
TToowwaarrdd IImmpplleemmeennttaattiioonn ooff JJaavvaa//VVRRMMLL EEnnvviirroonnmmeenntt ffoorr PPllaannnniinngg,,
TTrraaiinniinngg aanndd TTeellee--OOppeerraattiioonn ooff RRoobboottiicc SSyysstteemmss

Kaveh E. Afshari and Shahram Payandeh
Experimental Robotics Laboratory (ERL)

School of Engineering Science, Simon Fraser University
Burnaby, B.C., V5A 1S6, Canada

ABSTRACT
This paper presents an approach toward implementing
Java and VRML environments for training and Tele-
operation of Robotic Systems. Three methods were
explored for such experiments, for communicating and
message passing between Java and VRML programs.
The first method includes routing approach. Using
VRML script, all the nodes of the virtual world are
routed to the Java applet. The Java program then controls
the nodes in order to model a robot. In the second
method all the VRML objects are made in the Java
applet, and then the whole virtual world is sent as text to
the VRML environment. The third method uses a pre-
structured template of a generic robot. All the nodes of
the Robot are defined with DEF command, and they are
accessed by Java though the browser. After gaining
access to the nodes, Java has full control over the nodes,
and can customize the robot. Then the robot can be used
as a virtual model, and can be controlled as a graphical
user interface of a real robot.

Keywords: web-based application, Tele-robotics, Java,
VRML, External Authoring Interface (EAI),

1. INTRODUCTION
Since the gradual birth of the first Robots, Tele-
operation has been evolving to an evermore significant
subject of robotic control systems. As the robotics
technology enhances, sophisticated robots (multi-robots)
are becoming more challenging to coordinate and control
(Tele-controlled).
Universal Kinematics Visualization Training Tools
(UKVT) for purpose of planning, controlling and
defining models of robots is slowly growing popularity
in robotics community.
This paper presents a web-based approach for defining,
interfacing and further controlling robotic manipulating
systems. Other related works can be summarized as
following.
At the Universita della Calabria (Italy), L. Nigro et.al.
[1] have proposed a modular approach to real-time

programming using actors and Java. They proposed
DART, an actor-based architecture for real-time
applications, which has been designed to be exploitable
in popular object oriented languages.
Also at the Universita di Pisa, S. Piccinocchi et.al. [2]
have presented an interactive benchmark for planning
Algorithms on the web. They present an interactive
environment available on the World Wide Web intended
to allow fair and thorough comparison of different
techniques to solve a basic problem in non-holonomic
motion planning.
At the University of Western Australia, K. Taylor et.al.
[3] have demonstrated remote operation and
programming of an industrial robot by linking remote
users to an industrial six- axis robot through the World
Wide Web which is part of the Internet computer
network. The remote user receives still video images of
the robot's work space and can move its gripper in x, y,
z, and roll pitch and yaw directions. At the Agency of
Industrial Science and Technology, H. Hirukawa et.al.
[4] have been developing a prototype of a Tele-operation
system via a standard protocol with a standard human
interface, where an enhanced VRML is employed as the
protocol and a Web browser as the human interface.
This paper presents an application of VRML/Java to the
design of interactive web-based robotics. It is arranged
as follows: Section 2 presents an overview of web-based
application, and introduces some universal 3D Graphics
environments. Section 3 is about visualization of robotic
mechanism, which mentions some advantages of VRML
and a brief history of VRML, and section 3.1.1 and 3.1.2
introduce VRML script and EAI respectively. Then we
move to interfacing VRML with Java (section 4), and we
describe some different methods of approaching this
goal. Finally we show an example (section 5) and we
present our future plans (section 6).

2. WEB BASED APPLICATION
Remote Tele-Operation requires a reliable, fast and
secure network connection. One of the approaches,
which may offer such connection, is ‘The Internet’.
Although such connection has its general disadvantages,
i.e. low bandwidth and variable time-delay for some

applications and security, but it seems like the web-
based application will have more advantages than many
other network connections,
Using a web-based environment requires platform
independent software or server based applications.

