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Abstract

One of the approaches to increase the dexterity of a robot manipulating system is a design

philosophy which consists of multiple robotic mechanisms. Applications of such collection of

manipulators can be in the design of a dextrous end-e�ector, a recon�gurable �xture to locate

and grip various sized objects or cooperative robotic arms where through their coordinated mo-

tions, they are able to accomplish a given task. Although applications of such design philosophy

are endless, there are many problems still remain to be addressed. One of these problems is the

control of the contact forces (grasping forces) between the mechanisms and the position of the

grasped object. This paper addresses this problem. First, a model of the mechanisms in contact

with the grasped object is postulated; second the problem of controlling the grasping forces and

the position of the grasped object is formulated in the linear multi-input/multi-output system

and �nally, a centralized optimal controller is proposed for controlling the desired variables. The

results of this paper are demonstrated using two examples. One of the main advantages of the

proposed optimal controller is that it also shapes the transient response of the grasping force

which is an important consideration in cases when grasping fragile objects.

1 Introduction

Although robot manipulators have been successfully applied to various tasks, their versatility are

limited. For example, when a manipulator is assigned to pick objects with di�erent sizes and at-

tributes, it is usually necessary to change its end-e�ector with another in order for the manipulator

to establish a secure grip. The changing of the end-e�ectors becomes inevitable when in addition to

pick-and-place tasks, the manipulator has to perform a tooling operation (drilling a hole).

In most tasks such as assembly, the picked object has to be placed (inserted) into another one

which may have a di�erent size and attributes. In these cases, specialized �xtures have to be designed

and integrated with the work-cell of the manipulator in order to hold the object in a �xed position.

One approach which can increase the versatility of a single manipulating mechanism is the utiliza-

tion of a design philosophy which incorporates a collection of mechanisms. Examples of this design

philosophy are: a) a dexterous end-e�ector consisting of a number of open kinematic chains which

can be attached to the end-plate of a manipulator, b) recon�gurable �xtures consisting of a collection
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of mechanisms for feeding and holding (grasping) various objects in the work-cell of the manipulator

and c) two cooperative manipulators equipped with dexterous end-e�ectors. The last example is an

extreme in versatility and autonomy of the automated work-cell. Here, the manipulators can pick-up

di�erent sized objects for the purpose of assembly or they can cooperate in handling objects.

There are numerous problems involved in implementing such systems. One of the problems is

the control of contacting forces between the manipulators and the object1;2;3. Especially, in the case

of dextrous end-e�ectors, it is sometime required to displace the grasped object (grasped object

manipulation) so that, for example, it is possible to insert the object into the other,4;16;6.

The objectives of this paper are: (i) to present a model of a planar grasp between the collection

of robotic mechanisms and the object and (ii) to formulate the problem in the state-space domain

and to propose a linear optimal centralized controller where the outputs of the system can follow

desired values.

The paper is organized into following sections: in section (2) a model of the mechanisms in contact

with the grasped object is presented; section (3) gives grasping force and �ne-position controller for

multiple robotic mechanisms; section (4) demonstrates the results of this paper using two planar

mechanisms in contact with the object and �nally section (5) presents discussions and outlines the

future work.

2 A Model of Mechanisms in Contact with the Object

This section presents a model of mechanisms in contact with the object. The model is postulated to

be a spring and a damper models. These models are connected in parallel between the mass model

of the end-point of the mechanism and the mass model of the object7. Figure (1) shows two designs

for the end-point of the mechanisms. In both designs, the presence of compliant material (spring

and damper models) result in a causal interaction between the end-point of the mechanism and the

object. In the design of Figure (1a), due to the nature of contact (point contact with friction) only

forces can get transmitted to and from the object)8.

Let us obtain the linearized model of the �nger about an operating point based on the following

assumptions: a) we are assuming that the �ngers are in contact with the grasped object; b) the

con�guration parameters of each �nger corresponding to its initial contact point is used as the

operating point for obtaining the linearized model; c) the dynamic model of the �nger corresponding

to any deviations from this initial nominal con�guration parameters is based on the linearized model.

