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Abstract 

 

This paper introduces a novel automatic building 
detection method for aerial images. The proposed 
method incorporates a hierarchical multilayer feature 
based image segmentation technique using color. A 
number of geometrical/regional attributes are defined 
to identify potential regions in multiple layers of 
segmented images. A tree-based mechanism is utilized 
to inspect segmented regions using their spatial 
relationships with each other and their 
regional/geometrical characteristics. This process 
allows the creation of a set of candidate regions that 
are validated as rooftops based on the overlap between 
existing and predicted shadows of each region 
according to the image acquisition information. 
Experimental results show an overall shape accuracy 
and completeness of 96%. 
1. Introduction 
Automatic 3D map reconstruction with high accuracy 
requires precise identification and detection of building 
rooftops.  Any inaccuracy in such identification will 
affect the accuracy and reliability of the generated 3D 
map. Building identification or extraction in 
satellite/airborne photogrammetric images has been a 
subject of interest for several decades. Previous work 
on this subject varies according to the type and variety 
of sensors, input’s dimension (mono/stereo/ 
multiscopic), and the amount of manual interaction or 
supervision. The general theme for most of these 
methods is to identify buildings using distinctive 
features and their relationships, active contours, 
segmentations and prior models. Since in the proposed 
work our interest is in utilizing monoscopic aerial 
images, a number of previous works that incorporate 
monoscopic input images are reviewed to provide the 
state of art in this research area.  
Lin and Nevatia [1] grouped and analyzed line 
segments to extract rectilinear rooftops in single image. 
Nosrati and Saeedi [2] extracted polygonal rooftops by 

examining the relationship between lines and their 
cross-sections in aerial/satellite images. Jin and Davis 
[3] provided a differential morphological profile to 
generate building hypotheses with a verification 
process that relied on shadows and spectral 
information. Theng [4] developed an active contour 
based model utilizing a circular casting algorithm. 
Peng et al. [5] suggested a snake model to extract 
buildings from gray-level aerial images using the 
radiometric and geometric characteristics of buildings. 
Wei et al. [6] proposed a probability model to extract 
buildings with simple profiles with homogenous 
texture from dense urban area in high-resolution 
images using some discriminative features.  Li et al. [7] 
used a clustering method to first segment the image. 
The segmented regions are then verified by their 
dominant lines’ length. Peng and Liu [8] presented a 
method for building detection based on models and 
context in which building profiles are extracted from 
segmented regions utilizing shadow cast direction, 
context and a snake model. Wei et al. [9] proposed a 
low precision method by clustering the input image 
into shadow and non shadow regions first. The shadow 
regions are then used to verify the presence of 
buildings and a Hough transform is employed to 
extract the buildings boundaries. Karantzalos and 
Paragios [10] proposed a recognition-driven variational 
framework for automatic buildings extraction from 
monoscopic aerial and satellite images using prior 
models.  While their method shows great potential, it is 
rather slow and can only deal with a limited number of 
shapes (8 profiles). 
In this paper, we propose a novel method to extract 
building profiles using a new hierarchical feature based 
segmentation method in monoscopic aerial images. 
The building’s context and geometrical features are 
used for local segmentation of image. The main 
objectives are to extract rooftop boundaries for 
buildings with complex shapes and profiles including 
gabled or flat surfaces.  
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Figure 1. a) Low value of ݄௥ , b) High value of ݄௥. 
 

2. Methodology 
 

2.1 General Segmentation Problems 
 

Most segmentation algorithms segment an image into 
regions that vary in color/intensity regardless of other 
significant features of the regions [11]. Generally, 
segmentation algorithms are parameter dependent 
which adds to the functionality of such segmentations. 
An example of such case can be seen for Mean Shift 
Segmentation Algorithm [1,2] where the quality of 
segmentation is controlled by three parameters: the 
spatial resolution ݄௦, the color resolution ݄௖, and the 
minimum segment size M. These parameters are 
usually set manually and often a single setting will not 
be sufficient for a complete segmentation.  Figure 1 
depicts an example where ݄௖ was set to two different 
values. It is a challenge (if possible) to find a proper 
value of ݄௖ to segment all buildings images correctly.   
In this paper a feature-based segmentation is presented 
that incorporates an adaptive range resolution for ݄௖ to 
segment the image with no parameter variation.  
 

