
Abstract State Machines

IRMS Presentation by
Eman Elghoneimy

Ph.D. Student
January 18th, 2005

Based on CMPT 745 lecture notes, Fall 2004, by Dr. Uwe Glasser

2

Contents

Software modeling
Formal methods
ASM and ground models
Executable specifications
ASML
DASM
References

3

Software modeling

Modeling is the process of turning product
ideas and specs into software requirements.

What product are we building?

Requirements are refined into implementation
Verification

Are we building the product right?

Validation
Are we building the right product?

4

Formal methods

Any attempt to use mathematics in defining a
computer-based system.
Can be used in:

Verification
Requirement spec
Design spec
Code spec

Study of key properties
Refutation

5

ASM Ground model

Model reflects the system, establish the
correctness and completeness of system by
observing and experimenting the model
Model used to

Clarifying requirements
Turning English into mathematics
Discovering ambiguities, inconsistencies and loose
ends in informal descriptions

6

ASM ground models (cont.)

Establish system correctness by
experimental, mathematical and
conceptual justification of the model.
Bridge the gap between specification,
implementation and verification.

7

Ground Model characteristics

Precise
Concise
Abstract
Checkable
Revisable
Refinable
Formal

8

Integrated development
process [2]

9

Executable specification

Model-based specification: abstract
encoding

Explore design choices
Experimental validation of key properties
Discover undesirable behaviours

10

ASML

ASML (Abstract State Machine Language) is
an executable specification language based
on the ASM theory.
ASML is available for free download from the
Microsoft research website. The ASML
package contains useful tutorials and
references to the language.
ASML supports specification and rapid
prototyping of object-oriented and
component-oriented software.

11

ASML: states and updates

States:
The model state is represented by the
interpretation of state vocabulary symbols

Updates:
Total update by replacing the value of the
vocabulary symbol
Partial update by adding or removing elements
All updates fired simultaneously (if consistent)

12

ASML: Statements

If-then-else
forall
choose

13

Example: Sorting

choose x,y Є Index : x < y ∩ a(x) > a(y)
do in-parallel

a(x) := a(y)
a(y) := a(x)

14

Example: GCD

gcd(a; b) = gcd(b; a mod b)

if output = undef then
if (a mod b = 0) then output := b
else

a := b
b := a mod b

15

DASM

Autonomous operating agents, each
with its own program
Run one step of all agents, or choose
subset of agents to run
Interaction by reading and writing to
shared locations of global machine
states

16

DASM: Example
step until fixpoint
RunAgents()

RunAgents()
step

// forall a in ChooseSubset({a|a in JAgentSet where a.IsAvailable()})
forall a in JAgentSet where a.IsAvailable()

a.Program()

// forall m in ChooseSubset({m|m in MAgentSet where m.IsAvailable()})
forall m in MAgentSet where m.IsAvailable()

m.Program()

FlipCoin() as String
choose x in {"heads","tails"}

return x
ChooseSubset(elems as Set of JobAgent) as Set of JobAgent

return {e | e in elems where FlipCoin() = "heads"}

17

DASM: Example
Operations

head: ItemList →Item
tail: ItemList →ItemList
newItem: →Item

ProducerProgram ≡
itemList := itemList ∩ newItem

ConsumerProgram ≡
if itemList ≠ empty then
item := head(itemList)
itemList := tail(itemList)

18

Light control DASM

Three submachines
Automatic control
Manual control
Malfunction

Automatic and manual control alternate,
with malfunction submachine executed
in-between.

19

Example: Light control
(ASMGopher)

Switch_lightgroup_off(room, lightgroup) =
mode(room) := Manual
forall light ∈ lights_in_group(room,
lightgroup)

Switch_light(room, light,
minDimValue)

Room_wall_button(room, lightgroup) =
if lightgroup_wall_button_pressed(room,

lightgroup) then
if lightgroup_is_completely_on(room,
lightgroup)
then

Switch_lightgroup_off(room, lightgroup)
else

Switch_lightgroup_completely_on(room,
lightgroup)

Switch_lightgroup_completely_on(room,
lightgroup) =
mode(room) := Manual
forall light ∈ lights_in_group(room,
lightgroup)

Switch_light(room, light,
maxDimValue)

20

Additional requirement
U1Req It is safe to allow a person who wants to rest in a room to choose a light scene in which all the lights are switched off and the room is dark.

U3Req Instead of establishing the chosen light scene we use the last light scene.

U10Req If the ceiling lights do not enter explicitly the lights to be turned on for the given light scene, they are set to minDimValue.

NF5aReq Ceiling lights in a hallway section are \not controllable manually" if at least one hallway button is defective.

NF5bReq If a motion detector is defective, its sensor value behaves as if there is motion.

PushButtonReq Consistency of simultaneous pushing on different wall buttons (fixed priority or hardware solution).

RoomOccupationReq A reasonable definition for a location to be not occupied is that there has been no motion for a period of max_quiet_time.

MotionDetectorReq The motion sensor detects motion when users push buttons.

LightSceneReq The function lights to turn on computes an ordered set containing all lights that should be switched on together with their dim values. The order of
the set is the order in which the lights should be turned on.

HallwayReq The requirements FM1 and NF3 are useless for hallways if these are without windows.

OutdoorSensorReq The sensor value of an outdoor light sensor remains constant if the sensor does not work correctly.

DefaultLightSceneReq We do not commit to any particular definition of default light scene

21

References
1. CMPT 745 lecture notes, Fall 2004, U. Glaesser.
2. E. Börger, E. Riccobene and J. Schmid. Capturing Requirements by Abstract

State Machines: The Light Control Case Study. Journal of Universal Computer
Science 6(7), pages 597-620, July 2000.

3. U. Glässer, Y.Gurevich and M. Veanes: Abstract Communication Model for
Distributed Systems. IEEE Transactions on Software Engineering, vol. 30, no.
7, pages 458-472, July 2004.

4. ASML website: http://research.microsoft.com/fse/asml/
5. ASM website: http://www.eecs.umich.edu/gasm/
6. D. Berry. Formal Methods: The Very Idea. Science of Computer

Programming, 42(1): 11-27 (2002)
7. Y. Gurevich. Sequential Abstract State Machines Capture Sequential

Algorithms, ACM Transactions on Computational Logic, vol. 1, no. 1, July
2000, pages 77-111

8. E. Börger. “The ASM Ground Model Method as a Foundation For
Requirements Engineering”. [Online document],
http://www.di.unipi.it/~boerger/Papers/SwEngg/GroundModMethod.pdf

	Abstract State Machines
	Contents
	Software modeling
	Formal methods
	ASM Ground model
	ASM ground models (cont.)
	Ground Model characteristics
	Integrated development process [2]
	Executable specification
	ASML
	ASML: states and updates
	ASML: Statements
	Example: Sorting
	Example: GCD
	DASM
	DASM: Example
	DASM: Example
	Light control DASM
	Example: Light control (ASMGopher)
	Additional requirement
	References

