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Abstract— This paper proposes a novel planning
method for multi-agent dynamic manipulation in the
plane. The objective of planning is to find optimal
forces exerted on the object by agents with which the
object can follow given trajectory. The main contribu-
tions of the proposed approach is: First, through inte-
grating of noncooperative game and neural-net approx-
imation, the planner can deal with unknown pressure
distribution effectively. Second, by introducing cooper-
ative game between agents, the forces exerted by agents
distributed optimally. Based on the dynamic model of
the pushed object, the planing problem is solved in two
levels in hierarchical manner. In the lower control level,
generalized force inputs are designed by using minimax
technique to achieve the tracking performance. The de-
sign procedure is divided into three steps. At first, a
linear nominal control design is obtained via full-state
linearization with desired eigenvalue assignment. Next,
neural network systems are constructed to approximate
and are tuned to eliminate the uncertainties related
to pressure distribution. Finally, a minimax control
scheme is specified to optimally attenuate the worst-
case effect of the uncertainties due to residual of ap-
proximation and external disturbance to achieve a min-
imax tracking performance. In the coordination level,
cooperative game is formulated between agents to dis-
tribute the generalized force, and the objective of the
game is to minimize the worst case interaction force
between agents and object. Simulations are carried
out for three-agent cooperative manipulation, results
demonstrate the effectiveness of the proposed planning
method.

I. INTRODUCTION

In robot manipulation, one of the basic task is to
move object from an initial configuration to a goal con-
figuration. One possible method is to grasp objects
rigidly and then move them. The other is to move ob-
jects by using nonprehensile techniques[11]. Dynamic
manipulation includes hopping, juggling, tapping, and
batting, and impulse planar manipulation. Impulse
planar manipulation were studied in [5]. Most work
in dynamic manipulation were considering to use sin-
gle agent to manipulate the objects, and the planning
are carried out under the assumption of known friction
and pressure distribution.

Asides, owning to the industrial needs and desire
to understand human cooperative behavior, there has

been much concern on multi-agent manipulation. In
[4], manipulation protocols for a small team of mobile
robots are developed to push large boxes. In [12], a co-
ordinated manipulation method is developed for reori-
enting polygonal object in a plane. In [1], distributed
cooperative strategies are proposed for a group of coop-
erative behavior-based mobile robots to handle an ob-
ject. The common assumption they made is the motion
of the object under pushing is quasi-static, and none
of them discussed the problem of optimality of cooper-
ation between robotic agents. In order to address the
dynamic cooperative behavior, in [6], a nonprehensile
cooperative dynamic manipulation model is proposed,
in this model, two robotic agents make point contacts
with the object, also relaxing the quasi-static assump-
tion. The motion of the object under two agents push-
ing was modeled as a nonlinear system. Here we as-
sume the finger agents are position/force controllable.
The objective of cooperative planning is to find suit-
able interaction forces between agents and object, and
the object will follow a given trajectory while it is
pushed by agents with planned forces. The interest of
the paper is to find an optimal solution such that the
planned forces satisfy given criterion. The implemen-
tation of the planned forces will not discussed in this
paper, which is a position/force control problem, and
it has been studied extensively in the literature[10].
One centralized planning approach has been proposed
in [8], backstepping techniques and quadratic program-
ming are integrated to solve the planning problem, the
assumption is that there is no uncertainty on pres-
sure distribution. However, in practice the pressure
distribution of the pushed object can not be known
exactly as a priori, this will introduce uncertain fric-
tional forces to the system. Hence, the introduction of
an alternative approach to treat the planning problem
with uncertainty is interesting. The main objective of
this paper is to deal with the dynamic multi-agent ma-
nipulation planning problem under unknown pressure
distribution. And the uncertainties due to pressure
distribution will be approximated by using neural net-
works.