2.1.1 Hierarchical Segmentation 
 

Using the mean shift segmentation algorithm [13], the 
input image (ܫ) is segmented for Range Resolutions of 
݄௖ ൌ ሺ ௟ܶ, ௟ܶ ൅ ∆ܶ, … , ௟ܶ ൅ ሺܭ െ 2ሻ∆ܶ,  ௛ܶሻ. For each value 
of ݅ א ܭ  ,ܭ ൌ ሺ ௛ܶ െ ௟ܶ ൅ 1ሻ/∆ܶ), a segmented image ௜ܵ  
is generated including a set of regions ܴ௜௝: 
  

௜ܵ ൌ׫ ܴ௜௝ ܽ݊݀  ݆ ൌ 1, … , ௜ܰ                            (1) 
 

Here ௜ܰ is the number of regions in ௜ܵ. Parameters ௟ܶ 
and ௛ܶ have a large difference so they cover all 
possible regions in the image. In this implementation, 
parameters ∆ܶ and ௟ܶ are set to 1 (the minimum 
distance of two pixels with different colors) and ௛ܶ is 
set to 15. The spatial resolution ݄௦ and the minimum 
segment size M for mean shift segmentation are 3 and 
200. We found that any ௛ܶ larger than this value would 
cause the entire image to be segmented into one piece. 
An additional segmented image ܵ௄ାଵ is also defined by 
the entire image.  
Using the above segmented images and their regions, a 
tree structure is established.  This tree is utilized to 

identify the best Range Resolution for various regions 
of the image via a set of rooftop constraints. 
 

2.1.2 Rooftop Constraints  
 

We define several features associated with building 
rooftops. These features are defined by examining 
rooftops in image datasets (Pictometry Int. Corp.’s 
images of areas around Vancouver’s International 
Airport). With the assumption that the boundary of a 
region ܴ௜௝ is defined as a parametric curve 
ோ೔ೕܤ

ሺݏሻ: ሾ0,1ሿ ՜ ሺݔሺݏሻ,  :ሻሻ, we defineݏሺݕ

Total curvature: the mean of spatial change of a point 
on the boundary. It is measured by the integral of the 
absolute value of the second order derivative which is 
normalized by the length of the boundary (the integral 
of the absolute of the first order derivative) [12].  
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In man-made structures, the total curvature tends to be 
small since such structures include smooth boundaries 
and/or straight lines. Therefore this constraint prevents 
the proposed system from identifying natural objects 
such as trees as buildings. 
 

Compactness: the ratio of the area of a rooftop region 
over the square of its boundary length. One of the 
observations made when modeling rooftops is that 
rooftops mostly have symmetrical shapes with 
comparable width and length values. The compactness 
measure encapsulates such characteristics.   
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where ܽ݁ݎܣ൫ܴ௜௝൯ ൌ ׭ ோ೔ೕא௫,௬ݕ݀ݔ݀
. The compactness 

measure prevents narrow regions such as roads and 
grass lines (low Compactness) to be identified as 
rooftops. Moreover, this constraint prohibits the 
algorithm from identifying small components of gabled 
rooftops as individual regions. 
 

