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ABSTRACT 
A fast deformation modeling method is presented. Based on 
elastic theory, an algorithm for animating viscoelastic systems is 
proposed. The integration scheme derived from implicit 
integration allows developers to obtain interactive realistic 
animation of models of viscoelastic objects. This method 
provides a simple, stable and tunable model for deformable 
object suitable for virtual reality environments. An 
implementation demonstrates this deformation analysis 
approach.  

 
As an important application of virtual reality, Surgical 

simulation is becoming increasingly popular. Three major 
problems in surgical simulation are: 1) Collision detection. 2) 
Deformation animation. 3) Force feedback/haptic rendering. 

In our prior work[18], we presented basically a collision 
detection algorithm for this application. In this paper, we focus 
on other problems: Deformation animation and force 
feedback/haptic rendering. 

Haptic Rendering, by simulating the forces generated by 
contact with a virtual model, provides a means of interrogating 
the model by touch, an additional means of interacting with a 
virtual environment. 

1.1 Review of previous work and relative papers 
Based on elastic theory [19], various deformation-

modeling methods have been studied in computer graphics. All 
methods are based on non-rigid/elastic physical models using 
different mathematical-physics approaches [5] to solve a series 
of differential equations. The set of methods can be classified 
into those that use traditional differential equation solution such 
as  [1,2,3,6,7], those that use a mass-spring model [5,8,10,11] 
and those that use FEMs (finite element method) [4,9,12,15,16]. 

Terzopolous et al [1], and Platt, and Barr [2] have shown 
the advantages of physically based models over kinematic 
models for computer animation. The particular shape an elastic 
body is a function of both the internal stress and strain within 
the object and external forces applied to it. Generally, some 
modification or simplification based on numerical analysis 
methods is made to the elastic theory in order to give a 
particular behavior to the deformable body [2]. 

Among the representations used for deformable 
surfaces/volumes, the most widely used are parametric model 
with B-spline representation and finite element models 
introduced for computer aided design and applied to computer 
animation by Qin, Terzopolous and Gourret etc [13,14]. In this 
work, a physical based generalization of Dynamic Non-Uniform 
B-Spline (D-Nurbs) is presented that incorporates mass 
distribution, internal deformation energies, forces, strains and 
other physical quantities into the Nurbs geometric substrate.  
Gourret et al [14] described a system for modeling the human 
hand with a finite element volume meshed around bones. They 
formulated and solved a set of static equations for skin 
deformation based on bone kinematics and a hand/object 
contact point grasping task. Ma et al [17] gave a method for 
surface deformation based on deforming a hand surface. A 
bicubic B-spline surface was interpolated or approximated by 
key data points of a sensor glove to generate the deformation. 

For precisely evaluating elastic deformation, the FEM is 
an efficient and powerful tool among the various numerical 
solution methods. S. Cotin et al [4,9] presented a FEM to 
simulate elastic object deformation. The physical properties are 
based on linear elasticity, and a pre-processing technique 
derived from a finite element method allows real-time 
computation of deformations and forces. S. Dombrowski et al 
[12] also used a particular FEM to simulate virtual surgery. This 



 

    

FEM was based on thin plate theory and developed by A. 
Shabana [3]. O.R. Astley [20] used FEM to simulate visco-
elastic three dimension bodies. A multi-layer mesh deformation 
problem can be solved by a finite element approach with 
hierarchy layer mesh structure. In J.P.Thirion’s report [15], a 
detailed finite element method for volume variation to solve 
tissue deformation is described. Currently, Yan uses 2-D FEM 
to integrate with haptic rendering system in virtual reality area 
[30]. The FEMs, inherited from engineering using material 
properties to model structure, are a more sensible approach and 
have a precise accurate performance for deformation and plastic 
modeling. However, FEMs are less widely used due to the 
difficulty of their implementation and large computation time. 
Hence, some simplified methods have been studied as 
alternatives to the FEMs. 

In modeling deformable objects, an important aspect of 
realistic animation, researchers have focused on mass-spring 
methods due to their simplicity of implementation and their less 
complex algorithms.  Miller [8] proposed a model for animating 
leg-less figures such as snakes and worms using mass-spring 
systems. Animating spring tensions simulates muscle 
contractions. Due to the surface structure, directional friction is 
included in the dynamics model and leg-less figure locomotion 
results. Instead of real complex internal structures for natural 
snakes and worms, the simplified model proposed in Miller’s 
work provides an elegant way to simulate the motion dynamics 
of these creatures. 

Provot  [5] proposes a model for animating cloth objects 
using a network of springs and masses. A cloth object is 
approximated to a deformable surface by using the numerical 
integration method with the fundamental law of dynamics. 
Provot also presents a new method, derived from dynamic 
inverse procedures, to adopt his model to the particular non-
linear stiffness properties of tentacles. 

