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Abstract—In this paper a new method, called Force, is 
presented for finding data clusters centroids. This method 
is based on the concepts of electrostatic fields in which the 
centroids are positioned at locations where an 
electrostatic equilibrium or balance could be achieved. 
After finding the data points, criteria such as minimum 
distance to centroid can be used for clustering data points. 
The performance of the proposed method is compared 
against the k-means algorithm through simulation 
experiments. Experimental results show that the Force 
algorithm does not suffer from problems associated with 
k-means, such as sensitivity to noise and initial selection 
of centroids, and tendency to converge to poor local 
optimum. In fact, we show that the proposed algorithm 
always converges to global equilibrium points, regardless 
of the initial guesses, and even in presence of high levels of 
noise.  

I.  INTRODUCTION 

Data Clustering is one of the important topics in data 
analysis and it has been the subject of many research 
efforts. Data clustering is the unsupervised 
classification of patterns of data items into groups or 
partitions. It has many applications in data mining, 
pattern recognition, image processing and analysis and 
bioinformatic. There is a fine line between clustering 
and classification. The difference is that in 
classification the classes are predefined and data points 
are assigned to each class, whereas in clustering data 
points are grouped into classes that have to be 
identified. Data clustering discovers the overall 
distribution patterns of the dataset, through finding 
centers and clusters of data. Its algorithms are specified 
as being deterministic or stochastic (probabilistic), 
numerical or categorical. Our focus in this paper is on 
numerical, deterministic partitional algorithms.  
In general, data clustering is done based on measuring 
some similarity between data items; for example, based 
on the proximity of data points in some space. There 
are many algorithms that cluster data, the most 
applicable and famous one is k-means [2]. In k-means 
a user-defined number of centroids are found. The data 

points are assigned to these centers according to the 
minimum distance constraints, forming clusters. The 
algorithm iterates by modifying the centroids according 
to some rules until the centroids do not move in two 
successive iterations. While k-means has been proven 
to be an effective algorithm, it suffers from 
shortcomings including sensitivity to initial center 
values and noise sensitivity. 
In this paper we present a new numerical data 
clustering algorithm that is inspired by the rules of 
electrostatic fields. This novel approach allows 
efficient and robust clustering of multi dimensional 
data sets. The algorithm is especially suitable for larger 
data sets and produces predictable results, which are 
not sensitive to the initial guess points. It always 
converges to the same solution under different 
conditions. The presented algorithm is of deterministic 
nature. In this algorithm we assume data points are 
negative electrical charges scattered in a multi 
dimensional space. To cluster these charges, a number 
of positive charges (configurable parameter) will be 
released in the space; these charges will move due to 
the electrostatic force so that all electrical charges 
reach to an electrostatic equilibrium or balance. When 
the balance is achieved, positive charges will be at true 
centroids of the found clusters. At the end of this 
process, the data point assignment to each cluster is 
achieved using the minimum distance constraint.  

II.    SUMMARY OF RELEVANT RESEARCH 

There are many numerical clustering algorithms. A 
detailed survey of different types of clustering methods 
could be found in [1].  Perhaps the most popular data 
clustering algorithm is the k-means algorithm [2]. K-
means clustering is a well-known partition-based 
technique in unsupervised learning. K-means algorithm, 
in particular, has the following carachteristics: works 
only on numerical data, is efficient for processing large 
data sets, often converges to a local optimum, and its 
generated clusters have convex shapes. Despite 
moderate complexity, k-means algorithm is sensitive to 
initial seed selection [1]. To address some of k-means 
issues  including sensitivity to the initial centers, 
several solutuions have been proposed. For instance, 
ISODATA [4] finds the optimal initial partitions by 
merging or splitting arbitrarily chosen initial partitions. 
Another algorithm, presented in [3], tackles the 
challenge of selecting a good initial cluster by applying 
dynamic programming over the principal component 
direction. A heuristic clustering dissimilarity function 
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is incorporated into the sub-optimal k-means algorithm. 
The approach proposed in [5] uses a combination of 
GA and k-means; the genetic algoritm is used to find 
good initial cluster centers and k-means algorithm is 
then applied to find final partitions. 
There are other clustering methods, beside k-means 
based algorithms that are suitable for large data sets. 
Two of them are the CLARANS (Clustering Large 
Applications based on Random Search) [6], and the 
BIRCH (Balanced Iterative Reducing and Clustering) 
algorithms [7]. CLARANS is a cluster analysis 
technique applied to spatial attributes of data points. It 
analyzes several random samples to find cluster 
centroids from the original dataset. In general it is 
stated that cluster analysis is not suitable for large data 
sets; however, CLARANS is claimed to be an efficient 
algorithm. The work in [7] (BIRCH) suggests that 
CLARANS is not efficient in all situations and it may 
fail to find real local minima. The BIRCH algorithm 
keeps brief information about candidate clusters by 
applying a dynamic tree structure, with leaf nodes 
representing clusters. It claims that is capable of 
handling  the noise.  

