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Abstract

Computation of friction forces between fingers and object for a given external force
is important in grasp planning. Based on the required friction forces, the magnitudes
of the grasping forces can be adjusted in order to avoid slippage of the object between
fingers. A new method is presented for computing the friction forces between the finger-
tips of a dexterous mechanical hand and the object. Finger-tips are modelled so they are
able to exert normal forces and are making point contact with friction with the object.
The method of this paper utilizes the geometrical information on the grasp configuration,
screw geometry and biorthogonal system. Unlike the method proposed by (Holzmann
and McCarthy 85), the method of this paper does not involve matrix inversion and the
assumptions under which the computations are valid have a simple geometrical meaning.
The method is demonstrated through detailed solutions of two examples.

1 Introduction

When grasping objects with a dexterous mechanical end-effector, the contact between the fingers
of the hand and the object must satisfy a number of conditions (Mason and Salisbury 85), (Kerr
and Roth 86), (Li and Sastry 88) and (Payandeh and Goldenberg 88). These range from the
force-closure to stability conditions such as, ensuring that the grasped object does not slip
between the fingers.

This paper concerns with development of a method for computing the friction forces between
the finger-tips and the object when an external force is acting on it. This is an important
consideration in the planning aspect of the grasp. For example, when it is planned for the
grasped object to make contact with its environment, the expected contact force can be used
to determine the required friction forces which contribute in the counterbalancing the external
force and hence, the required normal grasping forces.

The paper is organized as follows: section (2) presents some preliminary definitions and
assumptions regard to the statement of our objective; section (3) presents the main results of
this paper; section (4) presents the detailed solutions of two examples and section (5) presents
concluding remarks.



2 Preliminary

This section presents some definitions and assumptions in regard to the objective of this paper
and defines the statement of the problem.

Assumption 1 The grasp configuration consists of three fingers where only the finger-tips are
making contact with the object.

Assumption 2 Finger-tips are made of solid semi-spherical material which can make point
contact with friction with the object.

Definition 1 The three fingered grasp is defined by:
e lhree points p1, ps and ps (contact points),

o the normalized screws vy, vo and vs, where for i =1,2,3 we have: (Appendiz)

[Vi | QZ/Z] =1
p; € axis of v; (1)

The screw v; describes the oriented normal to the surface of the grasped object at the point p;.
The normal component of the grasping force which acts on the object at point p; is described by
Nuv;, where N is a real number (N € R) representing the magnitude of the normal force.

Let II; denote the tangential plane to the object at p;. We then define the following:

Definition 2 Friction force is defined by a wrench F; with p; € ( axis of F;) and axis F; C 11;,
that is:

e F, € D (Appendix)
e Fi(p;))=0  ( The moment of F; about p; is equal to zero)

o [F;| Qu] =0 (i.e. orthogonality of the axis F; and v;)

The general statement of the objective can be described as follows:

Given,
1. the points py , po and ps;
2. the screw vy , 2 and v3 and the corresponding magnitudes (Ny, N2, N3) and,

3. the external wrench ® which acts on the object;



Find (Fi, Fy, F5) such that:

O+ Nvi+ Y Fi=0 (2)
F; satisfies conditions of definition (2) for i=1,2,3

Specifically, the objective of this paper is stated in the following. Let Z; be the vector
subspace of D which is defined as:

Z={XeD|X(p) =0} )
and let F; be the vector subspace of Z; defined by:
Fi={XeD|X(p)=0,X|Q] =0} v €Z (4)

Based on the above, a force acting from the finger on the object at p; is described by a wrench
belonging to Z;. Whenever it is a normal force this wrench takes the form Ny; and whenever
it is a tangential force it is described by a wrench of F;.

