
flat, minimal, saddle ridge, and saddle valley surfaces
[12]. Distinguishing all eight surface primitives requires
near zero values to be determined for the Gaussian and
mean curvatures using thresholds for zero values. Alterna-
tively, concave, convex and saddle regions can be deter-
mined without the need for thresholds [5].

3  Mathematical Background
The equations in the next two sections were initially pre-
sented in [9]. The basic kinematic equations of motion are
provided here as well as the equations for estimating the
curvature form of the surface. Section 3.2 describes the
equations used to determine the curvature at a point on the
fitted a surface.

3.1  Simulating Rolling Motion
The following is the equation for the kinematics of a rigid
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probe and rigid object in rolling contact and is based on
the gauss maps of both objects. This equation was used to
simulate the motion of the rolling fingertip probe on the
surface of the unknown object. The contact point on the
probe evolves according to the following differential equa-
tion of motion:

(1)

Where:

 is the known curvature form of the probe

 is the curvature form of the object in the probe’s
contact frame

M1 is the metric of the probe

ω = [ωx , ωy] is the vector containing the angular
velocities of the probe’s contact frame with respect to
the object’s contact frame around thex and y axis

υx andυy are the linear velocities of the probe’s con-
tact frame with respect to the object’s contact frame in
thex and y direction

p1 is the contact point [u1, v1] on the probe

3.2  Curvature Estimation from Rolling Probes
For rolling contact (i.e. no slipping),υx = υy = υz = 0 in the
above equation of motion. Determining the curvature of
the unknown object requires solving the above equation
for the unknown curvature form . Since the inverse of
the relative curvature form is symmetric:

(2)

These unknown values can be solved using the equation:

(3)

where

. (4)

The entries  and  are thenth approximation of
the sums of the instantaneous rotations about the x-axis
and y-axis of the instantaneous contact frames for a partic-
ular probe. Once the values ofk1, k2, andk3 are solved,
equation (2) can be used to solve for . The diagonal ele-
ments of  are the normal curvatures in theu andv direc-
tions.
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3.3  Gaussian and Mean Curvature
Consider a surfaceQ(u,v). The curvature at a point is char-
acterized by the principle curvature directions and the
magnitudes of curvature in each direction. If the direc-
tional information is not required, the Gaussian and mean
curvature can be easily calculated using the following
equations. A more complete description can be found in
[2], [4], and [5].
Define the variables E, F, G, and e, f, g as:

(5)

where  is the unit surface normal. The Gaussian and
mean curvature are then respectively:

(6)

4  Simulation Studies
The first simulation uses the equations of section 3.2 to
determine the surface curvature of an unknown object at a
point using EP1. Two different test objects are used and
the sensitivity of the approach is analyzed.
The second simulation study investigates the ability to
extract shape information using EP2.

4.1  Curvature Estimation from Rolling Probes
There are three sources of error in the estimation proce-
dure: measuring the angular velocity, the resolution of the
contact sensor, and the length of .
Maintaining rolling contact will require regulating forces
in the instantaneous normal and tangent direction to avoid
slip while regulating the angular velocity (ω). It cannot be
exactly determined how the object’s contact frame twists
during the course of the rolling probe. It is therefore likely
that errors will occur in the measurement ofω as it must
be measured instantaneously with respect to the moving
contact frame of the object.
The resolution of the contact sensor affects the estimated
change in contact position which will also affect calcula-
tion of the contact normal and the estimate of the curva-
ture form.
If the point of contact travels far away from the point of
interest (long ), then the curvature could vary signifi-
cantly over this interval.

4.1.1 Results for Sphere
The sensitivity of the approach was analyzed by adding
noise from a uniform error distribution whose maximum
was a specified percentage of the actual angular velocity.

E
u∂

∂Q
u∂

∂Q•=

F
u∂

∂Q
v∂

∂Q•=

G
v∂

∂Q
v∂

∂Q•=

e
u2

2

∂
∂ Q

n•=

f
u v∂

2

∂
∂ Q

n•=

g
v2

2

∂
∂ Q

n•=

n

Kg
eg f2−( )

EG F2−( )
= Ka

Eg 2Ff− Ge+( )

2 EG F2−( )
=

∆s

∆s



The radius of the probe (R1) is chosen to be 1 unit.
Spheres of radius 500, 50, 5, 1, and 0.5 units (R2) were
probed in simulation to analyze the sensitivity trend. The
upper limits for the magnitude for the added noise were:
0.1, 1.0, 5.0, and 10.0% of the magnitude of the angular
velocity.
The results in figure 2 show the trend for error due to inac-
curacy inω. The values forω and the probe duration used
for the graph were 0.1 rad/sec and 1 sec respectively. As
the RCR decreases the estimated curvature is more sensi-
tive to error in measured angular velocity. It is easy to see
from this graph that when the radius of the object is about
50 times that of the probe or higher, the estimate error
increases dramatically with measurement error.