In a sense what the above standard procedure requires is some nominal input torques to the

actuators of the �ngers which corresponds to the initial contact con�guration of the �nger. The

additional torque which is required to move and control the �nger from the nominal point is what

is developed through the proposed controller. Of course, the issue of how far the linearized model

about an operation point is valid is only a function of number of such operating points about the

nominal trajectories of the �nger.

Let us consider a nonlinear model of a �nger:

�̂ =M(�̂)�̂� +N(�̂; _̂�) +G(�̂) + J(�̂)Tfext

In the above let the operating point corresponding to the initial condition of a �nger be given by

O = (�̂ ; �̂; _̂�). The perturbed model about this initial nominal condition can be written as:
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�̂ +�� =M(�̂ +��)(�̂� +���) +N(�̂ +��; _̂� +� _�) +G(�̂ +��) + (J(�̂)Tfext + J(�̂ +��)Tfext)

Using Taylor series expansion, we have:

N(�̂ +��; _̂� +� _�) = N(�̂; _̂�) +

"
@N

@�

#
O

��+

"
@N

@ _�

#
O

� _�+ � � �

Or:

N(�̂ +��; _̂� +� _�) = N(�̂; _̂�) +C1�� +C� _� + � � �

and similarly,

G(�̂ +��) = G(�̂) +

"
@G

@�

#
O

�� + � � � = G(�̂) +K�� + � � �

Ignoring the second and higher order terms in �� and � _� in the above expansions and also

assuming M(�̂ + ��) = M(�̂) (this assumption states that the inertial parameters of the model of

the �nger has no variation within the bounds from the nominal initial contact point). As a result,

the perturbed model of the �nger about the nominal point can be written as:

�̂ +�� =M(�̂)(�̂� +���) +N(�̂; _̂�) +C1�� +C� _� +G(�̂) +K�� + (J(�̂)Tfext + J(�̂ +��)Tfext)

In view of the initial condition, we have:(substituting the initial condition corresponding to the

nominal point into the above equation).

M(�̂)��� +C� _� + (C1 +K)�� = �� � J(�̂ +��)Tfext

Or for each �nger the above equation can be represented as10:

Mi�o
��i +Ci�o

_�i +Ki�o
�i = �acti � J

T
i fexti (1)

where, (Mi�o
) is the inertia matrix of the ith �nger, (Ci�o

) is the linearized velocity dependent terms

of the dynamic model and (Ki�o
) is the position dependent terms such as the torque due to gravity

force; (�acti) is the actuating torque vector and (fexti) is a vector of force acting on the ith �nger end-

point (grasping force vector) which is expressed with respect to its end-point reference coordinate

frame1. (Ji) is a linear mapping (Jacobian) from the space of instantaneous properties of the �nger

end-point to the joint space of each �nger. �i is a vector of small joint displacements about the

operating point.

Equation (1) can be expressed in the coordinate frame located at the end-point of the manipulator

using the following relationship:
_�i = J

�1
i _xi

��i = J
�1
i �xi � J

�1
i
_JiJ

�1
i _xi

(2)

1The actuating force vector is basically the additional torque required when the �nger is displaced from its nominal
con�guration. The remaining of this paper proposes a method for generating this additional torques as a function of
the linearized model of the �nger.
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The dynamic model of each �nger expressed with respect to its end-point frame can then be

written as2:

Mi�xi +Ci _xi +Kixi = facti � fexti (3)

where (Mi = J
�T
i Mi�o

J
�1
i ) is the coe�cient of the inertia matrix expressed in the (ith) manipulator

end-point frame, (Ci = J
�T
i

h
Ci�o

�Mi�o
J
�1
i

_Ji
i
J
�1
i ) is the coe�cient of force due to the velocity

dependent term and (Ki = J
�T
i Ki�o

) is the coe�cient of force due to the position dependent terms.

In the case when the plane of grasping and manipulation is perpendicular to the direction of the

gravity, in equation (3), the e�ect of position dependent forces due to gravity is ignored.