Bounding Prevention factor: this indicates the 
tendency of a region to split into internal sub-regions. 
This factor also measures the tendency of the regions 
internal sub-regions in merging with neighboring 
regions around it.  Generally, rooftops include strong 
edges that could cleanly separate a rooftop from its 
neighboring regions such as grass, trees, roads or other 
rooftops with different color/intensities. The ݊-depth 
Bounding Prevention factor (in our implementation ݊ 
is set 1) of a region ܴ௜௝ is defined by: 
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         (4) 
This measure estimates the tendency of a region to 
merge with its outside neighboring regions. Pixels of 



each region ܴ௜௝ are weighted by the normalized ratio of 
the overlap between ܴ௜௝ and ܴ௜ି௞,௧. When all common 
sub-regions ܴ௜ି௞,௧ fall completely inside ܴ௜௝, the 
external bounding prevention factor will be its 
maximum (1).  
 

Dividability factor: this is the tendency of a region to 
be divided into two or more sub regions. The 
Dividability of a region is high if the average tendency 
to split for ݊ consecutive image levels is low: 
,൫ܴ௜௝݅ܦ ݊൯ ൌ

ଵ

௡
∑ ቀܧ൫ܴ௜௝, ݅ െ ݇൯ ൅ ,൫ܴ௜௝ܧ ݅ ൅ ݇൯ቁ௞ୀଵ,…,௡              (5) 

E is the entropy of region ܴ௜௝ at level k: 
,൫ܴ௜௝ܧ ݇൯ ൌ െ ∑ ܲሺܴ௜௝, ܴ௞௧ሻ݈݃݋ሺܲሺܴ௜௝, ܴ௞௧ሻሻ׊௧, ோ೔ೕתோೖ೟ ஷ׎            (6)  

ܲ൫ܴ௜௝, ܴ௞௧൯ ൌ
஺௥௘௔ሺோೖ೟ሻ

஺௥௘௔ሺோሻ
                 (7) 

ܴ ൌ ሼ׫ ܴ௞௧|ݐ׊,  ܴ௜௝ ת ܴ௞௧  ്  ሽ               (8)׎
This constraint aims to give priorities to regions that 
when split maintain a larger part of their initial region. 
Considering all above features, the following set of 
rules measures the relative potential of rooftopness for 
any two regions. The region ܴ௜௝ is more probable to be 
a rooftop than the region ܴ௞௧ if ܴܵ൫ܴ௜௝, ܴ௞௧൯ is ܶ݁ݑݎ. 
For ܴܵ൫ܴ௜௝, ܴ௞௧൯ to be True, at least three of the 
following conditions must be satisfied:  
ܶܿ൫ܴ௜௝൯ ൏ ܶܿሺܴ௞௧ሻ,                (9) 
൫ܴ௜௝൯݋ܥ ൐  ሺܴ௞௧ሻ,               (10)݋ܥ
,൫ܴ௜௝݅ܦ ݊൯ ൏ ,ሺܴ௞௧݅ܦ ݊ሻ,               (11) 
,൫ܴ௜௝ܲܤ ݊൯ ൐ ,ሺܴ௞௧ܲܤ ݊ሻ,                              (12) 
൫ܴ௜௝൯ܽ݁ݎܣ ൐  ሺܴ௞௧ሻ.              (13)ܽ݁ݎܣ
 Note that in the case of equal conditions, the area 
condition is the deciding one.  
 

2.1.3 Search Tree Creation 
 

݁݁ݎܶ ൏ ܸ, ,ܧ ݐ݋݋ܴ ൐ is defined in the following using 
regions in segmented images (Figure 2). 
 

ܸ ൌ ൛ܴ௜௝หܴ׊௜௝ א ௜ܵൟ, 
݅ ݎ݋݂ ൌ 1, … , ܭ ൅ 1 ܽ݊݀ ݆ ൌ 1, … , ௜ܰ 

ܧ

ൌ ቄ൫ܴ௜௝, ܴ௜ାଵ,௫൯ቚܴ׊௜௝ א ௜ܵ, ௜ାଵ,௫ܴ׌ א ௜ܵାଵ, ݔ ൌ max
௧

൫ܴ௜௝ ת ܴ௜ାଵ,௧൯ቅ 

݅ ݎ݋݂  ൌ 1, … , ܭ ൅ 1 ܽ݊݀ ݆ ൌ 1, … , ௜ܰ  
ݐ݋݋ܴ ൌ ܴ௄ାଵ,ଵ 

                (14) 

