
Abstract

In this paper we propose an approach for investigating the
shape properties of objects with curved surfaces using tac-
tile sensing by a dexterous robot hand. Our proposed
Exploratory Procedure (EP) uses multiple fingers to slide
along a surface while sensing contact points and surface
normals. Our approach incorporates the surface normal
information into a B-spline surface fit of the data gathered
from this EP. This additional surface normal information
was found to improve the approximation of the surface.
The shape properties of this B-spline surface are analyzed
to recognize the shape of the object. A confidence estimate
of the estimated shape is also calculated.

1  Introduction

Humans rely heavily on their sense of touch when manip-
ulating objects and gauging depth. Operators have discov-
ered many problems controlling robotic manipulations
using only a sense of vision. They have difficulty gauging
depth without multiple camera angles which are not
always available. Another problem is that small objects
are occluded by the manipulator during manipulation tasks
which makes it difficult to find the desired features of the
object to grasp, or to orient the object.

Vision systems are also not practical in some hazardous
environments. Using tactile sensing, a robot could orient
itself by finding specific objects in the room. Some of
these objects may be composed of curved surfaces and a
method for recognizing them is required.

In order to examine the extent to which tactile sensing
alone can be used to describe an object, a “Blind Man’s”
approach is adopted in which tactile information from the
tips of the fingers is the only sensing modality. This
enables us to sense the contact point, and estimate the sur-
face normal since the geometry of the fingertip and the
configuration parameters of the manipulator are known.

Humans use specialized Exploratory Procedures (EPs) to
extract specific information about an object as described
by Klatzky and Lederman [10]. Their investigations also
found that shape was the most highly diagnostic property
for recognition. They describe a Contour Following EP
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which humans use to determine the exact and local shape
properties of an object.

We investigate an EP for shape perception using fingertip
tactile sensors based on gliding on the surface of the
unknown object. This EP was described previously in [3]
as EP2 and will hereafter be referred to as EP2. Hemami,
Bay, and Goddard proposed a similar EP in [8], however
their focus was on the sensory requirements for perform-
ing the EP. Our methodology for obtaining shape informa-
tion has been motivated by research in computer vision:
[5], [6], [9], [12], and [13], who have investigated aspects
of shape description and modelling based on curvature
properties.

Tactile data is generally sparse and noisy. The data
obtained from multiple fingers tracking a surface can be fit
by a B-spline surface which acts like a low pass filter of
the data. In our approach, the contact normal information
is incorporated in the surface fitting procedure to assist in
the approximation of the shape of the surface. A weighing
matrix enables the surface fit to preferentially approximate
the tangents or position data at each point.The primary
motivation for incorporating the surface normal informa-
tion is to provide additional constraints for the surface fit
in the finger-to-finger direction.

2  Overview

We propose a method to investigate the shape properties of
an object using EP2. We assume that a dexterous robot
hand with semi-spherical fingertip tactile sensors is used
to probe an object. Shape properties for a surface patch
can be analyzed from data collected by sweeping multiple
fingers of the dexterous hand across a surface.

Fig. 1.  Three fingers tracking a rotated cylinder (EP2)
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Figure 1 shows EP2 being performed on a cylinder rotated
about the z-axis. The x and y axes are determined from the
finger-to-finger, and sweep directions respectively.

The overall algorithm for analyzing a surface using EP2 is
as follows:

1. Track the surface using three fingers of a dexterous
hand and record the information required to determine
the contact positions and surface normals.

2. Transform the data to a desired coordinate frame and
scale for performing the surface fit.

3. Fit a B-spline surface to the data points using the sur-
face normal information using either a tangent or
position weighed fit.

4. Calculate the shape parameters on a discretized grid
over the B-spline surface and calculate the mean and
standard deviations of these parameters

5. Determine the best approximating shape based on the
mean and standard deviation of the shape parameters.

The shape properties at a point are curvature based and are
invariant to scale and orientation. Shape properties will be
determined from the estimated principal curvatures over
the patch. The information gathered about the shape of the
object can be used to orient the patch, guide further
exploratory actions, or be used toward shape description
or object recognition.