The problem of computing the friction force associated with the three fingered grasp can be
stated as the answers to the following questions:

1) Does the relation Fy & F2 @ Fs = D hold? (In other words, does every member of D splits
into the sum of three uniquely defined members of Fy, Fy and F37 )

2) What are the analytical expressions of the projections:

D—F  i=123 (5)

3 Main Results

This section presents the main theorem which are used to show the answer to the first and
second questions and the analytical expressions for obtaining the projections D — F;.

Theorem 1 Suppose that the planes 11y, Iy and 115 intersect at a single point p (p is at infinity
whenever the axis vy, vy and vs are parallel to a same plane or whenever two planes are parallel).
Then the following properties are equivalent:

a) the points p,p1,p2,ps do not belong to the same plane,
b) D=F & F D Fs.

In the sequel, when the three letters ¢, 7, k appear in a formula, it means that (¢, 7, k) is a
circular permutation of (1,2,3). Let S; and ¥; (¢ = 1,2, 3) be normalized screws such that:

(axis of S;) = II; N1 , if II; and Il are not parallel
Si = Qu; , it 1I; and Il are parallel
Yi(pj) = Bi(px) = 0.
When II; and II; are parallel, Qv; = £Qu;, and the choice §; = Qg would be equivalent. The
axis of X; is the line p;py.
Let us define a vector subspace of D by F;;) = Fi: + F; (i.e. the set of sums of members of
Fi and of F;).

We first prove two lemmas.



Lemma 1 Suppose that p; and p; are not in I1; N 11;, then:
i) Fori# j, Fuj is a four dimensional vector subspace of D

ii) The reciprocal vector subspace of F;j) is

f(fj) = Space {Si, X}

The reciprocal F* of a subspace F of D means the orthogonal subspace with respect to the
inner product [ | -]:

Fr={YeD|[X|Y]=0 forall XinF}

Proof. Since v; € Z; and [v; | Qu;] = 1, the linear form X — [X | Q] is not zero for all
X € Z; and its kernel F; is therefore a two dimensional subspace of the three dimensional space
Z;. Now we prove that

FinFi={0y , (@#J) (6)

Under the hypothesis of the lemma, p; # p; and Z; N Z; is the one dimensional vector
subspace of D spanned by ;. Obviously: F; N F; C Z; N Z;. The axis of a non-zero element
of F; N F; would be the line p;p; (the axis of ¥;) and would be included in II; N II;. Therefore
such a screw may not exist and (6) is proved. Property i) follows from (6) and the dimension
of F; and F;.

The screws Si and ¥y, are linearly independent (since the axis of S, if it exists, can not be
equal to the axis of ¥j ) and belong to f(fj) (In fact Xy is reciprocal to all the screws belonging
to Z; + Z;, a space containing F;;)). If II; and II; are not parallel, the axis of S; meets or is
parallel to the axis of all the screws belonging to F; or to F;, hence Sj, is reciprocal to all these
screws and to the screws belonging to F(;;). The previous property remains true if II; and II;
are parallel and & = Qu;.

Since f(fj) is a two dimensional vector subspace, property ii) follows from these remarks. O

Lemma 2 Under the assumptions of the previous lemma, the following properties are equiva-
lent:

«) The lines p;p; and ppy, are not in a same plane,
B) Fipy N Fi = {0}
Proof. From lemma 1 we have:
XeFiyNFr<= XeF,and [X|S]=0and X |3]=0

First we prove that («) implies (). The axis of a non-zero element X of Fj, such that [X | §;] =
0 must be a line through p; lying in II; and in a plane containing the line II; N 11;; therefore it
must be the line ppy (if II; and II; are parallel, ppy is the line through py and which is parallel
to these planes). If moreover [X | ¥j] = 0, this line must also be in a plane containing the line
pipj, a contradiction. Hence no non-zero element belongs to F;;) N Fy.

Now we prove that (/) implies (o) by proving that not («) implies not(3). If the lines p;p;
and pp;, would be in a same plane for any non-zero element of Fj the axis of which is the line
ppr. would be in {S, Zk}L = Fijy and also in F(;;) N Fy ( a contradiction). O
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Proof of Theorem 1. Assuming the first property, the hypothesis of lemma 1 and 2 and
property («) hold for all choices of (i, 7, k), hence condition () also holds and this prove the
second property.

