Recursive Propagation Scheduling for Holonic Systems

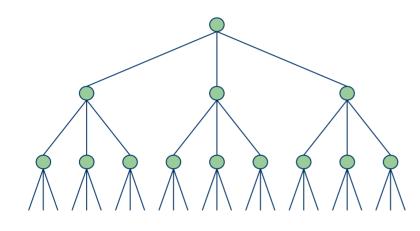
Scott Logie

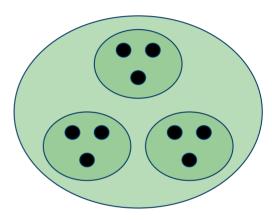
Simon Fraser University School of Engineering Science Burnaby, BC Canada

February 27, 2003

Research supported by NSERC, ASI

Introduction


- Motivation
- Research Goals
- Problem Definitions
- Algorithm Details
- Simulations Results
- Further Development
- Questions

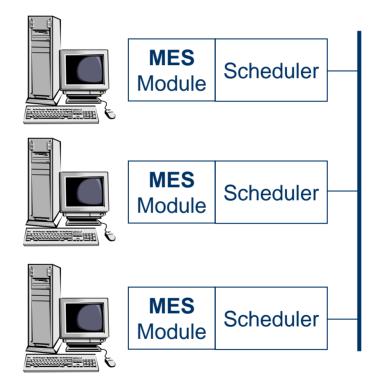

Holonic Manufacturing System

• Holon Definition

- Arthur Koestler (1967) hol whole; -on particle
- Production facilities with multiple participants
 - Distribute system knowledge among constituents
 - Centralized vs. Decentralized
- Holon vs. Multi-Agent Systems
 - Holon goals obtain feasible schedule
 - System goals minimize time to completion

Holonic Systems

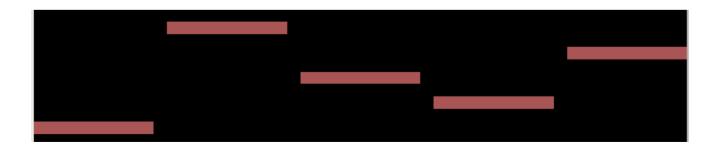
• HMS Consortium Goals


- Stability in the face of disturbance
- Adaptability in the face of change
- Efficient use of available resources

Research Goals

- Implement the Recursive Propagation Scheduling Technique [Hino98] in C++
- Compare performance with Hino's results and improve
- Implement in Java
- Interface with a manufacturing execution system (MES)

Manufacturing Execution Systems


- Keeps track of production schedules, inventory availability, works in progress
- Provides a real-time view of plant operations

Problem Definitions

• Process

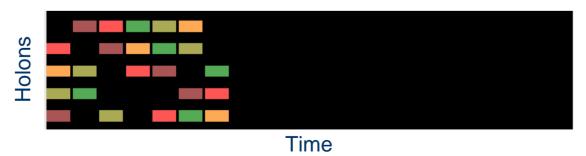
- A task that is performed by one holon
- Operation
 - Consists of a series of processes
 - Distributed among holons Never revisits holon

Recursive Propagation Scheduling for Multi-Agent Systems Scott Logie (slogie@sfu.ca)

Recursive Scheduling Technique

- Decentralized algorithm
- Select target operation
- Notification of change
 - Recursively passed to subsequent holons
- Report results
 - Inform originator of impact of all changes

Time


Algorithm Details

• Finding a feasible solution

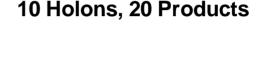
Time

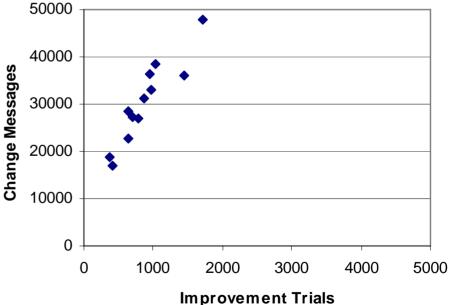
• Optimize the solution by reordering processes

Recursive Propagation Scheduling for Multi-Agent Systems Scott Logie (slogie@sfu.ca)

Holonic State Machine

- Agree on feasible schedule
- Wait for others
- Optimize schedule until satisfied
- Wait for others
- Finish last operation




Improvements on Hino's Technique

- No details about optimization method reordering of processes
- Smarter swapping
 - Large changes first
- Smarter stopping condition
 - When all processes have been addressed with no change to the current holon's schedule

Simulation Results

- Multi-threaded C++ app with OpenGL display
- Hino's benchmark: 10 holons schedule 20 products in 5000 trials
- My simulations:
 20 products for 10
 holons in fewer than 900
 trials on average

Recursive Propagation Scheduling for Multi-Agent Systems Scott Logie (slogie@sfu.ca)

Further Developments

- Port scheduler code from C++ to Java
- Allow re-scheduling after agent failure
- Verify simulations over networked workstations
 - JADE Java Agent DEvelopment Framework
 - Multi-agent environment implemented in Java
- Attach scheduler module to existing manufacturing execution system

Questions

Please contact me with any additional inquiries

Scott Logie, MASc Student

Simon Fraser University c/o School of Engineering Science Burnaby, BC Canada <u>slogie@sfu.ca</u>