Shape analysis is performed using shape parameters (S, R)
defined by Koenderink [9] instead of HK sign maps as in
[13]. The S parameter provides a qualitative estimate of
the object’s shape and theR parameter gives a quantitative
estimate of its curvedness which is related to its size. We
can calculate a confidence estimate of the shape parameter
values over a grid on the B-spline surface.

There has not been much research into shape description
of curved surfaces from tactile sensing. Allen and Michel-
man [1] have investigated the usage of EPs to recognize
surfaces of revolution from their contours. In this research,
we are investigating a way to analyze more general curved
surfaces and extract higher level shape information. Fear-
ing [7] has also investigated recovering shape from
extremely sparse tactile data. He attempted to recover a
much restricted class of shape models from convex Linear
Straight Homogeneous Generalized Cylinders (LSHGC)
from three finger contacts. Using the position, surface nor-
mal, and curvature information at the contacts, Fearing
attempted to solve the constraint equations of the LSHGC
with limited success.

The structure of the paper is as follows. Section 3 provides
background information. Section 4 describes how the sur-
face normal information is integrated into the surface fit-
ting algorithm. The simulation results are presented in

section 5 and the results of the actual experiments are
shown in section 6. A discussion of EP2 and the conclu-
sions of our experiments are presented in section 7.

3  Background

This section provides a brief overview of B-spline curves,
the calculation of curvature at a point, and qualitative
shape measures.

3.1  B-spline Curves and Surfaces

Detailed descriptions of B-splines, B-spline surfaces and
surface fitting can be found in [4] and [11].

The equation for ankth order B-spline withn basis func-
tions is shown in equation 1. For a p segment spline, the
number of basis functions isk+p-1.

(1)

whereNi, k(x) are the values of the B-spline basis functions
at x for the current set of knot vectors, and ci are thecon-
trol points which define the curve. The curve may be
translated or rotated by transforming the control points.
This is one of the primary benefits of the B-spline repre-
sentation of a surface.

Thex parameter is defined on the interval [xmin, xmax]. The
spline is only defined in this interval. If a single,kth order
spline segment was used, the knot vector would be com-
posed ofk values ofxmin followed byk values ofxmax. The
spacing and number of the knots in the knot vector deter-
mine the basis functions over the interval.

Fig. 2.  Cubic B-spline curve and control points

Figure 2 shows a cubic B-spline with 7 control points, and
uniform knot spacing. The knot vector for the curve is

.

The linear system of equations for the B-spline curve is:
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whereE is theobservation matrix for the vector of x val-
ues of the data points,C is the matrix of control points,
andY is the matrix of x and y values of the B-spline for the
corresponding x values used in theE matrix.

The standard least squares formulation problem forg data
points (xr, yr), requires minimization of the error (δ)
according to the following equation:

(3)

wherewr is the weighing factor for therth data point.

The weighted least squares solution of the control points
can then be obtained by:

(4)

whereW is the matrix of weighting factors.

This formulation can be extended for bivariate B-spline
surfaces. The equation for ankth order bivariate B-spline
with n basis functions inx andm basis functions iny is:

(5)

The basis function in x and y are denoted byNi,k(x) and
Mj,k(y) respectively. The basis splines in the x direction are
dependant only on the x coordinate of the data points, like-
wise for the basis splines for the y direction. Therefore, the
observation matrix for one bivariate patch can be written
as the Kronecker product of the basis function in x and y:

(6)

where

(7)

The least squares fit for the surface can be solved by:

(8)

where the Z matrix contains the x, y andz coordinates of
the sample points. TheC matrix is the matrix of control
points which define the B-spline surface.
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3.2  Gaussian, Mean, and Principal Curvatures

The curvature at a point on a surface is characterized by its
principle curvatures (Kmin andKmax). The Gaussian cur-
vature is the product of the principal curvatures. The mean
curvature is the average of the principal curvatures. A
more complete description can be found in [5], and [6].
Consider a surfaceQ(u,v).