In this paper a new clustering algorithm is presented 
that relies on the laws of electrostatic. It simulates 
electrostatic fields in order to position cluster centroids 
in the appropriate places. This algorithm is suitable for 
large data sets and can handle noise as is explained in 
details in the following sections.   

III.     “FORCE” CLUSTERING ALGORITHM 

The proposed algorithm employs the law of 
electrostatics, which describes the nature of forces 
among electric charges. Direction of the electrical force 
is derived from electric fields around these charges. 
The main assumptions made here are: 
1. Cluster centroids have large, positive, variable and 

dynamic (in position) charges. 
2. Data points have single, negative, fixed and static 

(in position) charges. 
When positive centers are randomly dropped amongst 
negative data points, an electric field is formed which 
forces the centers to move to places where forces are 
balanced. Under the balance condition the centers do 
not move anymore. We call this configuration of points 
the electrostatic equilibrium. The force between centers 
is repulsive, while the force between centers and data 
points are attractive. These forces are calculated 

from:
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Here c is a constant, r is the distance between two 
charges and q1, q2 are two charges that F is computed 
for. If the distance r tends to zero, it will be replaced 
with a constant small distance R0. The direction of the 
force between two charges can be identified by the unit 

vector ||)r-r)/(||r-r( 2121


, where r1 and r2 are 

charges’ coordinate vectors. 

The centers will naturally move toward areas where 
data points are located. Meanwhile they repulse each 
other and therefore they will not land in the same 
cluster of data points. This means that regardless of 
initial random positions of the centers, they always 
move toward the center of clusters (if clusters exist). 
The data points are always associated with the center 
closest to them. Thus, the clusters are formed based on 
the minimum distance constraint. 

The charge of each data point is a constant value, but 
charges of centers are updated dynamically. The charge 
of each center is set in proportion to the number of 
points associated with it (the presumed cluster which is 
coupled with this center). For example, if Nj points are 
associated with a center j, the charge Qj for the this 
center (assuming the charge of each point is one), is set 
as follows:   

10.   jj NQ      (1) 

The sum of the charges for the centers (positive 
charges) is therefore always slightly less than the sum 
of the charges of the datapoints. This means that the 
centers will definitely be attracted towards the data 
points and their mutual repulsive force will not be able 
to overcome the attractive force of the datapoints. If 
α >= 1, the repulsive force will move the centers very 
far from the ideal point so that the steady state is 
reached where the centroids are not located at cluster 
centers. If α <<1, both centers may be attracted to the 
same cluster and will be placed too close to each other. 
If 0<<α<1, centers will be located close to the ideal 
points. The total force on each center is calculated as 
follows: 
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The force applied to each center by other centers (set C) 
and data points (set D) is calculated as:                                        
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Here cj and pi are vectors, describing the positions of 
centers and data points. Note that Qi for each data point 
i is -1. R0 is the minimum distance as explained before. 

Based on the force on each centroid, the algorithm 
estimates a direction in which the centroid should 
move. The speed of the movement, or the steps taken 
in each iteration, is subject to many factors such as the 
weight of the centroids, the charge masses, etc. 
However, at this time a fixed step size   is utilized.  