Conversely, assuming the second property, the property () holds for all choices of (¢, 7, k)
and also («) from lemma 2. This prove the first property. a

For finding the analytical expression of the projection P; : D — F; we first build a remark-
able basis of F; for (1 = 1,2,3).

Let w; be normalized vectors along the line pp;; whenever p is at infinity we may choose
Uy = upy = us = u. Let & be the screws such that:

& €2y, we

7

=, =123

Then,
& e F, 1=1,2,3.

The screws X4, Yo and Y3 generate a three-system of screws 7, that is the set of screws:
06121 + OéQZQ + oz323 with Qq, 05, 3 € R (7)

which is also the set of screws with zero pitch and with axis lying in the plane pq, pa, ps (these
screws describe the forces acting along lines lying in this plane).
For all ¢, it is possible to choose a screw n; such that:

n, € FxNT, and n; # 0.
A screw n like it was defined in equation (7) is in Z; if a; = 0, that is if:
n =X + apdy, oj,ar € R
In order for the previous screw 1 to be also in F; it is necessary that,
[ [ ] = [Qvi | ;55 + arXe] = o [Qui | 5] 4 o [Qws | 4] = 0

A solution is:

a; = Qv | 8], ap = —[Qu | Y]

and thus,
ni = Qg | ] 85 — [Qus | 3] 5. (8)

Under the first assumption of theorems, for each ¢, ¢; and n; are linearly independent screws
(the axis of n; lies in the plane pypaps and the axis of &;, that is the line p;p, does not also lie
in this plane). In other words:

{fiv 772'} is a basis of F;

Let X € D be a wrench which acts on the grasped object. This wrench can be expanded as:

3
X = wxbr +yrnr,  Trur €R, (9)
k=1



then,
(XS] = vilni | Si
(X[ 2] = a;[& | X

The assumption (p1,p2,ps,p are not in the same plane) implies that [¢; | ¥;] # 0 and
[: | Si] # 0 and the solution is:

i = [fi|12i] [X | Zi]
(10)
Yyi = [m‘llsi] (X | 5]
The projection P; can then be written as:
P L Z®§+71 S @ ' =1,2,3 (11)
P = i @& i@, = 1,2,
[ | 2] [ni | Si]

where, for example, ¥; @ ¢; means the linear operator X :— [X | ¥;]¢,.

Remark 1 The two bases (S1,82,83, X1, X2, ¥3) and (&1, &2, €3, M, 02, 13) make a biorthogonal
system in the vector space D endowed with the inner product [ | -], that is all screw of one
system is orthogonal to all, but one screw of the other.

4 Examples

Example 1: A polyhedral object is grasped by three finger having stiff finger-tip (see Figure
1). The points of contact with respect to the object’s reference coordinate frame is given as:

p1 = (0.0,2.0,5.0)
p2 = (2.0,0.0,4.0) (12)
ps = (2.0,2.0,0.0)

The normalized screws representing the contact normals (n1,n2,n3) at the three points with
respect to o are:

v = (1,0,0;0,5,—2)
vy = (0,1,0; —4,0,2) (13)
vs = (0,0,1;2,—2,0)

Given the grasp configuration, we can compute:

up = (0.0,0.371,0.928)
up = (0.447,0.0,0.894)
us = (0.707,0.707,0.0)

The normalized screws £, &> and & can be determined as: (see Figure 2)

& = (0.0,0.371,0.928;0.0,0.0,0.0)
& = (0.447,0.0,0.894;0.0,0.0,0.0)
¢ = (0.707,0.707,0.0;0.0,0.0,0.0)
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Figure 1: A three fingered grasp

Figure 2: Definition of screw ¢;



Figure 3: Definition of screw 3;

