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Abstract—

In this paper, a novel numerical approach is proposed to
solve the initial velocities of the free sliding object for given
initial and final configurations. To find the desired initial ve-
locities for free sliding objects is a key step for implementing
impulse manipulation. In order to plan the initial velocities,
the motion of free sliding objects is modeled as a set of 6 first
order differential equations, and the planning problem is for-
mulated as a free boundary value problem(FBVP). Through
a simple transformation, the FBVP is reduced to a standard
Two-point boundary value(TPBV) problem. Quasi-Newton
based optimization procedures are utilized to solve the plan-
ning problem. TUnlike existing approaches, the proposed
method does not require qualitative motion characteristics,
thus it can be used for objects with general shape and arbi-
trary pressure distribution. The method always gives faster
convergence rate than other methods based on characteris-
tics analysis. Simulation results on polygonal objects with
three to five vertices are used to demonstrate the planning
method.

I. INTRODUCTION

In robot manipulation, one of the basic task is to move
object from initial configuration to goal configuration. One
possible method is to grasp objects rigidly and then move
them. The other is to move objects by nonprehensive
techniques such as pushing, throwing, batting and strik-
ing[7]. Dynamic manipulation includes hopping, juggling,
tapping, and batting, and impulse planar manipulation.
Impulse planar manipulation were studied in [6][5][4]. The
problem was decomposed into the impact problem and the
inverse sliding problem. The inverse sliding problem is to
determine the initial velocities required for the object to
slide to the desired displacement(translation and rotation)
based on the dynamics of sliding object. The dynamics of
sliding motion of disks and rings has been studied in [9],
some properties of the motion were proposed. In [3], con-
cept of limit surface was introduced to studied the relation
between the motion of the slider and the frictional force.
Owing to the complex dynamics of the free sliding object,
for a given displacement of the object, it was founded that
it is impossible to determine the desired velocities analyti-
cally.

The inverse sliding problem for the class of axisymmet-
ric objects is addressed in [5]. Axisymmetric objects are
those which have a pressure distribution that is a function
of radius of the object only, and have the property that
they always slide in a straight line. The planning is to find
the initial linear velocity along the line, and the associated
rotational velocity. Using the properties of monotonicity of
displacement with respect to the initial velocities, a numer-
ical approach is developed to find the desired initial veloc-

ities through subdividing the initial velocity space. How-
ever, the monotonicity properties do not hold for nonaxism-
metric objects, which limits the applications of the impulse
manipulation method. Recently the impulse manipulation
has been extended to polygonal objects in [4]. A new set
of qualitative dynamic characteristic of the motion are de-
rived to relate the initial velocities and the displacement of
the object. Heuristic rules were developed to search for the
desired initial velocities in the 3-dimension initial velocity
space. In above two approaches, first qualitative relation-
ships between the initial velocities and displacement were
derived, then the searching algorithm for the velocities are
developed through bisection of the initial velocity space.
All of above methods depends on some characteristics of
the motion, they can only be applied to a specific class
of objects, Besides, the algorithms used only qualitative
heuristic information, the convergence is always slow.

In stead of using qualitative information, this paper pro-
posed a new method to solve the free sliding problem us-
ing optimization techniques. Under Coulomb’s assump-
tions on friction, a set of differential equations that gov-
ern the motion of the object can be derived for a given
object. In the free sliding problem, the initial configura-
tion and final goal configuration are known, and we know
that at final goal configuration, the velocities of the object
are zero, while the traveling time of the object is unspec-
ified. Based on this observation, the free sliding problem
can be formulated as a free boundary value problem. In
order to use the well known existing techniques, the prob-
lem is reduced to standard two-point boundary value prob-
lem and solved by using simple shooting methods[1]. The
shooting method is implemented by integrating the initial
value solver with optimization routines. Here we use the
Quasi-Newton’s method as the optimization routine. In
general shooting methods, computing of Jacobian in opti-
mization routine is always time consuming because several
initial value problems have to be solved. In order to reduce
the cost for computing Jacobian, we implement the Quasi-
Newton’s method with the Broyden update. In which the
Jacobian is updated recursively without solving the initial
value problems in each iteration.