By introducing the cooperative manipulation into
control framework, the coordination problem can be
formulated as a control theoretic problem. The devel-
opment of zero-sum differential games have inspired
important applications in a special class of worst-case
controller design problems-H optimal control[2], and
it has been widely discussed for robustness and its ca-
pability of disturbance attenuation in linear and non-
linear control systems[2]. Neural networks possess
a number of useful properties, such as the universal
approximation capability, performance improvement
through on- and offline learning, and distributed pro-
cessing, which motivates its applications in control and
signal processing. In order to deal with the effect of ap-
proximation error on the tracking error, several neural
network-based H control schemes for nonlinear sys-
tems have been proposed [9][3]. Motivated by these
factors, neural net-based H* technique is utilized to
cope with the uncertainty of pressure distribution in
the cooperative planning problem.

In the dynamic pushing model, the forces exerted
by agents need to obey some constraints. First, in
order to avoid sliding between fingers and object, a
constraint imposed on the force vector is that it must
lie inside the friction cone of the contact surface. The
other constraint is that in pushing action, the force
vector can only direct inside the object. Owning to
these constraints, it is difficult to solve the planning
problem and find optimal forces directly based on the
pushing model. Instead, by introducing generalized
forces(wrench) into the model, the overall planning
process is divided hierarchically into lower control level
and higher coordination level. In the lower level, we
need to find generalized forces applied to the object,
such that the object follows the given trajectory and
obtain desired velocities, this is called a tracking prob-
lem in control literature. The design procedure is di-
vided into two steps. At first, a linear nominal control
design is obtained via full-state linearization with de-
sired eigenvalue assignment. Next, neural network sys-
tems are constructed to approximate and eliminate the
uncertainties related to pressure distribution. Finally,
a minimax control scheme is specified to optimally at-
tenuate the worst-case effect of the uncertainties due
to residual due to approximation to achieve a minimax
tracking performance.

In the coordination level, the task is to distribute
the generalized forces among agents optimally. The
formulation of coordination depends on the choice of
performance index. Here each robot agent try to min-
imize the worst-case interaction force between itself
and the object, each agent can make its decision and
has its own objective, thus the coordination problem
can be casted as a cooperative game be tween agents.
Since all of the constraints are convex, there will exist
a Pareto optimal solution to the cooperative game, and
the Pareto optimal solution is a set of optimal decision
points. In order to single out a compromise Pareto so-

lution and guarantee the worst case performance, the
cooperative game can be transfered as a minimax prob-
lem, the goal is to minimize the maximal interaction
forces. Through a simple transformation, the minimax
problem will be solved by using linear programming.

Having introducing the problem and review the liter-
ature, we outline the remainder of the paper. In section
2, we formulate the multi-agent pushing as a nonlin-
ear system with uncertainty, and outline the planning
problem. Section 3 presents the results on planning of
the optimal force inputs using neural net-based H>
technique and cooperative game. In section 4, simu-
lations are carried out on three-agent manipulation to
demonstrate the proposed planning method. The final
section concludes with a summary of our results and
suggestions for future work. The detail derivation of
the dynamic model for multi-agent manipulation can
be found in appendix.

II. PROBLEM FORMULATION

In this paper, we consider the cooperative manipu-
lation using multiple robotic agents pushing an object,
and each robotic agent make frictional point contact
with the object. Through the analysis of the motion of
the object under pushing, the pushing process is mod-
eled as a nonlinear system with uncertainty, and the
planning problem is formulated as a nonlinear tracking
control and minimax optimization problem.