Let us assume that planar dynamic model of the object expressed with respect to its coordinate

frame can also be written as:
nX
i=1

fexti =Mo�xo (4)

in the above equation (fexti) is the grasping force of the (ith) mechanism where its components are

expressed with respect to the reference coordinate frame of the object and �xo is the linear acceleration

vector of the object. The above model is not the restriction but rather is used to facilitate the

demonstration of the performance of the controller which is shown through-out the rest of the paper

(the model of the grasped object can be viewed as a point mass). This model assumes that the

motion of the the grasped to have only translational components with respect to its coordinate frame

and also ignores the e�ect of gravity acting on the grasped object.

Based on the above motivation and procedures we are assuming that the �ngers have established

the initial contact with the grasped object (i.e. the �ngers move in an exploratory procedures until

they detect contact with the object through force sensing modality). At this stage and assuming that

some disturbances due to the impact with the object have been vanished, the proposed controller of

the paper trys to regulate the grasping force and position. Although the procedure of linearization

of this paper is general, but we are proposing that the nominal point corresponds to zero velocity of

the �ngers.

3 Force and Position Controller

The objective of this section is to propose a controller which can regulate both the contact forces

(grasping forces) that each mechanisms exerts on the object and their corresponding end-point posi-

tions.

In the following, the grasp con�guration is a planar one where the plane of grasp is perpendicular

to the direction of the gravity forces. Also, given the model of the compliant �nger-tips, the grasping

forces are functions of the mechanisms and object displacements and the model of the material of

the compliant-tip, or:

fexti = f(xi; _xi; xo; _xo;Kci;Cci) 1 � i < n (5)

where Kci and Cci are models of spring and damping properties of the compliant �nger-tip and xo
and _xo are the position and velocity of the grasped object. For example, the external grasping force

2It is assumed that in grasping and at the initial instance of contact with the object, the �ngers have zero initial
velocity.
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acting on the ith �nger can be written as:

fexti =Kci(xo � xi) +Cci( _xo � _xi)

As a result, the end-point compliance of each �nger couples the dynamics of the �nger with the

grasped object. This is accomplished by noting that the grasping force between each �nger and the

object is a function of the state variable of the �nger and that of the object mapped through the

model of the compliance. Expressing linearized dynamic model of each �nger and the grasped object

(equations 3 and 4) by taking into account the coupling factor of equation (5) we have:8>>>>>>>>>><
>>>>>>>>>>:

M1�x1 + (C1 +Cc1) _x1 +Kc1x1 �Cc1 _xo �Kc;1xo = fact1
...

Mi�xi + (Ci +Cci) _xi +Kcixi �Cci _xo �Kc;ixo = facti
...

Mo�xo + (Cc1 +Cc2 + � � �) _xo �Cc1 _x1 �Cc2 _x2 � � � �

(Kc1 +Kc2 + � � �)xo �Kc1x1 �Kc2x2 � � � � = 0

(6)

The above equation can be transformed into the standard state-space model as:

_x = Ax+Bu (7)

where (x = (x1; x2; � � � ; xi; xo; _x1; _x2; � � � ; _xi; _xo)
T ) 2 R

n is the state vector of the compounded �n-

ger/object system and (u = (fTact1; f
T
act2

; � � � ; fTacti)
T ) 2 Rr is the actuating force vector.

The output vector of the system can be written as:

y =

(
y1
y2

)
=

"
C1

C2

#
x (8)

where (y) is a vector composed of grasping forces, the end-point positions of the �ngers and the

position of the grasped object.