The major advantages of the mass-spring model 
approaches are: 

1. They are the simplest of physically-based modeling 
approaches. 

2. They can achieve real-time performance. 
A similar approach is the viscoelastic physical model, 

which has the same advantages as the mass-spring model but 
has other advantages as well, and is the method we use. 
Compared with the spring-mass model, the viscoelastic model 
can describe the elastic material's damping behavior, making the 
deformation more realistic. Due to its ease of implementation, 
the fact that it is parallelizable, and that its computational 
demands are low,  it seems a good candidate for simple virtual 
reality applications. 

The contributions of this paper are: 
• Instead of a simple mass-spring model, a more realistic and 

accurate physical model, namely a viscoelastic model, is 
applied. 

• A new fast discrete numerical method for elastic 
deformation analysis is presented. 

• A simple approximation approach for weighting the force 
has been used which can offer a fast and more accurate 
deformation solution. 
The paper is organized as follows: In section 2, a 

viscoelastic deformable system will be described with a detailed 
integration algorithm. In section 3, a force feedback subsystem 
that uses the deformable model is presented. We will discuss 
and illustrate our experiment results in section 4. For section 5, 
the conclusion and future steps will be presented.  

VISCOELASTCITY MODEL FOR DEFORMATION 
ANALYSIS 

We begin the mathematical development by giving the 
equations of motion governing the dynamics of our deformable 
models under the influence of applied forces. The equations of 
motion are obtained from elastic mechanics which balance the 
externally applied forces with the forces due to the deformable 
model. 

Much research has been focused on the elastic deformation 
of dynamic system [19,21,22]. In general, there are two 
methods to solve the deformation analysis: Calculus schemes 
such as [24], and partial differential schemes such as [25]. Both 
approaches are efficient classical mathematical physics 
methods. Our scheme uses an elastic dynamics system 
expression, based on partial differential equations (Lagrange’s 
form) [4].  

The equations governing a deformable model motion can 
be written in Lagrange’s form [23,26] as fellows: 
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where a is the coordinate of a elastic body Ω. r(a,t) is the 
position of the particle a at time t, µ(a) is the mass density of the 

body at a, γ(a) is the damping density, and f(r,t) represents the 

net externally applied forces and ε(r) is a functional which 

measures the net instantaneous potential energy of the elastic 
deformation of the body.  

Expression (1) for an elastic object is continuous in the 
material coordinates of the deformable surface. For simulating 
the dynamics of the elastic model, (1) should be discretized by 
applying finite element or finite difference approximation 
methods [25]. Discretization transforms the partial differential 
equations of motion (1) into a system of linked ordinary 
differential equations. We illustrate the discretization step using 
finite difference approximations. 



 

    

Consider, for simplicity, the case of time invariant mass 
density µ(a, t)=µ[a1,  a2] and damping density γ(a, t)= γ[a1, a2] in 

equation (1). The resulting discrete densities are µ[n] and γ[n]. 

Let M be the mass matrix, a diagonal N×N matrix with the µ[n] 
variables as diagonal components, and let C be the damping 
matrix (N×N) constructed similarly from γ[n]. The  discrete 
form of the equations of motion (1) can be expressed in mesh 
vector form using spring forces by the following coupled 
system of second-order ordinary differential equations: 

2

2 ( ) (2)  d r drM C K r F
dt dt

+ + =  

 
 where F  is the vector representing the discrete net external 

forces. 

2.1 INTEGRATION METHOD 
To simulate the dynamics of an elastic model, the system of 

differential equations (2) is integrated through time. In fact, the 
numerical integration method is a numerical step-by-step 
procedure, which converts the system of non-linear ordinary 
differential equations into a sequence of linear algebraic 
systems.  

Various integration schemes can be used to solve the elastic 
dynamics equations: explicit Euler method, mid-point 
integration, Runge-Kutta (higher-order scheme) method, etc. 
had been used in solving differential equations. Each has its 
limitations. 

The explicit Euler and mid-point methods [24] require the 
square of the integration time step dt to be inversely 
proportional to the stiffness (Courant condition [21]). 
Otherwise, the system will produce large errors.  

The Runge-Kutta method is not appropriate for collision 
handling [27]. But for virtual-reality systems, dynamic collision 
detection must be considered. 

Semi-implicit integration [28] which has a smooth result 
and numerical accuracy can be considered as an ideal scheme. 
However, it requires longer run-times and results in more 
complex algorithms. 

Implicit Euler integration has proven to be better adapted 
to solve such deformation problems [29]. The idea is to replace 
the forces at time step t by the forces at time step t+1. 
Based on the implicit method, we obtain an increment of the 
velocity vector: 
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If  Fn + KVnt + CVn  is defined as the node force Fnode, it is 
found that the corresponding change of velocity through 
multiplication of the node force Fnode by the inverse of a 
constant matrix: 
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(where wij is an arbitrary element of the W matrix) reflects the 
relationship between the jth particle’s force and ith particle’s 
strain force. Equation (3) actually becomes a force expression 
when both sides of  (3) are multiplied by m/∆t.  
 

 weight nodeF WF=  

According to elastic theory [19], Fweight can be regarded as  
Green strain tension (because all components of Fnode are 
entirely along the object’s surface plate. Hence, Fwight is defined 
as the strain force Fstrain. 