A. Model of Dynamic Multi-agent Manipulation

Consider the planar motion of the object under
three-agent pushing, XOY is the global coordinate,
zoy is the local coordinate associated with the ob-
ject, and assign o at the center of mass. The con-
figuration space of the object is defined as (X,,Y,,6).
Where (X,,Y,) gives the position of the local coordi-
nate, while 6 denotes the orientation of the object. De-
note the state of the system as T = (z1, 22, - ,x6)T =
(X,,X,,Y,,Y,,0,0)T, we can derive following affine
nonlinear system for three-agent dynamic manipula-
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Fin, Fi,i = 1,2, 3 are the normal and tangential com-
ponents of the contact force generated by agents. Wj
is the wrench matrix for the agent that transfers the
pushing forces into global coordinate. It transforms
the contact force into local coordinate. Fx,Fy are
the friction forces in global coordinate, and T is the
torque respect to the center of mass generated by the
friction force. Due to the uncertainty of pressure dis-
tribution, the friction forces and torque are always un-
known. However, they are functions of the linear and
rotational velocities. And in this paper, we will use
neural network as universal approximator to estimate
the functions, and cancel the effect of the uncertainties.
(please refer to [8] for the derivation of the model)

B. Cooperative Manipulation Planning Problem

The dynamical cooperative manipulation planning
problem can be described as follows: Given an ob-
ject on a plane at a known initial configuration, find
the forces exerted by each finger (or agent), such that
the object move to a specified goal configuration with
specific velocities. The inertial forces are not negligi-
ble compared to quasi-static manipulation, the plan-
ning and cooperation of the fingers must be developed
based on the dynamic model of motion described by
(1). For manipulation, there also exist constraints on
the inputs, for example, the pushing direction must lay
inside the friction cone, otherwise there will be sliding
between the fingers and object; the agent can only push
the object, without pulling. The cooperative manipu-
lation planning problem is formulated as follows:

Given a task of a continously differentiable and
uniformly bounded trajectory qa = (Xor, Yor,0r)
and corresponding velocities qg = (XOT,YOT,OT),
design the state feedback control input u(t) =
(Fin,F1t, Fan,Fat, Fan, F3¢)T such that the state of
the system (1) follows the desired trajectory and min-
imize worst-case normal interaction forces at any in-
stant time t. The objective function M (u) is chosen
as

M (u)(t) = min max{F1n, Fan, Fan} (2)

u(t)

III. PLANNING FOR COOPERATIVE MANIPULATION

In this section, we will solve the cooperative ma-
nipulation planning problem and compute the forces
F;,, Fyy generated by each agent such that the object
follows the given trajectory and obtains desired veloc-
ities.

The object on a plane under pushing have three de-
grees of freedom, and it will need three independent
control inputs to fully control the object to follow any
given trajectory. Here we introduce Fpx, Foy and Tp
as three generalized control inputs to the system, and
let u = (ﬂl,ﬂz,ﬂ3)T = (Fox,Foy,To)T, and rear-
range the system (1) as

iy 2 0 0 0
i3 T4 0 0 0
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and with these control inputs, the system is fully ac-
tuated.

From (1), we know that the generalized control @
and original force inputs satisfy following relations
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Thus the planning of the force inputs is divided into
two phases hierarchically. First, generalized force and
torque controller @ for the uncertain system (3) will be
developed using neural net-based H* tracking control
design in order to cope with the uncertainty of pressure
distribution. Then the coordination will be carried out
on (4) to distribute the generalized control into forces
generated by each finger agent. By considering the
constraints, a cooperative game will be formulated to
solve the problem.

A. Neural Net-based H* Design for The Generalized
Controller

Denote the configuration of the object as qi1 =

(Xo,Yo0,0), and q2 = (Xo, Yoe,0). By introducing

the state vector
a1
= 5
a=| & | )
By considering the fact that the friction forces and
torque are only functions of the velocities qz, the equa-
tion (3) is transferred into the following standard form:

P q2 0 _
q_[f(qz)]+[Mt]u ©)
where f(az) = (P Fxlm) Tl g1

the identity matrix.
Therefore we can define

41 =q1—q4 (7)

as the tracking error that we would like to drive to
zero. Since the nonlinearities appear together with the
control in equation (6), feedback linearization is easy
to design to cancel the nonlinearities. However, the
approach is possible only while all the nonlinearities
are well known. In oder to design the controller under
unknown uncertainties, we need to estimate the un-
certainties, here neural networks are introduced to ap-
proximate the nonlinearities f(q2) as f(qz, ®). Based



on the approximation, the state feedback control law
can be designed as

a=M" — K>, +uo — f(a2,©)) (8)

where ¢g denotes the second order derivative of qa, ©
is a vector containing the tunable network parameters,
and K1, K> are 3 x 3 matrix to be designed and ug is
an auxiliary control signal yet to be specified.