The method proposed here is different from the previ-
ous methods[6][4]. In previous methods, first qualitative
relationships between the initial velocities and displace-
ment were derived based on the equations of free sliding
objects, then the searching algorithm for the velocities are
developed through bisection of the initial velocity space.
These methods utilized same strategy for specific type ob-
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Fig. 1. Motion of planar object

jects or parts which satisfy the qualitative criteria obtained
through analysis. For other kind of objects with different
geometry or different pressure distribution, new criteria
need to be derived to direct the search direction for the
initial velocities. Just as the bisection method for non-
linear equation, the convergence speed of these methods
is always slow. In this paper, instead of using qualitative
properties of the motion, quantitative information is used
to find desired initial velocities. The proposed method has
higher convergence speed and can be applied to more gen-
eral objects.

The remainder of the paper is organized as follows:
model of the sliding motion is derived in section 2, in sec-
tion 3 we formulate the velocity planning problem as free
boundary value problem, and give the standard two-point
boundary value(TPBV) formation. Section 4 presents the
planning algorithm and implementation. Simulation re-
sults are carried out in section 5, and section 6 concludes
the paper. And the computation of mass moment of inertia
and friction for general objects is discussed in appendix.

II. MODEL OF SLIDING MOTION

The motion of an free sliding object on a horizontal plane
is governed by the friction force between the object and
the plane. The friction force and torque can be calcu-
lated by integrating through each infinitesimal element of
the object. Consider an object on the plane as shown in
Fig. 1. XOY is the global coordinate, zoy is local coordi-
nate associated with the object, and assign o at the center
of mass. The configuration space of the object is defined as
(X5,Y,,6). Where (X,,Y,) gives the position of the local
coordinate, while 8 denotes the orientation of the object.

Assume the linear velocity of 0 is v = (X,,Y,), we as-
sume that on each infinitesimal element of the object, there
acts a force of friction. Denote A as infinitesimal element
of the object located at (z,y) in local coordinate, and r is
the position vector from o to A, dm is the mass of element
A calculated as dm = p(z,y)dzdy, p(z,y) is the pressure

distribution function over the area. w = 6 the angular ve-
locity of object in the count-clockwise direction, u is the
friction coeflicient, g is the acceleration of gravity. By inte-

grating friction forces and torque over overall contact area,
the frictional forces and torque acting on the object can be
expressed as

Ag
Fx——u-g-p//\/gdwdy (1)
Fy:fu-g-p//%dwdy (2)
—p.g. A
T=-p-g p//\/ﬁdwdy (3)
Where
Ay =X, —cosf-w-y—sinh -w-z (4)
A, =Y, —sinf-w-y+cosf-w-zx (5)
A = —(Xom+Yoy)sin0 (6)
—(Xoy —Y,z)cosb+w-y? +w- 2
B = (X,-cosf-w-y—sinf-w-z)

+(V, —sinf-w-y+cosf-w-x)?

The motion of the sliding object subject to the friction
can be written as

Xo = Fx/m
Y, = Fy/m (8)
6=T/I

where m is the mass of the object, while I is the mass
moment of inertia refer to the center of mass. Denote T =
(:1:1, r2,T3,T4,Ts5, .’L’G) = (Xo, Xo, Y;;, Yo, 0, 0) as the state
variable, (8) can be rewritten as the state space form

T X2 fl(T)
o) I f2gfg
T . T4 . f3(T
o | 5|7 A ©)
Ty Tg f5(T)
Te T fe(T)

If we want to plan to desired initial velocities for free
sliding object using the model (8), we must set up a small ¢,
and consider the object stopped when v/ X2 + Y2 + 62 =0,
this gives us the traveling time T7.

I1I. FORMULATION OF THE PLANNING PROBLEM

The planning problem can be formulated as: An object
with known geometry, mass distribution, and friction prop-
erties slides on a supporting surface. It starts from initial
configuration (X;,Y;,6;), slowing down to rest at a final
configuration (Xy,Yy,6r). Given the initial and final con-
figurations, determine the initial velocities.

The motion of the object on a plane is governed by (9),
which is a system of 6 first-order differential equations.
There exists no analytical solution for determining the ini-
tial velocities for a given displacement. However the initial
velocities can only be found by using numerical procedures.