Thus the direction of the force is the only parameter 



that is required for estimating the centroid’s new 
position.  
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Here )1( 
jc  is the new position of the cluster centroid, 

)(
jc is the previous position, and 

jj FF /  is a unit 

vector of force which provides the center’s heading 
direction. Knowing the direction, there are several 
ways to control the speed of the center’s movement. In 
this paper, first a fixed step size is utilized. Adaptive 
adjustment of the step size is also explored in Section 
IV-A  

After each iteration, new centroids’ positions are 
updated and new clusters based on the minimum 
distance constraint are formed. With new clusters, the 
charge of each center is recalculated according to (1), 
and the forces are computed. The algorithm will stop 
when the position of each cluster center moves less 
than a predefined threshold in two consecutive 
iterations. One of the most significant benefits of this 
algorithm is that the found cluster centers after 
different runs of the algorithm with different initial 
centroids are at most different by 2η (the step size). 
Another advantage of Force over k-means is that it 
performs a globalized search, while k-means based 
algorithms perform localized searches.  

IV. ENHANCING THE ALGORITHM 

To verify the proposed algorithm, several experiments 
are conducted. In the first experiment two sets of 
normally distributed data sets are considered; some 
additive noise points are also added to the data points.  
Figure 1-a shows the distribution of the data points; in 
this figure, the triangles represent the actual cluster 
centers around which the data points were normally 
distributed.  Figure 1-b shows resulting centroids after 
running the Force algorithm. The final results (marked 
by diamonds) are located at a very close distance to the 
actual cluster centers (error controlled by step size η set 
to 2η, e.g. less than 0.01 in this case). As displayed in 
Figure 1-b, the centers repel each other and move 
toward the clusters (data masses). In the example 
depicted in Figure 2-a, in the earlier iterations, both 
positive charges are attracted to the bigger mass of 
negative data points; however, when they become close 
to the mass, their mutual repulsive force will repel 
them and only one of them is attracted to that mass and 
the other moves toward the other mass. 
A. Adaptive Step Size  
From Figure 2-a, it can be seen that the algorithm has to 
make many steps for the second centroid, which is 
located at a far distance from the cluster’s center, 
before reaching to tis final location. This initiated an 

adaptive step adjustment that makes the algorithm to 
choose longer steps when the centroid is far from the 
actual cluster center.  Note that for centers located at a 
far distance from the clusters’ data points, the 
computed force is small. Therefore, the step size is 
modified to be inverseley proportional to the computed 
force. The modification of equation (4) is presented by: 
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The result of this enhancement can be seen in Figure 2-
b, in which a fraction of the number of steps is reduced.  
Therefore, for the remaining work presented in this 
paper, the adaptive step adjustment with η1=0.04, 
η2=1000 is incorporated.  Also in all presented figures, 
the final centroids positions found by the Force 
algorithm are marked with diamonds, while k-means 
results are marked with squares. 
 

 
                                            (a) 
 

 
(b) 

Figure 1 a) Data points and noise points, triangles are the actual 
distribution centers b) movement path of centroids for Force 

algorithm. Diamonds are the found centroids by the Force algorithm. 



.  

 
                                             (a)   

 
       (b)   

Figure 2 centroid movement path: a) Original algorithm using fixed 
step size b) enhanced algorithm using adaptive step size. 

B. Run Time Reduction by Informed Initial Guesses 

In order to improve the speed of the algorithm, a 
simple yet effective adjustment is suggested in this 
section. This adjustment includes placing the initial 
location of the centers in the middle of the space where 
data points are scattered. For this purpose, the center of 
gravity for the entire data point collection is found first. 
The initial centers are then placed at that location with 
some distance from each other. To see the effect o this 
adjustment, we plotted the path of the centroids for 
when the initial centroids were selected at the edge of 
the data range (Figure 3-a and Figure 4-a), and when 
they were selected through the adjustment (Figure 3-b 
and Figure 4-b). The difference between Figure 3 and 
Figure 4 is the level of additive noise, respectively 5%, 
20%). The results clearly demonstrate that this 

enhancement significantly reduces the number of 
iterations required by the algorithm. It must be noted 
that the accuracy of the final solution is not jeopardized 
by this enhancement (maximum difference is still 
within the step size). Calculating these initial centroids 
is also a rather simple and computationally inexpensive 
task.  