Fig. 2.  Effect of Angular Velocity Error

The curvature estimates were not affected by the length of
. This was expected for a sphere (or plane) because the

constant curvature.

4.1.2 Effects of Changing
Increasing  can cause errors in surfaces with non-con-
stant curvature. For this reason a paraboloid of revolution
was investigated. The paraboloid was formed by rotating
the curve  about the z axis. Paraboloids with
different values for parameterC: 8, 5, 1, 0.5, 0.1, and 0.01
units were probed. These values were chosen because they
yield local radii of curvature between 500 and 2.5 units.
The same noise values as the above study were used. It
was found that the probing motions had to have a very
small  to accurately estimate the curvature at the point
of interest. The curvature estimate grows rapidly inaccu-
rate as  increases. The curvature for the paraboloid
could not be accurately estimated for C equal to 5 for a
reasonable  even without error inω. The approach is
accurate to about 15% error for C values between 1 and
0.01.

4.1.3 Contact Resolution
The above simulations assumed an infinitely accurate con-
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tact sensor. This enabled us to determine the error caused
by the inaccuracy ofω. The following simulations deter-
mine the error caused by the finite resolution of the sensor.
The sensor is assumed to be composed of tiny little sensor
pads. The sensor pad closest to the point of contact is acti-
vated. A probe with a 1 cm radius (R1) was tested in simu-
lation with the following resolutions: 0.01, 0.1, 0.5, and
1.0 mm. The object being probed was a sphere for the sim-
ulation studies in this section.

Fig. 3.  Effect of Sensor Resolution

The general error trend for the different sensor accuracies
is shown in figure 3. The estimation becomes less accurate
as the sensor resolution decreases. It was also found that
the approach becomes more sensitive to sensor resolution
as the RCR decreases. In many of the simulations the esti-
mated curvature was zero for R2 values above 5 and sen-
sor resolutions coarser than 0.1 mm.
The results for many angular velocities and probing dura-
tions were simulated to investigate the combined effect of

 and the resolution of the sensor. It was found that the
accuracy of the estimate improves as  increases. How-
ever, the object being probed has constant curvature it is
not affected by the length of . For objects of non-con-
stant curvature, a satisfactory  will have to be deter-
mined which improves the estimate but is not overly
affected by the changing curvature around the point of
interest.
The resolution error would be similar using an insensitive
probe and force/moment wrist sensor as in Tsujimura and
Yabuta [11]. Using a semi-spherical probe to determine
contact position they found their measurement error to
vary 2.7 mm on average. From this they determined their
tactile sensor system to be accurate to within 2.7 percent
of the probe diameter. This would translate to an accuracy
of 0.54 mm in our simulation study.
A reasonable estimate for spheres of radius 5 to 0.2 cm
can be achieved for an accuracy of 0.5 mm using a rolling
duration of 1 second and an angular velocity of about 0.5
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rad/sec assuming no errors inω.

4.1.4 Summary of Results for EP1
Three trends were seen in the simulation studies above:
A) The curvature estimates become less accurate for a

given error in the angular velocity measure, and for a
given sensor resolution as the RCR decreases.
Equation (1) was simplified by using a sphere of radius
R2 for the object in order to determine the source of the
sensitivity to the curvature of the object.

(7)

It can be seen from the simplified equation (7), as the
radius of the second object increases the effect of the
errors (ex andey) will also increase.

B) As  increases, the accuracy of the estimated curva-
ture decreases for surfaces of non-constant curvature.

C)  will have to increase to compensate for the resolu-
tion of the sensor in order to get an accurate estimate
of the curvature.

The result is that this method will not be able to accurately
measure the curvature of planar or near planar surfaces.
This is true even for small errors in the measurement of
angular velocity, or minute errors in the precision of the
sensor. However, the method could be used accurately to
verify edges and regions of high curvature.
The error due to sensor resolution is the limiting factor.
Given the accuracy of the current sensor technology a rel-
atively long  would be required to accurately measure
surfaces of moderate curvature which would reduce the
accuracy of the curvature estimate.

4.2  Curvature Estimation from a Multifinger Probe
A three fingered probe of the surface is simulated where
the hand tracks a 3 x 3 units2 patch of the surface. The
interfinger distance (IFD) is 1 unit and the fingers are con-
strained to move in parallel planes. Ten points per finger
are recorded as the fingers trace over the patch.