In this tree, a node (region) ܴ௜௝ at level i is the child of 
node ܴ௜ାଵ,௫ at level i+1, only if ܴ௜ାଵ,௫ has the highest 
overlap (among all neighboring nodes) with ܴ௜௝.  
2.1.4 Searching for Potential Rooftop Regions 
 

To extract all potential rooftops, a recursive algorithm 
(Table 1) is utilized. The output of this algorithm is a 
set of candidate rooftop regions. The search tree 
algorithm relies on five thresholds ሺ ௔ܶ௥௘௔௠௜௡, ்ܶ௖, ஼ܶ௢, 
 ஽ܶ௜ , ஻ܶ௉ሻ that are set to (1000, 0.5, 0.01, 0.5, 0.5). These 
values are determined empirically through checking 
various rooftops in our dataset images. 

 

 
Figure 2. Search Tree Creation. 

 
 

2.2 Rooftop Verification 
A verification step is incorporated in which the 
existence of shadows is used for verifying candidate 
regions as rooftop. Shadow regions are extracted on the 
image by the method in [14].  Using each region’s 
definition, the acquisition geometry, and a fixed height 
value (2.7 meters), the expected shadows of the region 
is predicted. If this prediction highly overlaps with the 
existing shadows, the region is identified as a rooftop. 
 

  Table 1. Pseudo code for searching the tree. 
ݏ݌݋ݐ݂݋݋ܴ ൌ ݁݁ݎሺܶ݁݁ݎ݄ܶܿݎܽ݁ܵ ൏ ܸ, ,ܧ ݐ݋݋ܴ ൐ሻሼ  

 

݂݅ ሻݐ݋݋ሺܴ݊݋݅ݎ݁ݐ݅ݎܥ݃݊݅݌݌݋ݐܵ ൌൌ ݄݊݁ݐ ݁ݑݎܶ  
ݏ݌݋ݐ݂݋݋ܴ              ൌ  ׎ 

  ݁ݏ݈݁      
             ܴ௖ ൌ  ׎
 ݋݀  ௜ሻݒሺ ݊݁ݎ݈݄݀݅ܿݏᇱݐ݋݋ܴ ݄݁ݐ ݂݋ ݄ܿܽ݁ ݎ݋݂            
                  ܴ௖ ൌ ܴ௖ ׫ ݁݁ݎሺܶ݁݁ݎ݄ܶܿݎܽ݁ܵ ൏ ܸ, ,ܧ ௜ݒ ൐ሻ  
            ݁݊݀ 
ሻݐ݋݋ሺܴݏ݊݋݅ݐ݅݀݊݋ܥ݉ݑ݉݅݊݅ܯ ݂݅              ൌൌ   ݄݊݁ݐ ݁ݑݎܶ
௝ݒ ׌ ݂݅                   א ܴ௖ ݋ݏ ܴܵ൫ݒ௝, ൯ݐ݋݋ܴ ൌൌ  ݄݊݁ݐ  ݁ݑݎܶ
ݏ݌݋ݐ݂݋݋ܴ                         ൌ ܴ௖  
  ݁ݏ݈݁                 
ݏ݌݋ݐ݂݋݋ܴ                          ൌ   ݐ݋݋ܴ
                 ݁݊݀ 
 ݁ݏ݈݁             
ݏ݌݋ݐ݂݋݋ܴ                  ൌ ܴ௖  
             ݁݊݀ 
       ݁݊݀ 
      ሽ 
 

              ሻݐ݋݋ሺܴ݊݋݅ݎ݁ݐ݅ݎܥ݃݊݅݌݌݋ݐܵ   

    ൌ ቄ ݁ݑݎܶ א ݐ݋݋ܴ ଵܵ ܽ݁ݎܣ ݎ݋ሺܴݐ݋݋ሻ ൏ ௔ܶ௥௘௔௠௜௡ 
݁ݏ݈ܽܨ ݁ݏ݅ݓݎ݄݁ݐܱ

 
 