Given the dynamic model of the �ngers and object, the objective of the controller is for the

outputs y1 � y of the system to track some desired reference constant (or periodically changing)

input vector (yr 2 R
p) containing the desired grasping forces and positions of �ngers9. De�ning the

error between the desired reference and the actual one as:

_z = yr � y1 = yr �C1x (9)

and augmenting equation (7) with (8) results in (n+ p) dimensional system:

_�x = �A�x+ �Bu+Dyr
�y = �C�x

(10)

where

�x =

"
x

z

#
; �A =

"
A 0

�C1 0

#
; �B =

"
B

0

#
; D =

"
0

I

#
; �C =

"
C 0

0 I

#

Consider now di�erentiating (10) to get

��x = �A _�x+ �B _u (11)
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It is now desired to obtain the proportional-integral (PI) optimal control law (u) of the form

u = K1x+K2

Z
zdt (12)

such that the following performance measure is minimized subject to (11)

J =
1

2

Z
1

0

(k _�xk2Q + k _uk2R)dt (13)

and the closed-loop eigenspectrum of the system are assigned to desired locations. As a result, the

transient response of the output can be shaped such that the force response do not have any large

over-shoots.

Using either of the sequential approach as described in11;12, it can be shown that for a �xed R, if

Q in (12) is appropriately selected, the optimal control law that would achieve the above objectives

would be given by:

u = �R�1 �BT
P�x = K�x (14)

where P is the positive semide�nite solution of the Algebraic Matrix Riccati Equation (AMRE).

Various necessary and su�cient conditions for existence of a solution to the above problem can be

found in11. It can also be shown13 [13] that the pair
n
�A; �B

o
is completely controllable if and only if

fA;Bg is controllable and,


 =

"
B A

0 �C

#

has rank (n+ p), where (p) is the number of outputs that need to regulated.

The summary of the sequential approach as proposed in12 is as follows: suppose that at the ith

stage of the sequential process the system under consideration described by3:

��xi = �Ai _�xi + �B _ui (15)

is aggregated ( reduced ) to an lth order dynamical system, where l = 1, or 2 depending on whether

a real, or a complex conjugate pair of pole(s) is being placed. The reduced order system is described

by:
�̂xi = Âi

_̂xi + B̂i
_̂ui (16)

where l of the eigenvalues of �Ai in (15) are contained in Âi, that is �(Âi) � �( �Ai), where �(:) is a

set that contains the eigenvalues of the matrix in the argument. Note that from here on the variables

with (̂) will refer to the reduce order system. The aggregation matrix which would accomplish the

above transformation is given by:

� = [Il 0 ]��1( �Ai)

where �(:) is the modal matrix of the matrix argument, and in this case its �rst l columns are the

eigenvectors corresponding to the l eigenvalues of Âi. The matrices Âi and B̂i are obtained by using

the following transformations:

Âi = � �Ai�
+

B̂i = � �B if l=1

Âi =�
�1
� �Ai�

+
� B̂i =�

�1
� �B if l=2

� =

"
0:5 +j0:5

0:5 �j0:5

#

3The sequential process starts at stage i = 1, where �A1 = �A, and �A is given as in (10).
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where �+ is the Moore-Penrose pseudo inverse of � given by �+ = �
T (��T)�1. It is now desired to

obtain a desired state weighting matrix (Q̂i) in the following quadratic cost function:

Ĵi =
1

2

Z
1

o

�
k _̂xik

2

Q̂i
+ k _̂uik

2

R

�
dt (17)

so that the optimal control law which would minimize (17) would place the real or the complex

conjugate poles of the aggregated system (Âi) at desired location. This optimal control law is given

by:
_̂ui = �R

�1
B̂

T
i P̂i

_̂xi = K̂i
_̂xi (18)

where P̂i is the solution to the following AMRE:

P̂iÂi + Â
T
i P̂i � P̂iB̂iR

�1
B̂

T
i P̂i + Q̂i = 0 (19)

Using the above control law, the closed loop reduced order system would be:

�̂xi = (Âi + B̂iK̂i) _̂xi = Âci
_̂xi

Now assuming that the system's eigenvalues are distinct and a desired set of closed loop eigenspectrum

is given, it is easy to show that (19) can be written as:

�
T (Âci)P̂i�(Âci)�i +�i�

T (Âci)P̂i�(Âci) = ��
T (Âci)[Q̂i + K̂

T
i RK̂i]�(Âci)

where �(:) is as de�ned earlier, and �i is a diagonal matrix which has the desired closed loop

eigenspectrum on its main diagonal.