Define the variablesE, F, G, ande, f, g as:

(9)

where  is the unit surface normal. The Gaussian and
mean curvature are then respectively:

(10)

The minimum and maximum curvatures can be deter-
mined from the Gaussian and mean curvatures by:

(11)

3.3  Qualitative Shape Measures

Regardless of the size of a sphere, all spheres have the
same shape. “Shape” is a quality, “size” is the quantity.
Koenderink [14]* proposes a representation of shape
using two parameters:R and S. The definitions of these
parameters are as follows.

(12)

The R parameter is quantitative in nature and represents
the curvedness of the patch.R ranges from zero for flat
surfaces to infinity at a perfectly sharp edge. TheS param-
eter is qualitative in nature and represents the shape of the
patch. Figure 3 shows how the S parameter maps shapes
into the interval [1,1].

Using this mapping, it is possible to calculate the mean
and standard deviation of the values ofS andR for a grid
of points on a surface. The standard deviations ofS andR
can be used as a confidence measure of their values.
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Fig. 3.  Koenderink’s shape parameter [9]

4  Using Surface Normal Information

When only the contact information from three fingers is
used we are limited to a quadratic fit of the data in the fin-
ger-to-finger direction. Any position error in the measure-
ments of the contact positions will be fit. Using the tangent
information, six equations are available for solving for the
B-spline in the finger-to-finger direction. The tangent
information requires that the least squares fit is also a least
squares fit for the derivative information as well. This is
important when performing a curvature based shape anal-
ysis.

4.1  Converting Surface Normals to Tangents

We formulate the surface fitting problem such that the
derivatives of a B-spline use the same B-spline coeffi-
cients as the original spline. Using this approach the tan-
gent information is easily incorporated into the least
squares solution.

First the surface normals are converted into derivatives in
the x and y directions using the following equations.

(13)

4.2  Surface fitting Using Tangents

The least squares surface fitting problem including the tan-
gent information is then that of minimizing the augmented
equation for g data points:

(14)

wheretx andty are the tangents in x and y, andw1, w2, and
w3 are the weights for the data points, tangents inx, and
tangents in y respectively.

The tangents in the x and y directions can be obtained from
the surface normals at the contacts. The observation matri-
ces of basis functions in x and y are denoted byN andM
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respectively. Observation matrices for the derivatives of
the basis splines in x and y are denoted by  and  and
are easily calculated. The composition of the observation
matrix for the single bivariate patch including the tangent
information is:

(15)

The least squares fit for the surface can be solved by:

(16)

where the Z matrix contains the x, y andz coordinates of
the sample points. TheC matrix is the matrix of control
points which define the B-spline surface. The weighing
matrix W, enables the surface fit to preferentially approxi-
mate the position or the tangent at each point.

5  Simulation Studies

EP2 was performed in simulation on cylindrical, spherical
and planar objects. The mean and standard deviation of
Koenderink’s shape parameters (S, R) were calculated
over a 4 x 4 grid in the surface. A small grid was used to
minimize computation time. The shape of the sensed patch
could be determined by comparing itsS, andR parameters
to the known values for the objects. This method assumes
that the shape parameter value for the sensed region of the
object is constant.

Simulations were performed to investigate the effect of the
order of the fit and the radius of the cylinder, or sphere on
the accuracy of the estimate ofS. The range of radii used
in the experiments was between 5.7 and 1000 units. Simu-
lations ware also performed to analyze the effect of rotat-
ing the object on the accuracy of the shape analysis.

5.1  Cylinder

Simulations were performed to analyze the effect of rotat-
ing the cylinder on the accuracy of the shape analysis.
Rotations of 0, 10, 30, 45, 60, 80, and 90 degrees were
used and cylinders of radius 6, 10 and 20 were simulated.
The root mean squared (RMS) error of the estimation ofS
for each rotation of each cylinder is shown in figure 4.

Fig. 4.  RMS error inS for rotations of 3 cylinders
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The error in the estimation ofS is highest for a rotation of
45 degrees and minimal for rotations of 0 and 90 degrees.
In the latter case, the B-spline parameter directions are
aligned with the principal direction of curvature. In the
former case the B-spline parameter directions are at 45
degrees to the principal directions of curvature of the cyl-
inder.