Let .

Ji 1 ((12 ’ 91)
f2(qz,62) )
f3(q2,03)
be the neural network to approximate the nonlinear-
ities f(qz2), and the neural networks fr(qz,0k), (k =
1,2, 3) are composed of nonlinear neurons in hidden
layers and linear neurons in the input and output lay-
ers, i.e,

Yqa — K@

f(q27®) =

Z 61(1 Z leqZJ + m; )

j=1

&(d2,0k) = k=1,2,3

(10)
For simplicity, only consider 6; as the adjustable
weighting parameters. denote

N
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Here we choose the following hyperbolic tangent func-
tion as nonlinear neurons functions

ekpk

eé(qZ) — e_d(qZ)

H(qz) = (12)

e‘s(QZ) + e—é(‘h)
where 4(.) is a function of q2. The weights w . and the
biasesmfforlgzgpk,lgj53,&nd1§k§3
are specified beforehand in this application, where py, is
the number of nonlinear neurons in the neural network
system f(qz, k). The neural-network system f(qz, ®)
can be denoted as

&0 o076
0 £2T 0 0>
0 0 &][6s

f(a2,©) = —E0 (13)

Now define the optimal parameter estimates ©* as fol-
lows

© = arg min max 1£(d2,©) = f(a2)ll  (14)
where ||.|| denotes the Euclidean norm, €y and Q de-

note the largest compact sets that © and q2 belong to,
respectively.
Substituting (8) and (7) into (6), yields,

@ = q
Q@ = q((iz) - Kia: - Kaq,
+uo + f(az) — f(qz) (15)

= lef) -Kiq: — Kzéil

+up + E20* —E0 + (f(q2) — EO*)

Let us denote

é:[?l]z[ql_‘?“] (16)
q; q2 — 94
as the state error vector. And let

d(t) = f(q2) — EO" (17)

be the optimal approximation error, and (:)(t) is defined
as

O(t) = 0* — O(t) (18)
From (7), (15) and (16), we obtain
EINLI
a; —Ki1q1 — K2q; +up + (E0* —E0) +d
(19)

the system in (19) represents the tracking error dy-
namics, it is a nominal linear uncertain system, the
nonlinear uncertainties are modeled by d. A more con-
venient form of (19) could be

¢ = Ae + Bug + B(E®@* —E20) + Bd  (20)
where
0 I 0
A_[—K1 —K2] B_[I] (21)

The control parameters K;, K> are selected such that
A is Hurwitz and has desired eigenvalues such that the
tracking dynamic (20) has a desired response if the
system is free of uncertainty.

If the system is free of uncertainties due to the neu-
ral network approximation, by using control law in (8)
with choice of linear control ug(t), the tracking error
(19) will converge to zero asymptotically. However, in
the case of uncertainty, the tracking performance will
be deteriorated, and the system may be instable in
worst case. In order to eliminate the effect of uncer-
tainties, robust controller must be employed. The H*
control is one of the most efficient approach to attenu-
ating the worst-case effect of uncertainties d(t) on e(t)
n (20). Therefore, in the second step, the control sig-
nal ug(t) should be specified such that the worst-case
effect of d(t) on the tracking error e(t) must be atten-
uated below a prescribed level p. The H tracking
performance index is defined by[13]

t
o lle@IIG + lluollz] dt <
[ >
Jo! lld(@®)]I> at
(22)
where @ = QT > 0 and R = RT > 0 are the weighting

matrices. However, in the case e(0) # 0, the perfor-
mance must be modified as following

min max
uo(t) d(t)

Vd(t) € L0, t]

min,, ;) Maxg(y) f(;ff (eT t
—p?dT (t)d(t))dt < eT'(0)Pe(0) +



where where 7 is the adaption gain, P = PT > 0 is
positive definite weighting matrices to be specified.