It can be shown that by selecting Q̂i as:

Q̂i = [�(Âci)�
T (Âci)]

�1 � K̂T
i RK̂i (20)

the solution of AMRE can be obtained without a need to solve (19), and hence, the optimal feedback

gain in (18) would be given by:

K̂i =
1

2
R
�1
B̂

T
i �

�T (Âci)�
�1

i �
�1(Âci) (21)

Note that in the above equation the value of matrix �(:) is as yet unknown. The following rela-

tionship between the eigenvalues and eigenvectors of a matrix would provide additional information

for computing the feedback gain:

Âcivl = �vl for l=1,2 or

[(Âi � �lI) B̂i ]

(
vl
 l

)
= 0

(22)

It is easy to show14 now that the feedback gain K̂i is given by:

K̂i = 	�
�1(Âci) (23)

where 	 2 Rq�l is a matrix whose columns are given by f l = K̂ivlg for l = 1; 2. Finally, equating

(21) and (23) will result in:

�(Âci)�i	
T =

1

2
B̂iR

�1 (24)
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Equations (22) and (25) are now solved together to obtain �(:) and 	. Then, the optimal feedback

gain and the desired weighting are obtained from (21) and (20) respectively. Once again, it should

be noted that all of the above computations involve scalar or second order systems, and thus the

computational requirements is extremely light.

Once the appropriate matrices Q̂i and K̂i in (17) and (18) are found, they are transformed back

to the original higher dimensional space via the following transformations to obtain Qi, and Ki that

would assign the same poles for the system (11).

Ki = K̂i� if l=1

Qi = �
T
Q̂i�

Ki = K̂i�
�1
� if l=2

Qi = �
T
�
�T
Q̂i�

�T
�

Next the system dynamics will be updated by:

�Ai+1 = �Ai + �BKi

The above describes one stage of the sequential procedure. Now letting i = i + 1, equation (11)

will be aggregated to a �rst or second order system for placing another real or complex conjugate pair

of pole(s). The sequential process will continue in this manner until all or a number of the dominant

poles of the system are placed. At this time the overall desired weighting matrix Q in (13) and the

optimal state feedback gain K in (14), that would achieve the pole placement will be calculated from:

Q =
P

iQi

K =
P

iKi

This completes the servomechanism design procedure. The above feedback gain, the weighting

matrix and the control law in (14) will minimize the cost function in (13). The closed loop system

will now be described by:
_�x = ( �A + �BK)�x+ �Dyr

where the eigenvalues of ( �A + �BK) are at the desired locations. Also, the output y1 will now track

the reference input yr.

4 Example

This section presents the performance of the optimal controller using two examples. The �rst example

consists of two 1DOF �ngers grasping an object. Each �nger-tip is assumed to be constructed with

known compliant material (see Figure (2)). In addition, the velocity dependent terms in the dynamic

model of each �nger are neglected (Ci in equation (3)).

The state-space model of the system can be written as:

8>>>>>>>><
>>>>>>>>:

_x1
_x2
_x3
_x4
_x5
_x6

9>>>>>>>>=
>>>>>>>>;
=

2
6666666664

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

� kc
mf1

0 kc
mf1

� cc
mf1

0 cc
mf1

0 � kc
mf2

kc
mf2

0 � cc
mf2

cc
mf2

kc
mo

kc
mo

�2kc
mo

cc
mo

cc
mo

�2cc
mo

3
7777777775

8>>>>>>>><
>>>>>>>>:

x1
x2
x3
x4
x5
x6

9>>>>>>>>=
>>>>>>>>;
+

2
6666666664

0 0

0 0

0 0
1

mf1

0

0 � 1

mf2

0 0

3
7777777775

(
fact1
fact2

)
(25)
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The measured output of the system can be written as:

8>>><
>>>:
fext1
fext2
xf1
xf2

9>>>=
>>>;
=

2
6664
kc 0 �kc cc 0 �cc
0 kc �kc 0 cc �cc
1 0 0 0 0 0

0 1 0 0 0 0

3
7775

8>>>>>>>><
>>>>>>>>:

x1
x2
x3
x4
x5
x6

9>>>>>>>>=
>>>>>>>>;

(26)

where (x1; x2; x3) are the positions of the �ngers and object and (x4; x5; x6) are the corresponding

velocities.