Fig. 5. S values and standard deviations ofS for cylinders
of various radii

In order to obtain the worst case fit, the cylinders were
rotated 45 degrees for the next experiment, based on the
results of the previous simulation. EP2 simulations were
performed for cylinders with radii between 5.7 and 1000
units. Figure 5 shows the results of the estimated values of
S. The first group show the estimated values ofS for tan-
gent weighted fits, the second are for the position weighted
fits. The results for the biquadratic and biquartic surface
fits are shown. The expected value ofS for a convex cylin-
der is 0.5 and is indicated by the dotted line.

Accurate estimates ofS were obtained for radii between 6
and 300 units. The tangent weighed fit was more accurate
and had a smaller standard deviation for the large radii
than the position weighed fit. This is likely a result of ana-
lyzing such a coarse grid of the surface.

5.2  Sphere

Simulations were also performed for the spheres of the
same radii, for tangent and position weighed fits, and for
biquadratic, bicubic, and biquartic B-spline surface fits.
The expected value ofS for a sphere is 1.0. The results for
the biquadratic and biquartic surface fits are shown in fig-
ure 6.

As the order of the bivariate B-spline increases, the accu-
racy of the estimate ofSdecreases for spheres with a large
radius. The tangent weighed fit is more accurate than the
position weighed fit for spheres with a large radius.

Tangent Fit Position Fit
0

0.2

0.4

M
ea

n 
S

Convex Cylinder 

Tangent Fit Position Fit
0

0.2

0.4

S
T

D
 o

f S

Tangent Fit Position Fit
0

0.2

0.4

M
ea

n 
S

Convex Cylinder 

Tangent Fit Position Fit
0

0.2

0.4

S
T

D
 o

f S
Biquadratic Fit Biquartic Fit

Fig. 6. S values and standard deviations ofS for spheres of
various radii

This surface fitting approach could not successfully clas-
sify the sphere of radius 5.7, using either position or tan-
gent fitting and a bivariate surface of order 5 (quartic) or
less. The best estimates ofS for spheres of large radius
were obtained with a biquadratic surface fit.

5.3  Planes

Three different plane equations were tracked using EP2.
The mean and variance ofR over the patch was analyzed,
and all of the planes were successfully classified. The stan-
dard deviation ofR was negligible.

5.4  Summary of Simulation Results

Several simulations were performed to analyze the feasi-
bility of using EP2 to obtain information about the shape
of a surface and to recognize simple shape primitives.

The accuracy of the estimate ofS was affected by:

• The order of the approximation surface

• The angle between the directions of principal curvature
of the surface and the x and y directions of the B-spline
surface (maximum at 45 degrees)

• The radius of curvature of the object

• Whether the approximating surface was tangent
weighted or position weighted

Accurate estimates ofS can be obtained for spheres, and
convex and concave cylinders over a range of radii. Planar
surfaces can also be easily recognized.

The standard deviation ofSwas quite high when the esti-
mate ofS was incorrect and was a good indication that the
estimate was incorrect.

6  Experiments

Experiments were performed to test the effect of sensor
noise on our approach for investigating shape. In order to
obtain the data for three fingers of a dexterous robot hand
performing EP2, a single probe made three passes of each
surface. The probe has a circular end to simplify the calcu-
lation of the contact position and surface normal, and is
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mounted on a force/moment sensor. This sensor is
attached to the 3 DOF robot as shown in figure 7. A dis-
crete sampling of the surface was performed by the robot
instead of tracking across the surface in order to simplify
the control aspects of EP2.

Six points along the surface were probed with each finger.
At each point, two data samples were taken to verify the
integrity of the data. Therefore, a total of 36 data points
were acquired for each surface. The joint angles of the
robot and the x and y forces measured at the force sensor
are taken for each data point. A sample is taken when the
force sensor exceeds a desired threshold.

Fig. 7.  Freddy performing EP2 experiment

An 8 x 8 grid of points on the surface was analyzed to
determine the mean values ofS andR and their standard
deviations.