Subject to the tracking error dynamic equation in
(20), let us define the cost function

J(e;ug,d) = [} €T (t)Qe(t) + ud (t) Ruo(t)
—p2dT (t)d(t)dt
(24)
After some rearrangement, we obtain,
J(e, ug,d) = €T (0)Pe(0) — ™ (ts)Pe(ts)
1®T( )9( )—% T(ts)O(ts)
+ftf (£)Qe(t) + ud (t) Ruo(t) — p*d (t)d(t)
+dt( T(t)Pe(t)) + + £(67 (£)0(1))]dt
e (0)Pe(0) — €™ (ty)Pe(ts)
1®T( )6(0) — 207 (t7)O(ts)
+ftf Qe<)+u§<t)Ruo< ) — p*d"(8)d(t)
_(T)Pe() (t)Pé(t_)
+16 ()O(t) + 0T (H)O(t)dt
(25)

substituting (20) into the above equation, yields,

J(e,uo,d) = e (0)Pe(0) — e” (t)Pe(ts)
+;07(0)6(0) — 07 (t7)0(ty)
fg [e"(t)(ATP + PA+ Q)e ()+uO( )Ruo(t)
p T (t)d(t) + ug ()BT Pe(t) + e (¢ )P Buo(?)
+e ()PBEé(t)+é ETBT Pe(t) + 1@ t)O(t)
+107(t 1)O(t) + T (t) PBd(t) + dT (¢ )BTPe( )]dt
(26)
then we get the following result:

Theorem 1: For the system (3), if the control u(t)
is chosen as

a= Mt_l(q((f) —K1d1 — K2, +uo—f(q2,©)) (27)

with

0 = =T BT Pe(t) (28)

ug = —R B Pe(t) (29)
where R = RT > 0 is a weighting matrix and P =
PT > 0 is the solution of the following algebraic
Riccati-like equation

PA+ATP4+Q-PB(R ! - plzI)BTP =0 (30)

Then the minimax tracking in (23) is guaranteed for a
prescribed p and the corresponding worst-case d*(t) is
of the form

d*(t) = p—IQBTPe(t) (31)

Proof: Introducing (30) to (26) we get

J(e ug, d) = e(0)Pe(0) — e’ () Pe(ty)
+5 ®T( )9( ) = 507 (t)0(ty)
+ f )J(PA+ATP+Q
—PB(R— — L1)BT P)e(t) + u (t) Ruo(t)
+u0T(t)BTPe(t) + el (t)PBuy(t)
el (t)PBR 1B Pe(t)
2dT( )d(t) + dT( )BTPe(t)
" (t)PBd(t) — S;e” (t)PBB” Pe(t)]dt

(32)

From (27)-(30), and using the technique of completion
of the squares we get

J(e ug,d) =€’ (0 ) (0) el (ts)Pe(ty)
+167(0)6(0 ) 0% (t;)0 ( 7)
+ T [Ruo(t) + BT Pe(t)]" R [Ruo(t) + B Pe(t)]
—(pd(t) — ;B Pe(t))" (pd(t) — B Pe(t))dt
(33)
From the dynamic game theory[2], we know that the
control ug(t) try to minimize J(eg,uo,d), while the
disturbance d(t) wants to maximize the performance
index J(eg, ug,d), from (33), we obtain the optimal
control as (27) and the worst-case d*(t) as (31), then

min,, ;) maxa() J (e, ug, d) = e’ (0)Pe(0)
+507(0)0(0) — e’ (ts)Pe(ty) — ;07 (t1)O(ty)
eT(0)Pe(0) + £67(0)0(0)
(34)
The above inequality holds when P = PT > 0, and
R=R">0.