Fig. 4.  Three Fingers Tracking a Surface

Several different surfaces were used to test the accuracy of
the approximation of Gaussian and mean curvature, and
shape. A sphere, cylinder, rotated cylinder, and parabolic
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saddle were tested. The rotated cylinder was used to test
the effect of probing in directions other than along the
lines of curvature. Tensor product effects can occur if the
surface parameters are not aligned with the lines of curva-
ture [14]. The saddle surface tests the accuracy of curva-
ture based segmentation for a patch composed of several
different shape regions.
Our algorithm for fitting the surface is as follows. First, a
bi-quadric least squares tensor product surface is fit to the
locus of contact points using a smoothing value of s=1000,
and a weighting factor of 100 for all points. This acts as a
low pass filter for the noise in the position of the contacts.
Next, the values of the first surface fit for the initial data
points are used for a second surface fit. Surface normal
information is incorporated into the surface fitting proce-
dure by inserting points on the tangent line perpendicular
to the direction of motion of the hand while probing. The
new points are added 0.05 units to each side of the filtered
data points on the tangent line. Finally, another smoothing
spline is fit using the new set of data points. The FITPACK
software package created by Dierckx [3], was used to fit
the smoothing spline and calculate the derivative values at
points on the B-spline surface.

4.3  Results for EP2
The second iteration of fitting a smoothing spline dramati-
cally increases the accuracy of the estimation. The shape
classifications for points on the surface are well estimated
for noise values of 5% of the IFD or less. Zero values of
the Gaussian curvature were found using a threshold of
0.005 units. Both the Gaussian and mean curvatures were
reasonably well estimated. The patches could be further
analyzed to determine the directions of principle curvature
which could be used to orient the patch.

Fig. 5.  Saddle Surface Showing Shape Regions

For errors of 10% of the IFD, only the sphere was accu-
rately classified by shape. The mean curvatures were well
approximated in the other surfaces, but there was a
increase in error for the Gaussian curvatures which caused
incorrect classifications of shape.
A segmentation of the saddle surface was performed based
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on the eight surface primitives described in section 2.2.
The segmentation was mapped onto the fit B-spline sur-
face and is shown in figure 5. A 30 x 30 array of points
was evaluated on the surface and the shape primitives cal-
culated. For noise values of 5% of the IFD (as in figure 5)
the shape based segmentation had a near perfect corre-
spondence with the actual surface. However, it was found
that this type of segmentation is sensitive to errors in the
Gaussian curvature which can be incorrectly categorized
when the noise level is high.
Some tensor product effects were found while fitting a sur-
face for the cylinders and the saddle using noisy data.

5  Conclusions and Future Work
We investigated the computational feasibility of using
Montana’s method for EP1 to determine surface curvature.
Our investigation of the approach exposed a sensitivity to
error in angular velocity, and the resolution of the sensor
for surfaces with low curvature.
Regions of high curvature such as edges may be sensed
using EP1, however the actual radius may not be measur-
able given the sensor resolution. This will be the case if
the change in the point of contact is less than the sensor
resolution for a particular probing motion.
Finite sensor resolution requires a larger region on the sur-
face to be probed which may cause errors in estimation for
objects with changing curvature over the probed region.
The method will be unable to accurately estimate surfaces
whose curvature is much smaller than the curvature of the
probe. The measurement accuracy, resolution of the sen-
sor, and shape of the object will determine the actual upper
limit. The best estimates will be for regions where the cur-
vature is close to or greater than that of the probe.
We presented an approach using EP2 to determine the
shape properties of an approximating surface from its
Gaussian and mean curvatures. The surface patch was
approximated by a smoothing spline surface which incor-
porated the contact normal information. The approach was
found to work extremely well for data points with errors of
5% of the IFD or less. The patches could be oriented based
on the shape based segmentation of the patch and further
analysis of the directions of the principal curvatures.
For errors of 10% of the IFD or more, the method was
much less reliable although the mean curvature was still
well approximated. More research needs to be done to
determine how to better utilize the normal information to
improve the shape estimates in the presence of noise.
Since the initial submission of this paper we have devel-
oped an elegant method of incorporating surface normals
into the surface fitting algorithm [14].
Experiments using a robot and a force/moment wrist sen-
sor will be performed to verify the feasibility of EP1, EP2,
and our approach to curvature analysis.
Surface description and recognition from curvature based

segmentation will also be investigated in the future. This
will include the use of the shape primitives for orienting
the patch, and for building higher level shape primitives.
The intention is to find better higher level, and qualitative
model matching parameters based on the curvature prop-
erties of the surface.
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