Figure 1-Remote Tele Operation via Internet

An example of a system with Internet connection is
shown in Figure 1.
In this figure an onsite computer (server) can be
connected to the Robot arm. The server has access to the
Robot I/O ports. The user can login to the control server
from any computer via the internet. The web based
control software is loaded at the user’s computer, and the
user can control the robot arm. A 3D model of the robot
enables the user to visualize and control the motion of
the arm.

2.1 Graphics
Visualizing a simple world can be very difficult in a 2D
projecting monitor. 3D graphic tools that have been
developed and are being enhanced every day, create a
more realistic interface. Some of these environments are
more dedicated to high precision and dedicated
modeling: ACAD and SolidWorks, while some other are
more graphics oriented, like: VRML, OpenGL.
High precision 3D modeling and design software are
usually more expensive, while some graphics oriented
environments are available through the web free of cost.
VRML and OpenGL are two examples of these kinds.
Yet OpenGL is a C++ graphics library, and therefore the
final application would be platform dependent.
VRML is platform independent, and it runs usually as a
plug-in to standard web browsers (Microsoft Internet
Explorer, and Netscape Navigator). The plug-in is
available for most systems, and can be downloaded from
the Internet for free. The two most widely used plug-ins
are Cosmoplayer (http://www.cosmosoftware.com/), and
Blaxxun Ccpro (http://www.blaxxun.com/). Both
support Microsoft Internet Explorer and Netscape
Navigator, and they have common standard
functionality, but different interface. They both have
some non-standard features that add to their capabilities.
Another platform independent environment is Java 3D.
The Java 3DTM 1.1 API is a set of classes for writing

three-dimensional graphics applications and 3D applets.
It gives developers high level constructs for creating and
manipulating 3D geometry and for constructing the
structures used in rendering that geometry. Application
developers can describe very large virtual worlds using
these constructs, that provide Java 3D with enough
information to render these worlds efficiently [5].

3. VISUALIZATION OF ROBOTIC
MECHANISM

Most robot arms are multi-chained, and they have
several different joints and links. Revolute and Prismatic
joints are just two of the simpler and more practical
representations. In this representation, one joint is the
parent and the other joints are its children. So any
motion in the parent joint will affect the children
respectively. So for example if the first joint rotates an
angle (θ) the coordinate system of all the children will
change (Figure 2). Similarly if the first joint translates by
a vector X=(x,y,z)T, all the coordinate systems of the
children will be changed accordingly.

Figure 2-Two joint arm

Consequently, it is beneficial that the modeling system
be able to perform these calculations implicitly. Since
VRML already has parent-child Nodes (Listing 1) built
in the infrastructure, designing a robot with real-life
features is facilitated.

Listing 1

DEF ROBOT_ARM Group
{
children
[
DEF JOINT_1 Transform
{
 translation x1 y1 z1
 rotation x1 y1 z1 θ1
 children
 [
 USE JOINT_1_SHAPE

 USE LINK_1_TRANSFORM
 DEF JOINT_2 Transform
 {
 translation x2 y2 z2
 rotation x2 y2 z2 θ2
 children
 [
 USE JOINT_2_SHAPE
 USE LINK_2_TRANSFORM
]
 }
]
}
]
}

In the above code, JOINT_1 is parent with respect to
JOINT_2; therefore, any transformation (rotation and
translation for our case) on JOINT_1 automatically
transforms the coordinate system of JOINT_2.

3.1 About VRML
Virtual Reality Modeling Language (VRML) is an
international standard (ISO/IEC 14772) file format for
describing interactive 3D multimedia on the Internet [6].
VRML 1.0 was developed at Silicon Graphics based on
Open Inventor. After reviews by VRML moderated
email discussion group (www-vrml@vrml.org), VRML
2.0 was released.
VRML97 is the informal name of the International
Standard (ISO/IEC 14772-1:1997). It is almost identical
to VRML 2.0, but with many editorial improvements to
the document and a few minor functional differences.
VRML97 is also the name of the VRML Technical
Symposium that took place in February 1997 in
Monterey, CA [7].
Web3D is the new generation of these modeling
languages. It combines a run-time delivery engine and
VRML 97-inspired file format with XML bindings, with
strong industry support for a proven standardization
process [7]. While all of these modeling languages are
backward compatible, they add numerous advantages for
the programmer. VRML now supports internal scripting
as well as External Authoring Interface.