Remark 1: Generally, we choose p < 0 to attenuate
d(t) in order to achieve the robust minimax tracking
performance. In the case p — oo, the H* design is
reduced to a H, optimal tracking control where no at-
tenuation of d(t) is considered. And in order to guaran-
tee the positive definite solution of P, the Riccati-like
equation (30) must satisfies following condition[13]

p’I>R (35)

This tells us there is a tradeoff between attenuation
level p and control input ug(t), i.e., If p is extremely
small, It requires large uo(t).

From above analysis, a design procedure for the H>
controller can be summarized as follows.

Design Procedure for H>® controller
1. Specify K;, Ko, determine A with desired eigenval-
ues.
2. choose the desired attenuation level p, selecting
positive-definite matrix Q and R with R < p*I.
3. Solve the positive-definite matrix P from the
Riccati-like equation (30).
4. Choose the neural-network functions
[é-kl; ey, {kpk]forkzl,---,& in (11)
5. Compute the H* control law (29) and @ as (27),
and the parameter update law in (28).

Till now, we have designed the generalized controller
for minimax tracking performance, Our next task is to
redistribute it to the agents.

& =



B. Coordination as A Minimaz Problem

For a generalized controller (wrench) (27) obtained
from H* design, how to distribute the wrench between
agents is the objective of the higher level coordination.
The coordination between agents can be considered as
game between agents. Each agent has an objective, i.e.,
minimizing the normal interaction force between itself
and object, and can make its own decision through
choosing the interaction forces component Fj, and Fj;
for agent i. The problem can be written as

minu{Fln; F2n; F3n}
Subject to  p;Fip — |Fi| >0, i=1,2,3
F;, >0, 1=1,2,3
Fln
cosxs —sinzs 0 1};”
sin Is COST5 0 [ W1 Wz W3 ] _FQn
0 0 1 2t
F3n
F3y
Fox
= | Foy
To
(36)

where u(t) = (F1in, F1¢, Fan, Fat, Fan, F3¢) T.

Since all the constraints in problem (36) are linear
and convex, if the problem is strictly feasible, there
will be a Pareto solution to the game. The definition
of Pareto optimality is as follows: For an objective
function f = [fi(x),fa(x), -, fm(x)], a design vari-
able vector x* €  is Pareto optimal if and only if
there is no vector x € €2, with the characteristics

fi(x) < fi(x*) for all
and  fi(x) < fi(x*)

From the definition, there may exists a set of Pareto
optimal points. In order to obtain a single best com-
promise Pareto solution to the game, we consider the
worst case interaction force between agents and object,
the cooperative game can be transfered as a minimax
optimization problem

i=1,---,m

for at least on 1,1 <i<m

minu maxi{Fm, FQn, an}
Subject to  p;Fip — |Fi| >0, i=1,2,3
F;, >0, 1=1,2,3
Fln
cosxs —sinzs 0 1};”
sin Iy COST5 0 [ W1 Wz W3 ] _FQn
0 0 1 2t
F3n
F3y
Fox
= | Foy
To
37)

This problem can be solved by using standrad multi-
objective optimization routines or solved by linear pro-
gramming through introducing slack variable.

IV. SIMULATION RESULTS

In previous section, we proposed a new planning
method for dynamic multi-agent manipulation. Here
simulations will be carried out by using a triangular
object under two-agent or three agent pushing, the ob-
ject is shown in Fig. 1. where a = 0.2m,b = 0.17m,
angle A = 7/6, we assume the uniform distribution of
mass, the mass density p = 200kg/m?, and mass is
m = 1.7kg. using the approach proposed in [7], the
mass moment of inertia is Iy = 0.0037. The friction
coefficient between the object and surface is u = 0.5,
friction coefficient between the fingers and object is
;i = 0.8. The local coordinate is located at the center
of mass and fixed on the object, and assign the global
coordinate at the same location, but fixed on the sup-
porting plane.