6.1  Planar Surface

Figure 8 shows the biquadratic surface fit of the data and
the control points of the surface.

Fig. 8.  Biquadratic fit of planar surface with its control
point mesh shown

The results of the calculation of the mean and standard
deviation ofS andR for biquadratic, position and tangent
weighed fits are shown in table 1. The expected value ofR
for a plane is zero. The mean value of R calculated from
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the surface was found to be very small, although signifi-
cantly higher than for the simulation data. However, the
standard deviation (S.D.) ofR was very small which
means that the surface is uniform in its curvedness. The
standard deviation of theS parameter is fairly high
because the principal curvatures are nearly zero. If theR
parameter were exactly zero (i.e. the principal curvatures
were exactly zero) theS parameter would be undefined.

It was found that, the noise in the data is best suppressed
by a biquadratic fit. The position weighed fits had a similar
error in the approximation ofS. The approximations ofS
using higher order surfaces were much less accurate and
had higher standard deviations.

6.2  Convex Cylindrical Surface

A convex cylindrical surface of radius 6.6 cm was placed
in the workspace to be probed. The data was gathered as it
was for the planar surface.

Figure 9 shows the surface fit of the data and the control
points of the surface.

Fig. 9.  Biquadratic fit of convex cylindrical surface with
its control point mesh shown

The results of the mean and standard deviation ofSandR,
and estimated radius are shown in table 2.

The expected value ofR for a cylinder of radius 6.6 is
0.1071. The mean value of R calculated from the surface
was close to this value. The standard deviation ofR was
between 22 and 30 percent of the estimated value.

Table 1: Results of Shape Analysis of Planar Surface

Fit S S.D. ofS R S.D. ofR

Tangent 0.4703 0.21204 0.004114 0.0006562

Position 0.3643 0.24721 0.003026 0.0009828

Table 2: Results of the Shape Analysis of the Convex
Cylindrical Surface

Fit S S.D. ofS R S.D. ofR Radius

Tangent 0.4980 0.009639 0.080290 0.024210  8.8078

Position 0.5014 0.015773 0.073446 0.016892 9.6304
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The expected value of S is 0.5 which is very close to the
values estimated for the surface for both the tangent and
position weighed fits. TheS parameter of the tangent
weighed fit has a standard deviation slightly smaller than
for the position weighed fit.

The estimated radius of the cylinder is more accurate for
the tangent weighed fit. The accuracy of the quantitative
characteristics of the surface is fairly low. The radius was
measured within an accuracy of 1/3 of the actual radius.

Fig. 10.  Biquartic fit of convex cylindrical surface with its
control point mesh shown

The bicubic, tangent weighed fit was nearly planar on one
side. The biquartic tangent weighed fit shown in figure
10, had a similar shape to the bicubic fit, although slightly
more noisy.

7  Discussion and Conclusions

We presented an approach using a multi-finger contour
following EP to determine the shape properties of an
approximating surface based on its principal curvatures.
The surface patch was approximated by a B-spline surface
which incorporated the contact normal information.

The proposed method for acquiring data using EP2 has
been verified experimentally using a manipulator
equipped with a force/moment sensor to detect the contact
position and surface normal. The method was capable of
acquiring sufficiently accurate data to enable the estima-
tion of the shape parameters of the surface.

The S parameter for the convex and concave cylinders
could be estimated within 0.012 units of the actual value
and with a standard deviation of less than 0.04 units for the
concave cylinder. Even with coarse sensor resolution, we
were able to obtain good results for qualitative shape rec-
ognition.

The accuracy of the shape estimation was found to depend
on the alignment of the principal curvatures with the coor-
dinate system of the B-spline. A second iteration of EP2
could be performed with the sweep directions aligned with
one of the principal directions of curvature. This approach
would provide the greatest accuracy for estimating the
shape of the surface.
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If the object being sensed is a single primitive then the
shape can be recognized from a small patch. If the object
is composed of a combination of shape primitives, the
individual primitives can first be recognized and then the
object can be determined from the adjacency graphs of the
primitives for instance.
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