3.1.1 VRML Script
3D modeling is just the base of VRML. This language
supports internal scripting, which makes the virtual
world interactive. VRML script provides a great
environment for non-scientific virtual worlds, but due to
its limitations, it is not a great candidate for
programming control systems.

3.1.2 JAVA/VRML External Authoring
Interface (EAI)
Another way of controlling the VRML world is through
the External Authoring Interface. Using VRML libraries,
we can control our virtual world with a programming
language. And the most commonly used language, which

is multi-platform that can also interface with VRML, is
JAVA.

4. INTERFACING VRML WITH JAVA
There are a number of methods that can be followed for
developing interactive interface with VRML
representation of a robotic system.

4.1 Method 1
One way of implementing this idea is to use Routing.
With a small VRML-script, a Java class can be called
and specific nodes in the pre-coded virtual world are
routed to the Java program (Figure 3).

Figure 3-Direct VRML JAVA routing

Here the Java applet can pass messages to and from the
virtual world. A message send to a Node is EventIn, and
a message from the node in EventOut. Some Nodes also
have fields that contain structural information. But only
exposed fields can be accessed from an external
interface. Listing 2 shows a sample node with all the
fields, their types and their default value(s).

Listing 2

Collision
{
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFBool collide TRUE
field SFVec3f bboxCenter 0 0 0
field SFVec3f bboxSize -1 –1 –1
field SFNode proxy NULL
eventOut SFTime collideTime
}

In this method there is no HTML web page, the browser
directly opens the virtual world. When the VRML code
runs, it can initiate the JAVA class. Listing 3 shows a
sample VRML script that initiates a Java class, and
routes some nodes to the internal Java variables.

Listing 3

DEF Control Script
{

 url "Control.class"
 mustEvaluate TRUE

 eventOut SFRotation outEv_Rotation_theta
 eventOut SFVec3f outEv_Translation_z
 eventOut SFBool outEv_ViewPoint
}

ROUTE Control.outEv_Rotation_theta TO X_R.rotation
ROUTE Control.outEv_Translation_z TO Z_T.translation
ROUTE Control.outEv_ViewPoint TO MYVP.set_bind

In the VRML file the node properties are routed to the
corresponding variables in the Java class. Now the Java
class can send and receive information to the desired
node, and the virtual world becomes fully interactive.

4.2 Method 2
Another method is to create a web page that contains the
VRML file and the JAVA applet. The VRML file
contains only an empty ROOT node (Listing 4).

Listing 4

#VRML V2.0 utf8
DEF Camera Viewpoint
{ position 0 0 7 }
DEF ROOT Group {}

Using EAI the rest of the virtual world can be built
through Java. The capabilities of EAI are vast, yet
sometimes very limited. For example it was found that
one could control the translation, rotation, and scale of
objects. New objects can be added as children to a node,
but only the last child added can be accessed.

Figure 4-HTML embedded Java/Vrml

A Java applet communicates with a VRML world by
first obtaining an instance of the Browser class. This
class is the Java encapsulation of the VRML world. It
contains the entire Browser Script Interface as well as
the getNode() method, which returns a Node when given
a DEF name string. Only DEF names in the base file are
accessible. Names in Inline files and those created with
createVRMLFromString() or createVRMLFrom-
URL() are not accessible. Since VRML files can have

multiple occurrences of the same DEF name, only the
node with the last occurrence of a given name is
accessible [8].

Listing 5

//this function creates a vrml Node from String
public void draw_my_Cone()
 {
 my_Cone = browser.createVrmlFromString(
 "Transform\n" +
 "{\n" +
 " translation 0 1 0\n"+
 " children Shape \n" +
 " {\n" +
 " appearance Appearance \n" +
 " {\n" +
 " material Material\n" +
 " {\n" +
 " diffuseColor 0.5 1 0.8\n"+
 " }\n" +
 " }\n" +
 " geometry Box \n" +
 " {\n" +
 " size 1 1 1 \n"+
 " }\n" +
 " }\n" +
 "}\n");
 }
...
...
...
//calling the function to setup the Cone
draw_my_Cone()
//adding the Cone node to the VRMl file
addChildren.setValue(my_Cone);

Thus, if we design and build our robot using Java, we
have to send the model as text to the VRML program
(Listing 5), but when VRML displays the world, Java
cannot access the desired nodes to move the robot arm.
We can use TouchSensors to overcome this problem, but
now the user has to click on the joint, which may require
repositioning the viewpoint. After clicking (or touching)
that joint, Java can access that node and move the joint.
These extra intermediate steps make the interface very
user-unfriendly.