The screws Y1, Yy and X3 which are normalized screws through points (p1, p2) , (p2, p3) and
(ps, p1) respectively are defined using the following general Plicker line coordinates representa-
tion, i.e. for two point p; = (2, ¥y, z;) and p; = (2;,y,,2;): (screw with zero pitch)

L:l’]‘—l‘i

M =y; —y;

N:Z]‘—ZZ'

P:yiN—ZiM (14)
Q:ZiL—J}iN

R:J}Z’M—yilj

Therefore, the normalized screw ¥, ¥y and X3 are determined to be: (see Figure 3)

$1 = (0.0,0.447, —0.894; —1.788,1.788, 0.894)
S, = (—0.371,0.0,0.982; 1.856, —1.856, 0.742) (15)
5 = (0.666, —0.666, —0.333; 2.664, 3.33, —1.332)

Following the definition of inner product in D(see Appendix), the screws 5y, 7 and 73 can



be find from equation (8) as:

m = 0.666(—0.371,0.0,0.982;1.856, —1.856,0.742)
+0.371(0.666, —0.666, —0.333; 2.664, 3.33, —1.332)
= (0.0,—0.247,0.53;2.224, 0.0, 0.0)
n2 = 0.447(0.666, —0.666, —0.333;2.664, 3.33, —1.332)
+0.666(0.0, 0.447, —0.894; —1.788,1.788, 0.894)
= (0.297,0.0,0.744;0.0,2.629,0.0)
ns = 0.982(0.0,0.447, —0.894; —1.788,1.788, 0.894)
+0.894(—0.371,0.0,0.982; 1.856, —1.856, 0.742)
= (—0.331,0.438,0.0;0.0,0.0,1.541)

The normalized screws S;,8; and Sy can be determined from the geometry of the grasp
configuration as:

Slzﬂzmﬂgz(l,o, )
ngﬂgﬂl_[l:((),l, )

Let a wrench with the intensity of 10 Ibf be acting on the object about the normalized screw

defined by, (see Figure 1)

X = 10(—0.707,0.0, —0.707; 0.0,2.12,0.0)

(—7.07,0.0, —7.07;0.0,21.2,0.0) (16)

This wrench can split into:

X =216 +yim + 2260 + yanz + 2383 + yans (17)

where we can compute from equation (10) the coefficients x; and y;, as:

1 1
Ty — X 21 =10.6 1 = X Sl :0.,
AP n= sy X1
1 1
To = X 22 =—12.3 2 = X 82 :—809,
AP v = sy X 1S
1 1
L3 = 3] = —9J. 3 = 83 = U..
G 5y o Rl = =585 = e (X 8a] =0

The friction wrenches are then calculated to be:

Fy = (0.0,—3.71,9.28;0.0,0.0,0.0)
Fy = (=7.9,0.0,—17.07;0.0,—21.2,0.0)
Fy = (—3.92,-3.92,0.0;0.0,0.0,0.0)

Example 2: A cylindrical object of radius 1 is grasped as is shown in the Figure (4). The
contact points are given as: p; = (1,0,0),p2 = (—0.5,0.866,0.) and ps = (—0.5,—0.866,0.).
The normalized screws representing the contact normals (nq, ng, n3) are written as:



Figure 4: The grasp configuration of example (2)

v = (—1,0,0;0,0,0)
v, = (0.5,—0.866,0.0;0,0,0)
vs = (0.5,0.866,0.0;0,0,0)

From the definition, for the case when vy, v and v5 are parallel to the same plane, we choose
uy = uy = uz = u = (0,0,1). As a result the normalized screws &;,&; and & can be computed

to be:
& = (0,0,1;0,—1,0)
& = (0,0,1;0.866,0.5,0)
& = (0,0,1;—-0.866,0.5,0)

From the grasp configuration, the normalized screws ¥; and S; can be computed to be:

¥ = (0,-1,0;0,0,0.5)

¥, = (0.866,0.5,0;0,0,0.5)