For a given initial configuration (X;,Y3,6;), and veloci-
ties (X;,Y;,0;) at time ¢t = 0, the trajectory of the motion
can be uniquely determined, such that the object occu-
pies the final configuration (Xy,Y},8f). The solution can
be found by numerical integrating the system (9). This
is known as the initial value problem. However for the
planning problem, the initial configuration (X;,Y;,8;) at
t = 0 and final goal configuration (Xy,Yy,0;) are known,
while the traveling time T of the object is unknown. If
both the starting time and ending time for (9) are speci-
fied, the problem becomes a standard two-point boundary
value (TPBV) problem in differential equation literature[1].
Since in the planning problem, only starting time ¢ = 0 is
specified, we need to use another boundary condition to
determine the ending time 7%, the condition is that the
velocities at the ending point Ty decay to zero. Here the
system (9) has a solution satisfying 7 boundary conditions

X,(0)=X; Xo(Ty) = Xy

Y,(0)=Y; Yo (Ty) =Yy (10)
0,(0)=0;  6,(Ty) =05

Xo(Ty) =0

The statement of this problem is referred as free bound-
ary value problem.

The free boundary value problem can be transformed to
a TPBYV problems by introducing new independent vari-
ables. Here in place of time ¢, we introduce a new indepen-
dent variable 7, such that

t=7Ty 0<7<1 (11)
. dTy
T =—= = 12
r=—4-=0 (12)

In (11), we know that when 7 varies from 7 =0 to 7 = 1,
the system will travel from ¢ = 0 to ¢ = Ty. And T} is
independent to 7.

After substituting (11) into (9), and augmenting (12) to
(9), the motion of the object respect to 7 can be written

as .
G = T fi(@)
2 = Ty fo(T)
: (13)
Do = Ty fo(T)
T, = 0

The system of 7 differential equations is now in standard
TPBYV form with 7 varying between the known limits 0 and
1. And the boundary conditions are

X,(00=X; X,(1)=X;
Y,0)=Y% Y1) =Y
0,00)=6; 8,(1) = b;

Xo(Ty) =0

(14)

The planning problem is to determine initial velocities
(X,(0),Y,(0),6(0)) and the traveling time Ty, such that
the solution of (13) satisfy boundary conditions (14).

The methods for solving TPBV problems fall into three
categories: (1). the shooting method, (2) the difference

method, (3). the variational method[8]. The shooting
method is an extension of the initial value techniques. Its
advantages are conceptual simplicity and it allows tak-
ing advantage of available initial value ordinary differential
equations solvers.

IV. PLANNING THE VELOCITIES OF FREE SLIDING

A. Planning algorithm

In this section, the initial velocities are planned using
shooting method to the TPBV formulation (13) and (14).
The associated initial value problem is defined as

& = Ty f1(T)
G2 = Ty- f2(7)
: (15)
Z_ZZQ Ty - f5(T)
W= 0
with the initial conditions at 7 = 0,
X,(0)=X; X,(0) =X,
Y,00=Y; Y,(0)=Y;
. . 16
0,(0)=6; 6,(0)=6; (16)
Ty(0) = Ty

We know from the boundary condition (14) that X,(0) =
X;,Y,(0) = Y;,6,(0) = 0; are known, and the config-
uration X,(1),Y,(1),0,(1) and the linear velocity X, (1)
at 7 = 1 are functions of s = (01,02,03,04)7 =
(X,(0),Y,(0),6(0),T¢(0)) at 7 = 0 in initial value prob-
lem. In order to solve the TPBV problem of (13), (14),
we need to determine a starting velocities and traveling
time T}(0) as s = (X,(0), Y,(0),8(0),T¢(0)) for the initial
value problem (15), (16), such that the solution obeys the
boundary conditions (14) at the other end 7 =1 as

Xo(1,8) = Xy Y.O(las) =Y (17)
0,(1,s) =6 X,(1,5)=0
rewriting (17) as a vector function form
XO 1) -X Y; 1, -Y,
o [ XM =X VLo -y

0,(1,5) —0; X,(1,5) ]"

where s = (01,02,03,04)7 .
Solving the TPBV problem is equivalent to finding a
solution of s as 5 = (G1,02,03,04) such that

F(3) =0 (19)

This nonlinear equations (18) can be solved by means of
the general Newton’s method

S+ — () _ DF(S(i))—l . F(s(i)) (20)

In each iteration step, one has to compute F(s(?), and
the Jacobian matrix

60k



and the solution d(¥ = s() — s(i+1) of the linear system of
equation DF(s(9)d®) = F(s(9). For the computation of
F(s(®), one must solve the initial value problem (15),(16)
for s = s = (agi),aéi),aéi),af)), the Jacobian DF(s(9)
can not be calculated analytically, and it will be approxi-
mated by the matrix