4.3 Method 3
Another way of building an interactive control system is
creating an HTML page that includes the VRML model
(.wrl) and the JAVA applet (.class) which controls the
world. A universal template of a robot arm is coded in
the VRML file, and each node is assigned a name.

Figure 5-JAVA VRML interaction using EAI

The JAVA applet can find the VRML world through the
browser (Figure 5). After finding the ROOT it will look
for the named nodes and connects them to the
corresponding Java variables.
Then all the EventIn and EventOut`s are defined for each
node, and they are attached to corresponding Java
objects with correct types (Listing 6).

Listing 6

…
//gets the browser
browser = (Browser)
 vrml.external.Browser.getBrowser(this)
//gets the nodes through the browser
joint_1 = browser.getNode(“JOINT_1”);
endeffector = browser.getNode(“ENDEFFECTOR”);
…
//setting up the proper Events for each node
joint_1_set_translation = (EventInSFVec3f)
 joint_1.getEventIn(“translation”)
joint_1_set_rotation = (EventInSFRotation)
 joint_1.getEventIn(“rotation”)
endeffector_sensor = (EventOutSFBool)
 endeffector.getEventOut(“isActive”);
…

Now Java can access the Nodes to pass information to
and from the virtual world (Listing 7). Using a Java GUI
we can initiate interaction with Event handlers.

Listing 7

…
//Java Event handling
…
//sending information to Nodes
joint_1_set_translation.setValue (joint_1_translation);
joint_1_set_rotation.setValue (joint_1_rotation);
…
//receiving information from nodes
sensor_state = endeffector_sensor.getValue();
…

After starting the communication between VRML and
Java, our universal template of the robot arm can be
modified to fit our specifications. Subsequent to the
customization, the arm can be fully controlled through
Java.

This interactive modeling system can be connected to a
real robot through a server via Internet. And the robot
can be remotely controlled, using this 3D modeling
environment.

4.4 Discussion
The three methods that we examined in our research
each have their pros and cons. Method 1 requires
programming in both Java and VRML side, and
therefore to expand the software, you have to access both
codes.
Method 2 is not a good candidate for this purpose, since
the nodes designed from Java cannot be accessed again.
Or they have to be activated from the VRML side, which
requires clicking on the object. This makes the user
interface very unfriendly. But this method requires
programming mainly in the Java side. So changing and
upgrading the code would be more reliable.
We used method 3 to design our research. There is no
programming in the VRML side, yet you have to build a
very complex virtual robot in the VRML file. Also, since
all the sections are embedded in a web page, it expands
our limitations. May be a combination of all the three
methods can be used to optimize the software.

5. EXAMPLE
Using the EAI methods with the predefined robot
template, we created the Dyno Robo. Dyno Robo is a
virtual robot that can be customized to match a real
robot. Currently, it has 4 joints and a basic end-effector.
Each of the 4 joints can be independently configured.
The initial orientation of the joints can be set, and the
length of the links can also be changed. Figure 6 shows
some sample modes of Dyno Robo. Figure 6-a shows a
robot with two links set to length of zero, where the end-
effector has two degrees of freedom by itself. In Figure
6-b link 1 is doubled, and link 3 is set to zero. The end-
effector has one degree of freedom. Figure 6-c shows a
robot with all the links extended, and in Figure 6-d joint
3 is also rotated by 135 degrees.

(a) (b)

(c) (d)

Figure 6-Different customizations of Dyno Robo

After this process, the user can move all the joints, and
change the view position to the end-effector view. It can
grasp an object and place it on one of the two squares.