Y3 = (—0.866,0.5,0;0,0,0.5)
and,

S = (0,0,1;0,2,0)

Sy = (0,0,1;—-1.732,—1,0)

S = (0,0,1;1.732,—1,0)

From equation (8), we have:

m = (0,0.866,0;0,0,—0.433)
n2 = (—0.749,-0.433,0;0,0,—0.749)
ns = (0.749,—0.433,0;0,0,—0.433)

Let the only force which can act on the grasped object be the object’s own weight of 10(1bf)
acting at its center of gravity located at point o or, X = (0,0,—10,0,0,0). From equation (10),
we have :[X | ¥;] = =5 for i = 1,2,3. Also, for the grasp configuration of this example we have:
[X | Si] =0 for i =1,2,3. The product [§; | ¥;] = 1.5 for i = 1,2,3.
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Therefore, the friction forces associated with the three finger grasp configuration are com-
puted to be:
Fr = &4 = (0,0,-3.33;0,3.33,0)
Fy = w6 = (0,0,-3.33;—2.883, —1.665,0)
Fs = a3 = (0,0,—3.33;2.883, —1.665,0)

5 Conclusion

This paper outlined a new method for computing the friction forces associated with three
fingered grasp. Given the geometry of the grasped object, the locations of contact points and
the surface normals, we are able to determine the magnitude of the friction forces as a function
of the external applied force on the object.

Computation of friction forces as function of the external forces plays an important role in
grasp planning strategies for determining the magnitude of the grasping forces. This is based
on the assumption that at each contact point between the fingers and the object there exist
a direct relationship between friction and the normal force (i.e. F; = puNv; where p is the
coefficient of static friction). Hence by determining F; the magnitude of the grasping forces can
be obtained.

The method of this paper requires:

e building of the screws &;, ¥; and &; and n; which are available from the grasp configuration
data,

e the computation of some inner products|- | -].

The results of this paper is more clear and does not required any matrix inversion comparing

with (Holzmann and McCarthy 85).
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Appendix

In this appendix we summarize the definition of the algebraic operations on screws as used
in the article. The detail are expounded in (Chevallier 91).

In the following ¢ denotes the tridimensional affine Euclidean space, £ the underlying vector
space; to every pair (a,b) of points in ¢ is associated a vector ab in & so that Chasles’ relation

holds.

Definition 3 Vector Space D. [t is well known that to every screw is associated a vector space

field X : e — & with the property (helicoidal field)
X(b) = X(a) + wx x ab for all a and b in ¢
All these field make a real vector space D and the map X — wx is linear.

Let W be a wrench representation with W = (f;¢) with respect to the origin o. Then the
associated Helicoidal field is:

W(p)=g+fxop, p€e

(the moment of the wrench about the point p) and the mapping X +— wx can be written as:
W — f(force). Let T be a twist representation with 7' = (w;v) with respect to the origin o,
then the associated helicoidal field (V(p) = v 4+ w x 0p) describes the velocity of a rigid motion
of angular velocity w.

Definition 4 Lie bracket in D. For X and Y in D, define the vector field U : e — &£ through
U(p) =wx x Y(p) —wy x X(p).

Then it is easy to show that U € D and wy = wx X wy. This helicoidal field is denoted by
X,Y].

Definition 5 Inner Product in D. For X and Y in D, define the real number:
(X[ Y] =wx-Y(p) +wy - X(p).

The relation [X | Y] = 0 means that the screws associated with X and Y are reciprocal.
For a wrench W and a twist T as above, the inner product [W | T| (of the associated
helicoidal field) equal £ -v + g - w the work done by the wrench over the twist.

Definition 6 Operation Q. For X in D, define the constant field QX such that
OX(p) =wx forallp€e
Then Q is a linear operation in D

For example, with the previous notation, QW = (0; f), and QT = (0;w). (The mapping
is different of the mapping X — wx which does not map a screw on a screw).
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