AF(s9) = (22)

[ AFl(S(l)) AFQ(S(Z)) :|

where

Aﬂ@m):=A%wa9r~
(Uy)a ] ;l)a

j=1,2,34

ol + Act) o o)
—,0))

for
(23)
As the computation of F(s(9), the calculation of

F(O'?), ,a](-i) + Aa;-i) ,ai )) requires to solve the cor-
responding initial value problems (15), (16) with initial
conditions s = (a§’), s 5') + Aa(z) (Z)). The ap-
proximate Newton’s method is carrled out as

s = 5 _ AF(s)~1 . F(s(9) (24)
The planning algorithm is summarized as
1. Choose a starting vector s,
For i =20,1,2,---, repeat steps 2-4,
2. Determine Xo( L), Y, (1, s(’)) 6,(1,5D), X,(1,sD) by

solving initial value problem (15),
F(s9) according to (18).

3. Choose Aogj,j = 1,---,4, and determine X,(1,s% +
Acje;), Yo (1,5 + Acje;), 0,(1,5% + Acje;), X, (1,50 +

(16), then compute

Aoje;) by solving 4 initial value problems (15), (16) for
s=s" 4+ Acje; = [UY.), s ,a](-i) + Aoy, Uiz) (25)
where e; is a 4 dimensional vector of following form
~_ |1 i=j
61(7’)_{ 0 l#] (26)

4. Compute AF(s()) by means of (22),(23), and also the
solution d® of the system of linear equations

AF(s)d®D = —F(s'?) (27)

and update

(D) = 50 4 g (28)

Algorithm 1: Shooting method without Broyden’s
update

In each step of the method, 5 initial value problems and
a 4-th order system of linear equation need to be solved.

B. Shooting with Broyden’s Update

In each iteration of the algorithm, the Jacobian is com-
puted numerically according to (22),(23), which needs solv-
ing 4 initial value problem. The computing of initial value
problem is always time consuming. In order to reduce

the computational cost, we consider to use the Broyden’s
method[2] to approximate the Jacobian matrix, the local
convergence has been proven in [2]. In Broyden’s method,
The Jacobian matrix is updated in each iteration instead of
computing numerically using (22) and (23). The planning
algorithm with Broyden’s update is:

1. Choose a starting vector s(),

2. Determine X,(1,5©),¥,(1,5®),8,(1,5©), X,(1,5)
by solving initial value problem, then compute F(s( ) ac-
cording to (18).

3. Choose Aoj,j = 1,---,4, and determine X,(1,5® +
Acje;), Y, (1,50 + Agje;),0,(1,5 + Acje;), Xo(1, 50 +
Aoje;) by solving 4 initial value problems for

T
5" =50 + Aoje; = [UP), ) + Ay, ,04(10)]
(29)

where e; is a 4 dimensional vector of following form
i=7

6ﬂ0={é P4

4. Compute AF(5(%)) by means of (22), (23).
Fori=20,1,2,---, repeat steps 5-8,

5. Compute the solution d¥ of the system of linear equa-
tions

(30)

AF(s%)d?) = —F(s") (31)

and update

S 50 | gl (32)
6. Determine X,(1,s(*1), Y, (1,s0H+1), 6,(1, s(i+D),
X, (1,51 by solving initial value problem (15), (16),
then compute F(s(t1)) according to (18).
7. Compute

y@ = F(stY)) -

F( S(i))
where y(® is the difference of the function F(.) during it-
eration 7+ 1 and ¢, which provide the information for com-
puting Jacobian.

8. Update Jacobian

(33)

(y () _ AF(s(i))d(i) (d(i))T

= AF(s (1))

Algorithm 2: Shooting method with Broyden’s update

In algorithm 1, the computation of Jacobian is approxi-
mated by (22), which needs to solve 4 additional initial
value problem in each iteration. Instead, the Jacobian is
updated through (34) in algorithm 2. This algorithm only
needs to solve one initial value problem in each iteration,
which reduces the computational cost dramatically.