Consider agent 1 pushing at edge AC, agent 2 push-
ing at BC, agent 3 pushing at AB, assign contact co-
ordinate to each finger, the associated contact normal
and tangential vectors are written as

n= (3" t= (83"
ng= (=, -3)" t2=(5-9)" (8
ng = (07 I)T tg = (_170)T

the contact points between fingers and object are
given as

Ly = (—0.0167 0.0289)

Ly = (0.0500 0.00289) (39)
L3 = (—0.0400 —0.0283)
computing the wrench matrices, we get
0.5000  0.8660
W; =] —0.8660 0.5000 (40)
0.0476  —0.0333 |
[ —0.8660 0.5000
W2 = | —0.5000 —0.8660 (41)
| —0.0278  0.0481 |
0 —1.000 ]
W; = 1.000 0 (42)
| —0.0400 —0.0283 |

A. Planning under Three-agent Manipulation

When we consider the translation and rotation of
the object, three agents are needed to manipulate the
object following predefined trajectory. The trajectories
are given as

And we consider the uncertainties Fj,F,,T asso-
ciated with pressure distribution entering the sys-
tem (1) randomly, and F, ~ [=0.5F,,0.5F;,],
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Fig. 1. Manipulation of triangular object

F, ~ [-0.5F,,,0.5F,,], T ~ [-0.5T,,0.5T,], where
Fypn, Fyn, T, are the friction forces and torque gener-
ated under the assumption with known pressure dis-
tribution that is given above. The numerical compu-
tation procedure for F,,, Fy,,T, is described in [8].
And the initial condition X,(0) = 1, X, = 0,Y,(0) =
0.5,Y,=0,60,(0)=0.2,6, =0.

First, following the design procedure in above sec-
tion, the H* robust controller design is give by fol-
lowing steps.

1. Specify

3 00 9 0 0
Ki=]0 2 0 Koy=10 7 0
0 0 8 0 0 5

such that the eigenvalues of the nominal sys-
tem are —0.3467,—8.6533,—-2.5 + 2.7839i,—-2.5 —
2.7839i,—6.7016, —0.2984.

2. select the attenuation level p = 0.3, and p = 0,05,
respectively. And Q = diag[100l3, 100l3], and R =

2].

g. solve the Riccati-like equation (30) using MATLAB
function "are”, we get,

172.2222 0 0 16.6667 0 0
0 196.4286 0 0 25. 0
P 0 0 121.25 0 0 6.25
16.6667 0 0 7.4074 0 0
0 25 0 0 10.7143 0
0 0 6.25 0 0 11.25

4. select neural network structure as (11). And for
simplicity reason, we choose wfj =1for all 4,7, k. i.e.,

w=[1 1 1]

The neural network systems are selected to be & =
(i1, &a7]T for i = 1,2,3, where & ; is nonlinear
neural function and has following form,

ew  az—440.5(j—1) _ pw"q2+4-0.5(;—1)

§ij = ew T A2—4+0.5(—1) } ow aa+4-0.5(—1)
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Fig. 2. H® tracking results of positions (p = 0.1)

fori=1,2,3, j=1,---,17. And
0, &0 0
O=16|, ZE=10 & o0
03 0 0 ¢

where 0; = [0;,1,-+,0;17]7 for i = 1,2,3. The initial
guess of ©(0) = 0.

5. Compute the H* controller according (27) and
(29). and update the weights of neural networks ac-
cording to (28).

Fig. 2- 7 present the simulation results of neural
network-based H* tracking. In Fig. 2- 3 and Fig. 5-
6, simulation results demonstrate the minimax track-
ing performance for attenuation level of p = 0.05 and
p = 0.1, respectively. Fig. 4 and Fig. 7 show the
generalized forces under different attenuation levels.
According to the simulation results, it is clear that a
small attenuation level p may yield a better tracking
performance.