(a) (b)

(c) (d)

Figure 7-Dyno Robo In Action

Sensors implemented in the world enable the robot to
detect the objects; therefore, it can grab the object only if
it is within the range. To release the object we used
proximity sensors to detect the place of the object, so it
won’t release the object unless it is safe to do so.
In Figure 7 these sequence is shown in 4 pictures. The
robot moves to grab a ball (Figure 7-a). When the
sensors detect the ball, the ball is picked up (Figure 7-b).
The robot moves to the second square (Figure 7-c), and
when it is in the permitted proximity, the ball is released
(Figure 7-d).
Figure 8 shows the interface of Dyno Robo 3.0 . You can
navigate within the virtual world using the standard
VRML navigation features, and also you can change
your view point through the Java interface, so you can
have the view point right at the end-effector.
This is just a basic version, and it can be expanded so all
the features are customizable, and the number and type
of joints are configurable.

Figure 8-Dyno Robot

This picture
shows the

coordinates.

Scrollbars used to
move the joints.

Each step builds one set
of joint and link

6. FUTURE PLANS
After having a fully functional Robot modeling system
and with full features, a dynamic representation to the
model will be added, so the virtual model has mass and
inertia. And all joints follow real robot specifications.
Also we have to design client to server socket
connection and implement I/O ports to the Java applet.
We may also implement some Java 3D in our interface.
For example, this robotics system can be used for
training. Since it is web-based and interactive, it is a
good candidate for teaching basic robotics. The software
can be extended to study dexterous and reachable
workspace of a robot. Trajectory planning is another
advantage of this tool. It can help to investigate and
visualize feasible trajectories in a Tele-robotics
environment.
Adding physical-based modeling properties to the
graphics model provides a path for haptic rendering and
haptic interaction.

7. CONCLUSIONS
In this research, we discussed the different 3D
environments that are possible candidate for Tele-
operation of robotic systems. We explained some
different methods of implementing Java and VRML
interface. Finally, we described a software which is
being developed in our research Lab.

8. ACKNOLEDGEMENTS
This project was partially funded by the Institute of
Robotics and Intelligent Systems (IRIS) of Canada.

9. REFERENCES
[1]L. Nigro, F. Pupo, “A modular approach to real-time
programming using actors and Java”, Control
Engineering Practice 6 (1998) 1485-1491
[2]S. Piccinocchi, M. Ceccaredlli, F. Piloni, A. Bicchi,
“Interactive Benchmark for planning Algorithms on the
Web”, Proceedings of the 1997 IEEE International
Conference on Robotics and Automation, Albuquerque,
New Mexico – April 1997, Page 399
[3]http://telerobot.mech.uwa.edu.au/ROBOT/telerobo.ht
m, visited 4,1999
[4]h. Hirukawa, T. Matsui, S. Hirai, A Prototype of
standard Tele-operation Systems on an Enhanced
VRML, 1997 International Conference on Inteligent
Robots and Systems, Vol 3, page 1801-6
[5] http://java.sun.com/products/java-media/3D/
[6]http://www.web3d.org/technicalinfo/specifications/sp
ecifications.htm , visited 4,1999
[7]http://www.web3d.org/technicalinfo/x3d/x3d_process
.htm htm , visited 4,1999
[8]http://cosmosoftware.com/developer/moving-
worlds/spec/ExternalInterface.html, visited 4,1999

[9]http://cosmosoftware.com/developer/eai.html

[10]http://cosmosoftware.com/developer/moving-
worlds/spec/ExternalInterface.html
[11]http://www-winfo.uni-
siegen.de/vrmlHistory/docs/index.html
[12]http://www-robotics.cs.umass.edu/robotics.html
[13]http://wwwipr.ira.uka.de/~germ_rob/
[14]http://telerobot.mech.uwa.edu.au/
[15]http://www.rosl.com/
[16]http://www.robotics.org/

	Toward Implementation of Java/VRML Environment for Planning, Training and Tele-Operation of Robotic Systems
	ABSTRACT
	1. INTRODUCTION
	2. WEB BASED APPLICATION
	2.1	Graphics

	3. VISUALIZATION OF ROBOTIC MECHANISM
	3.1	About VRML
	3.1.1	VRML Script
	3.1.2	JAVA/VRML External Authoring Interface (EAI)

	4. INTERFACING VRML WITH JAVA
	4.1	Method 1
	4.2	Method 2
	4.3	Method 3
	4.4 Discussion

	5. EXAMPLE
	6. FUTURE PLANS
	7. CONCLUSIONS
	8. ACKNOLEDGEMENTS
	9. REFERENCES