V. SIMULATION RESULTS

Simulations are carried out with planning algorithm 2
on polygonal objects with 3-5 vertices, even and uneven
pressure distribution are considered.
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Fig. 2. Trajectory of object vs. iteration

A. Planning for object with even pressure distribution

Consider a triangle object with edges ¢ = 0.2m,b =
0.17m, angle A = =/6, pressure distribution p =
200kg/m?, friction coefficient u = 0.5. The mass mo-
ment of inertia are calculated using the procedure pro-
posed in appendix A.1, and the integration of the fric-
tion on the triangular contact area is carried out ac-
cording to appendix Al. The initial configuration is
[Xo Yo 6 = [0 0 0], the goal configuration is
Xy Yy 0f] = [1.5m 2m 1lrad]. Using the planning
algorithm 2 proposed in this paper, the desired veloci-
ties were found in 4 iterations, the desired velocities are
X Y w] =[29686m/s 3.9595m/s 1.7257m/s], and
the trajectories of the object in each iteration are shown in
Fig. 2.

Consider a rectangular object with even pressure
distribution p(z,y) = 200kg/m? and dimension is
0.2m x 0.1m, The goal configuration is [X; Y; 6] =
[1.5m 2m 1rad]. Using the planning algorithm pro-
posed in this paper, with initial guess of velocities as
500 =[3.2m/s 2.3m/s 2.8rad/s]. The configuration vs.
iteration is shown in Fig. 3. It is clear that the planner find
the desired velocities that lead the object to the goal config-
uration. The planning algorithm can obtain the desired ini-
tial velocities [X YV w] = [2.88m/s 1.9m/s 2.77m/s]
in 4 iterations.

Consider a pentagon with vertices located at

(0,0),(0.2,0), (0.175,0.1), (0.15,0.2), (0.1,0.15)in global
coordinate, and the pressure distribution function rho =
200kg/m?, The goal configuration is [X; Y; 0f] =
[1.8m 0.9 2.0rad]. Using the planning algorithm pro-
posed in this paper, with initial guess of velocities as
500 = [4.5m/s 2.5m/s 3.5rad/s]. The configuration
vs. iteration is shown in Fig. 4. The planning algo-
rithm can find the desired initial velocities [X Y w] =
[3.97m/s 1.98m/s 3.18m/s].

B. Planning for object with uneven pressure distribution

Consider the rectangular object used in last section, and
dimension is 0.2m x 0.1m, now consider the uneven pres-
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Fig. 4. Final configuration vs. Iteration

sure distribution rho(z,y) = 100kg/m? for z < 0.1 and
rho(z,y) = 200kg/m? for z > 0.1. The goal configuration
is [Xy Yy 6 = [1.8m 1m 2rad]. Using the plan-
ning algorithm proposed in this paper, with initial guess
of velocities as (%) = [4.5m/s 2.5m/s 3.5rad/s]. The
final configuration vs. iteration is shown in Fig. 5. The
planning algorithm can obtain the desired initial velocities
X Y w] =1[393m/s 2.19m/s 3.46m/s]. It is clear
that the planning algorithm works also for the objects with
uneven pressure distribution.

VI. CONCLUSION

In this paper, a novel computational approach has been
proposed to solve the initial velocities for the free sliding
objects on a plane. The velocity planning problem is for-
mulated as a free boundary value problem, and solved by
using nonlinear optimization techniques. In the proposed
method, quantitative information is used to search the de-
sired velocities, no motion characteristics such as mono-
tonicity of force and torque are needed, this method can be
used for objects with general shapes and pressure distribu-
tion. The planning method is verified using numerical sim-
ulation on polygonal objects with 3-5 vertices under even
and uneven pressure distribution. The proposed method
gives really quick convergence. The proposed planning
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method can be used in any impulse based manipulation
or other manipulations which need to solve initial veloci-
ties. Experiments need to be done to verify the planning
method.
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APPENDIX

I. COMPUTATION OF MASS MOMENT OF INERTIA AND
FRICTION

For general geometrical objects, there is no analytical
formulation to compute the mass, mass moment of inertia,
friction forces and torque. One possible way is to partition
the object into a number of simple areas such as triangles,
and working out the mass moment of inertia, friction forces
and torque of each simple area first, then summing up of
them. In next two sections, the computation methods for
convex polygonal objects are discussed.