In the above equation, the parameters of the system are given as: mf1 = mf2 = 0:4(Kg) ;mo =

0:2(Kg); kc = 100(N=m); cc = 100(N=(m=sec)). The objective is for each �nger to exert (1 Newton)

force on the grasped object while �nger #1 moves (.5 cm ) from its reference position.

To arrive at the tracking controller, the augmented system in (9) was formed. It can be veri�ed

that the open loop poles of the augmented system are given by f ( 0,0,-1.25,-0.001, 0,-0.249,-0.001, 0)

? 1E03 g. Since two of the open loop poles far in the left hand plane, it was decided not to spend any

control e�ort to move these non-dominant modes. Also, we decided to preserve the two poles at -1.0.

The remaining four poles of the system are to be assign to f�1:5;�2:0;�2:5; and �3:0g. In addition,

since all of the state variables of the system are not available for measurements and feedback, an

estimator is to be designed as well. The design of the estimator require15 the observation matrix �C

in (9) be of the form:
�C =

h
I 0

i
Since this is not the case in the example, the system in (9) was transformed via the following similarity

transformation matrix, to get the resulting observation matrix in the desired form given above,

T =

2
66666666666664

100 0 �100 100 0 �100 0 0

0 100 �100 0 100 �100 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

10 30 0 0 0 30 0 70

0 0 0 50 10 0 30 0

3
77777777777775

Once this was accomplished a reduced ( second order ) estimator with eigenvalues at f�10;�8g was

designed for the transformed system. The dynamics of the estimator is given by:

_! = F! +Gy +Hu+ Syr

where:

F =

"
�10: 0

0 �8

#
; G = 1E03 ?

"
�1:35 �2:07 0:02 �3:09 0 0:7

�0:151 �0:029 �0:4 �3:44 0:24 0

#

H =

"
0 �750

125 �25

#
; S =

"
0 70

30 0

#
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and the estimate of the missing state variable of the transformed system are given by:

! +My

where:

M =

"
0 �3 0 340 0 0

0 0 0 480 0 0

#

Note that the sequential optimal weight selection procedures described in11; 12 do not necessarily

result in unique weights or optimal controller gains. One set of optimal gains and corresponding

state weighting matrices in the cost function were calculated. Once these values were obtained, they

were transformed back using the transformation T, to get the following sequential optimal feedback

gain matrices:

K1 =

"
0:0000 0:0000 0:0000 0:3000 0:3000 0:1500 0:0000 0:0000

0:0000 0:0000 0:0000 �0:3000 �0:3000 �0:1500 0:0000 0:0000

#

K2 =

"
0:0000 0:0000 0:0000 0:4000 �0:4000 �0:2000 �2:0000 0:0000

0:0000 0:0000 0:0000 0:4000 �0:4000 �0:2000 �2:0000 0:0000

#

K3 =

"
0:7500 0:7500 0:3750 0:5000 0:5000 0:2500 0:0000 0:0000

�0:7500 �0:7500 �0:3750 �0:5000 �0:5000 �0:2500 0:0000 0:0000

#

K4 =

"
5:7749 0:1500 0:0750 0:6000 0:6000 0:3045 0:0563 �5:6249

�5:7750 �0:1500 �0:0750 �0:6000 �0:6000 �0:3045 �0:0563 5:6250

#

where we have:

K = �4

i=1Ki =

"
6:525 0:9 0:45 1:8 1: 0:504 �1:943 �5:624

�6:525 �0:9 �0:45 �1: �1:8 �:904 �2:05 5:625

#

The sum of transformed sequential state weighting matrix Qi which is obtained through the

relationship Qi = �
T
Q̂i� is calculated to be:

Q = �4

i=1Qi =

2
66666666666664

33:91 1:428 0:7144 3:84 3:84 1:94 0:324 �32:48

1:428 0:585 0:292 0:465 0:465 0:233 0:008 �:843

0:714 0:292 0:146 0:232 0:232 0:116 0:004 �0:421

3:84 0:465 0:232 0:86 0:54 0:272 �0:766 �3:375

3:84 0:465 0:232 0:54 0:86 0:432 0:833 �3:375

1:946 0:232 0:116 0:272 0:432 0:217 0:417 �1:712

0:324 0:008 0:004 �0:766 0:833 0:417 4:003 �0:316

�32:483 �0:843 �0:421 �3:375 �3:375 �1:712 �0:316 31:639

3
77777777777775

It can be veri�ed that application of optimal control law in (12) withK given in the above will achieve

the desired closed loop poles and at the same time minimizes the cost function given in equation (13)

with poles de�ned as above.

For command inputs of 1:0N in the desired grasping force and 0:5cm in displacement of �nger

#1, Figure (2) shows the response of the optimal controller/estimator system. Clearly the controller

performance as desired where for example, �nger #2 follows the desired displacement of �nger #1.

10



In the second example, each �nger is modelled to have two rotary joints with the dimension of

each link given as (l1 = 0:153m and l2 = 0:123m) and mass of (m1 = 0:053Kg and m2 = 0:02Kg)

(similar to the model used by16) (Figure 4). The initial con�guration parameters of the �ngers are

�11 = 135�; �12 = 45�; �21 = �90�; �22 = 90�.

The compliant material of both �nger-tips are modeled as linear springs having sti�ness of

(1000N=m). The mass of the grasped object m0 = 0:2Kg. The objective of the simulation is

for each �nger to exert forces equal to 5 and then 2 Newton on the grasped object and moving the

object 1 and then 2 cm from its initial grasp con�guration. Since the proposed controller of equation

(9) requires full state feedback of the �nger/object system, an observer is designed15 for estimating

the state of the object (i.e. it is assumed that the position and velocity of the grasped object are

not measurable). Following the procedure for designing the optimal controller outlined in the pre-

vious section, gains of the controller were selected such that the closed-loop response has minimum

overshoot. Figures 5 and 6 shows responses of the controller for step changes in the desired grasping

forces and the position of the grasped object.

5 Conclusions and Future Work

This paper presents a model of robotics mechanisms (�ngers) in contact with the grasped object. In

this model compliant material is attached between the end-points of the mechanisms and the object.

Using this model, a centralized force and position controller is proposed. The main feature of this

controller is that it minimizes a performance index while it also places the closed loop poles of the

system at desired locations. This feature of the controller is important in multiple mechanical �ngers

grasping a fragile object where the objective is to shape the transient response of the system. The

results of this paper is demonstrated using two examples.

A number of issues remain that need to be addressed: 1) experimental validation of the responses

proposed controller (an experimental set-up consisting of two 2DOF �ngers are begin developed); 3)

development of Decentralized optimal controller and its comparison with the controller proposed in

this paper; 3) extension of the proposed controller for controlling force and position of power grasp17).
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Figure 1: Two designs for the tips of mechanisms.

Figure 2: Two �ngers grasping an object.

Figure 3: The responses of �nger #1 and #2 to the input grasping force and displacement. Solid

lines are grasping force responses of the �ngers to 1 Newton for the desired values and the dashed

lines are the �ngers displacements.

Figure 4: The schematics of the second example.

Figure 5: The force responses of the grasping �ngers. Solid line is the left �nger and the dashed

line is the right.

Figure 6: The position response of the grasped object.
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Figure 3: The responses of �nger #1 and #2 to the input grasping force and displacement. Solid

lines are grasping force responses of the �ngers to 1 Newton for the desired values and the dashed

lines are the �ngers displacements.
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Figure 4: The schematics of the second example

Figure 5: The force responses of the grasping �ngers. Solid line is the left �nger and the dashed line

is the right
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Figure 6: The position response of the grasped object
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