After obtaining the generalized forces, now a mini-
max optimization problem can be set up as (37), Here
p = 0.5 is the friction coefficient between the finger
agents and object, and the wrench matrix is as (42).
The results are shown in Fig. 8 and Fig. 9 for different
p- The resulting forces satisfy the performance index

(2).
V. CoNCLUSIONS AND FUTURE WORKS

This paper proposed a planning method dynamic
cooperative multi-agent manipulation with unknown
pressure distribution. = The coordination between
agents is performed hierarchically. In lower level, the
generalized force inputs are designed by integrating lin-
earization with neural network-based H* technique,
and H* tracking performance is achieved. The H*
performance consists of the desired attenuation prop-
erty and the boundedness property of all the argument
variables. Through applying the generalized force to
the object, the object will track the given trajectory,
and obtain desired velocities. In higher coordination
level, a cooperative game is solved to distribute the
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generalized force between agents, and obtain minimax
performance. The coordination under two-agent and
three-agent manipulation are studied. The hierarchi-
cal structure for coordination is flexible, when more
agents are added for manipulation, the redesign of
lower level generalized force controller is not needed.
Simulation results demonstrate the proposed coordi-
nation method.The proposed approach does not con-
sider the dynamics of the agents, the integration of
the dynamics of agents and object in planning will be
addressed and how to plan contact points optimally
between agent and object is also very interesting.

REFERENCES

[1] M.N. Ahmadabadi and E Nakano. A constrain and move
approach to distributed object manipulation. IEEE Trans.
on Robotics and Automation, 17(2):157-172, 2001.

[2] T. Basar and P. Bernhard. H-optimal control and re-
lated minimazx design problems-a dynamic game approach.
Birkhauser, Boston, second edition edition, 1995.

[3] Y. Chen and B. Chen. A nonlinear adaptive H® tracking
control design in robotic systems via neural networks. IEEE
Trans. on Control Systems Technology, 5(1):13-29, 1997.

[4] D.R. Donald, J. Jennings, and D. Rus. Information in-
variant for distributed manipulation. Intl. J. of Robotics
Research, 16(5):673-702, 1997.

[5] W.H. Huang and M.T. Mason. Mechanics, planning,
and control for tapping. Intl. J. of Robotics Research,
19(4):883-894, 2000.

[6] Q.LiandS. Payandeh. Modeling and analysis of dynamic
planar multi-agent manipulation. In IEEFE International
Symposium on Computational Intelligence in Robotics and
Automation, pages 200-205, July 2001.

[7] Q. Li and S. Payandeh. Planning velocities of free sliding
objects as free boundary value problem. Technical report,
ERL, Simon Fraser University, 2001.

[8] Q. Li and S. Payandeh. Centralized cooperative planning
for dynamic multi-agent planar manipulation. In Proc.
2002 IEEE Intl. Conf. on Decision and Control, Dec 2002.

[9] C.Lin and T. Lin. An H® design approach for neural net-
based control schemes. IEEE Trans. on Automatic Control,
46(10):1599-1605, 2001.

[10] J.Y.S.Luh and Y.F. Zhang. Constrained relations between
two coordinated industrial robots for motion control. Intl.
J. of Robotics Research, 6(3):60-70, 1987.

[11] M.T. Mason. Progress in nonprehensile manipulation. Ingl.
J. of Robotics Research, 18(11):1129-1141, 1999.

[12] D. Rus. Coordinated manipulation of objects.
mica, 19(1):129-147, 1997.

Algorith-

[13] A. Stoorvogel. The H* control problem: A State Space
Approach. Prentice-Hall, Upper Saddle River, NJ, 1992.