For a discrete particle system, the strain force for the ith 
particle can be written as: 

1

N

stra in ij jF w F= ∑  

3 IMPLEMENTATION 
Although general elastic theory and numerical integration 

can help us solve the deformation analysis, there are some 
problems in developing a practical implementation. 

First, how should we select a suitable physical model for 
the deformable objects? Second, how should we select a 
suitable geometry representation approach for the deformable 
objects? Finally, how should we implement the deformation 
animation based on our numerical-physical method as 
illustrated in following subsections? 

Viscoelasticity is generalization of elasticity and viscosity. 
It is characterized by the phenomenon of creep which manifests 
itself as a time dependent deformation under constant applied 
force.  

The ideal linear viscous unit is the dashpot. A dashpot is 
supposed to produce a velocity proportional to the load at any 
instant. (c is the viscosity constant and u!  is linear velocity) 

The elastic and viscous units are combined to model linear 
viscoelasticity, so that the internal forces depend not just on the 
magnitude of deformation, but also on the rate of deformation. 
Fig. 1 illustrates a two-linear-unit viscoelastic model, a parallel 
assembly of the so-called Voigt viscoelastic model. The local 
deflection relationship for the Voigt model is: 
 

 | (0) 0( ) ( ) uF k u t c u t == ⋅ + ⋅ !  

A creep function for the Voigt model can be easily derived 
by solving this equation when F(t) is a unit-step function l(t). 
This is 

u(t) = 1/k (1 – e-(k/c)t ) l(t) 



 

    

 
Physically, u(t) is the elongation caused by a unit step function. 
As described above under deformation modeling, the 
viscoelastic model (also called spring-damping model in a 
discrete system) is applied as the deformable material property 
model. Other viscoelastic models (Kelvin, Maxwell [33]) are 
possible as well. Among the rectangular grid and polygonal 
meshes, triangle mesh is fast, memory efficient and robust for 
the deformable analysis approach. As is well known, guaranteed 
quality 2-D meshes are generated using a Delaunay 
triangulation refinement algorithm [31]. 
 

 
 

 
 
 
 
 
 

Figure 1: Uniaxial visoelastic model: two-element 
Voigt viscoelastic model  

3.1 IMPLEMENTATION DETAILS 
A deformation animation algorithm has been successfully 
implemented in C++. The system combines an implicit 
integration algorithm with OpenGL , a computer graphics 
library, and third-party freeware to generate a mesh.  Here some 
of the implementation issues are described. 

The current system runs on one computer  and employs a 
haptic device ProCAT  (a 2D force feedback device). The 
system consists of three modules: Deformation Animation 
(graphics rendering), Collision Detection, and Haptic Rendering 
(force feedback).   

Multiple external forces with multiple constraints can be 
processed as serial external force collisions in one simulation 
step. External forces can be changed using a mouse.  

The system detects a collision as the cursor is moved to the 
object. External forces are shown as arrows and are updated in 
the process. And as the inverse dynamics process keeps the 
viscoelastic system from being over-stretched, it enhances the 
realism of the overall animation. The algorithm also takes into 
account the effect of force producing torques (δT). Pseudo-code 
for the deformation analysis algorithm is shown in Fig. 2. Note 
that our algorithm to calculate the matrix W utilizes the positive 
definite nature of the matrix to be inverted [32]. 

4 EXPERIMENT AND RESULTS 
We implemented 2D and 3D versions of the algorithm.. 

Fig. 3 shows three frames of a thin polygonal plate being 
deformed by a single step function force. The frames show the 
initial state and the deformation after (approximately) 5 and 10 
sec. The object has 517 nodes and the simulation ran at 25 
frames/sec. The same object with four  applied forces ran at the 

same rate. A similar object but with a coarser mesh (123 nodes) 
ran at 100 frames/sec. The  simulation was run on an NT 
workstation with a Pentium III-450 CPU and 128MB of 
memory. 
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Figure 2: Deformation Algorithm pseudo-code. 
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Figure 3: Initial shape and deformation of polygonal 
object after 5 sec and 10 sec. The force is indicated 

by the horizontal line to the right.  

5 CONCLUSIONS 
We have presented a new algorithm to animate efficiently 

any viscoelastic deformable system. As we can perform the time 
integration for any time step size with a constant computational 
time, this method is well-suited to real-time interaction in 
Virtual Reality environments. This algorithm is an 
approximated implicit integration scheme, but important 
physical quantities such as linear and angular momentum, vital 
for realism, are preserved. This technique can thus be classified 
as an implicit predictor/corrector scheme. It handles constraints 
and collisions in a very simple way and uses non-linear Voigt 
viscoelastic deformable objects that enhance the visual behavior 
of the motion. 
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