ሻݐ݋݋ሺܴݏ݊݋݅ݐ݅݀݊݋ܥ݉ݑ݉݅݊݅ܯ            

ൌ ൝ ݁ݑݎܶ
ב ݐ݋݋ܴ ܵ௄ାଵ & ܶܿሺܴݐ݋݋ሻ ൏ ்ܶ௖ & ݋ܥሺܴݐ݋݋ሻ ൐ ஼ܶ௢

& ,ݐ݋݋ሺܴ݅ܦ ݊ሻ ൏ ஽ܶ௜ & ܲܤሺܴݐ݋݋, ݊ሻ ൐ ஻ܶ௉

݁ݏ݈ܽܨ ݁ݏ݅ݓݎ݄݁ݐܱ
 

3. Experimental Results 
The proposed method is tested on our aerial image 
dataset images (Pictometry Int. Corp.’s,resolution of 
0.15 meter/pixel). Seven random images (due to the 
limited space) show the typical results from the dataset 
with a total number of 140 rooftops. In this work, only 



one set of parameter values (as detailed in the paper) 
are used. Figure 3 shows results for four images.  
 

 

 
 
 

 
 

 
Figure 3. Extracted rooftops in 4 images.  

 

The method is asses quantitatively using 4 metrics:  

ሻܿܣሺ݄ܵ ݕܿܽݎݑܿܿܣ ݁݌݄ܽܵ ൌ 1 െ ீܣ| െ  (15)                    ீܣ/|ாܣ
ሻ݌݉݋ܥሺ ݏݏ݁݊݁ݐ݈݁݌݉݋ܥ ൌ ܶܲ/ሺܶܲ ൅  ሻ                          (16)ܰܨ
ሻݎݎ݋ܥሺ ݏݏ݁݊ݐܿ݁ݎݎ݋ܥ ൌ ܶܲ/ሺܶܲ ൅  ሻ                          (17)ܲܨ
ሻܽݑሺܳ ݕݐ݈݅ܽݑܳ ൌ ܶܲ/ሺܶܲ ൅ ܲܨ ൅  ሻ                          (18)ܰܨ
 

 is the (manually found) ground truth rooftop’s area ீܣ
and ܣா the area of the same rooftop detected by this 
work. ܶܲ, ܲܨ and ܰܨ represent True Positives (no. of 
correctly extracted pixels), False Positives (no. of 
incorrectly extracted pixels) and False Negatives (no. 
of correctly not extracted pixels) of a rooftop.   
Table 2 shows the mean quantitative values for each 
image. These results are better than values reported in 
recent works by [10] (correctness: 93%, completeness: 
88%, quality: 82%) and [5] (shape accuracy: 83.6%).  
 

Table 2. Quantitative results for test samples. 
Img. 
No. 

Shape 
Accuracy 

Complete
-ness 

Correct
-ness 

Quality No. of 
Buildings 

1 90.16 99.26 90.37 89.76 14 
2 96.08 96.68 93.03 90.16 15 
3 99.71 94.96 94.69 90.16 51 
4 98.59 95.99 94.67 91.07 9 
5 93.37 98.43 92.31 90.96 23 
6 92.80 99.53 92.85 92.45 14 
7 96.51 95.43 92.21 88.31 14 

Overall 96.24 96.65 93.25 90.34 140 
 

4. Conclusion 
 

An automatic segmentation based approach was 
introduced to detect rooftops in aerial images. The 
method segments input image into potential rooftops 
using a number of geometrical/regional attributes in 
multiple layers of segmented images. A search tree is 
utilized using different segmented image levels. The 

tree is searched for regions that maximize a set of 
rooftop definition measures. Candidate regions are 
verified through shadow evidence. The performance of 
the method was evaluated using aerial images. Results 
show the shape accuracy and completeness of 96%.  
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