A. Mass moment of inertia of polygon

Consider convex polygon as shown in Fig. 6 in global
frame XQY. Mark the vertices as V4, Va2, Vs, ---, V,, with
the coordinate (X;,Y;) of V; in global frame, the mass pres-
sure distribution function is p1(X,Y). Convex polygons

Y
by
1
2
T
6 3 -
o
4 -
1o) X
Fig. 6. Geometry of polygonal object
can be divided into n — 2 triangles as
‘/1‘/2‘/37 ‘/1‘/3‘/47 ‘/IV4V57 Tty ‘/IVka—‘rl) Ty ‘/IV’IL—IVTL

. and labeled as Ty, 7%, -, T}, 2. In order to planning the ve-
locities for free sliding object, we need to know the mass m,
mass moment of inertia I of the object, and also the center
of mass. All these quantities can be computed numerically
by integrating over the triangles 71,75, -, T 2.

The mass of the object can be calculated as

m = ffspl (X,Y)dXxdy 35
= S [ e (X, V)axay 39
The center of mass (X,,Y,) can be computed as
X, =mg/m Y, =my/m (36)
Where m, and m, are computed as

m, = [ fs Xp(X,Y)dXdy 4

= S Xp (X, Vyaxay  GD)

Y (X,Y)dXdY

= Y2y fT Ypi(X,Y)dXdY

After the center of mass (X,,Y,) are computed, assign a
local coordinate passing through the center of mass as zoy.
The coordinates of vertices of the polygon can be repre-
sented in local coordinate as

i =X; — X,

Yi = Y'z - Yo (39)

And the mass pressure distribution function becomes
p(z,y) = pr(x + X,,y +Y,) in zoy coordinate. The mass
moment of inertia I with respect to the center of mass can
be computed as

I=1,+1, (40)

where
I, = ffs y2p($7 dxdy

= ffT p(z,y)dzdy (41)



I, = ffsa: p(z, y)d;cdy
= ffT 22p(z,y)dzdy

In order to compute the mass, center of mass, mass mo-
ment of inertia of the polygonal object, double integrations
(35), (37), (38), (41), (42) need to be carried out over the
triangular regions T;. A numerical procedure is developed
in next section.

(42)

B. Numerical double integration over triangular region

In order to implement shooting method to the planning
problem, we also need to compute the friction forces and
torque described by (1), (2), (3) in the contact area. The
computation of friction force and torque needs the double
integration of (1), (2), (3) on the contact area. For general
geometrical object the double integration can only solved
by numerical methods.

Consider a triangle T;,i = 1, - - - ,n—2, assign the vertices
as (r1,y1), (T2, y2), (x3,y3). Almost all existing double in-
tegration routines work only under rectangular boundaries,
and they can not be used to solve the integration for the
irregular contact boundaries, we need to find transforma-
tions to transfer the irregular boundaries into rectangular
boundaries such that we can utilize the existing routines.
Here consider following transformation

z = (—1%(§+n))+w2(%(1+£))+m3(%( 1))
2

= (—LE+m) + (b1 +6) +3(EA+m) @Y

maps a triangle with vertices (z;,y;) into the standard
triangle with vertices (—1,-1),(1,-1),(—=1,1) in the &n
plane. The Jacobian associated with the transformation is

dz Oy
Jo= |k &
o on L (44)
_ §(—$1 + z2) ¥(—y1 +y2)
s(=z1+23) (Y1 +ys)

By substituting (43) and (44) into (1), (2), (3), the inte-
grand become fz(&,n), fy(&,n),t(€,n), and we get follow-
ing integration formula

Fy=—p-gfl 77T p( z,y ) y(ﬁ,n)dndf (45)

Till now, we transform the integration on a arbitrary
triangle area into a standard triangle area. In order to
transfer the triangular area into a rectangular area, here
we introduce another transformation

=(-¢{+1)z-1 (46)
Thus when z = 1,7 = —¢ and when z = 0,7 = —1 as
required in (45). Differentiating the above expression we
have

dn = (—€+ 1)dz
substituting (46) and dp into (45), we have

(z2,y2)

(-1-1)
(z1,%1)

Fig. 7. Geometry of triangular object

Fx =—p-g [, [y Ip(@,y) - fol(€, 2)dzdE
Py =—p-g[' [} Tp(x,y) - Fyl(€, 2)dzde
T=—p-g [ [y To(x,y) - t1(, 2)dzds

These integrals now become standard form with rectangu-
lar boundaries, and they can be integrated using existing
double integral routines such as Gaussian quadrature di-
rectly. The transformations are shown in Fig. 7.

For general objects, after we get all the frictions and
torque on each triangular areas, the overall friction force
and torque can be obtained easily by summation.

The computation of double integrations (35), (37), (38),
(41), (42) can be carried out in same manner as above.

(47)