Faster convergence may also be achieved, if the initial 
centers are placed where a mass of data are detected. 
For example, a rough histogram of the data points 
could assist in placing the centers at local optima of the 
histogram. This will be investigated in future and 
therefore is not discussed further here 

 
(a) 

 
(b) 

Figure 3  initial guesses: squares are found k-means centers and 
diamonds are Force centers a) initial centroids are far from the data 
masses, b) initial centroids are in the middle space of the data point 

distributions. The level of noise is low in both a and b cases. 

 



                                          
(a)                  

 
                                  (b) 
Figure 4 initial guesses: squares are found k-means centers and 

diamonds are Force centers a) initial centroids are far from the data 
masses, b) initial centroids are in the middle space of the data masses. 

The level of noise is high in both cases. 

V.    PERFORMANCE EVALUATION 

The performance of the proposed method is examined 
for various initial centroid locations and different 
additive noise levels and distributions. The 
performance is also compared against k-means method. 
The code utilized in this paper for k-means is from 
Matlab’s Statistics Tool Box. 
To evaluate the performance of the algorithm for 
various initial centroid locations, we measured the 
Euclidean distance of the found centroids and actual 
cluster centers. The two initial centers were placed at 
positions (x,y) and (x,1-y), where x and y changed 
from 0 to 1 in 100 steps (data and noise points are 
distributed in this range as well, as shown in Figure 3 ). 
The level of noise in Figure 5-a is 5%, and in Figure 5-b 
20%. The results depicted in Figure 5 show that the 

Force algorithm always converges to the equilibrium 
point with error limited to 2η1 (as in equation (5)).  
Note that at the equilibrium state, the force Fj is large 
and the second tem in (5) tends to zero; whereas the 
first term always has a magnitude of η1. Therefore, the 
expected difference between the found centroids in 
different runs of the algorithm is at most 2η1.  
In Figure 5 we also show the Euclidean error for the k-
means algorithm. It is observed that for low noise 
situations, k-means always converges to the same point, 
for this specific experiment; however, increasing the 
noise cause the algorithm to misidentify the cluster 
centers for one case. This situation is also depicted in 
Figure 4, where an additional noise causes k-means 
algorithm to converge to a wrong position. The Force 
algorithm remains robust to noise.  
 

 
                                                          (a)  
 

 
                                                          (b) 

Figure 5   Euclidean error of the found centers  for the k-means and 
Force algorithm  for different initial guesses, starting close to clusters, 

and moving to the far right of the data range:  a) with 5% noise b) 
with 20% noise. 



To further study the effect of noise, we measured the 
Euclidean error at different levels and various noise 
distributions in two additional sets of experiments. . 
In the first set, the Euclidean distance between the 
found centroids (by k-means and Force) and the actual 
clusters’ centers at different noise levels are measured. 
Here, the noise was uniformly distributed in the space, 
(0,1), along both axes. Figure 6 compares the 
Euclidean error for both algorithms at different noise 
levels. The error was computed by averaging the 
results for 50 repetitions of the experiment using 
different initial points. The level of noise is specified 
by ratio of the number of noise points to the total 
number of data points. It is expected that the error will 
increase as the noise level increases. It can be seen that 
the Euclidean error for k-means method increases 
rather quickly while the error for Force algorithm rises 
very slowly. As mentioned earlier, this test was 
performed for a uniformly distributed noise. 
The second test set examines the behavior of both 
methods under the condition in which the mean value 
of noise distribution varies from far left to the far right 
side of the data masses. In this test, two levels of noise 
(30% in Figure 7-a and 40% in Figure 7-b) have been 
simulated.   

 

 
Figure 6 Euclidean error between the actual dataset centroids (ground 

truth) and found centroids as the noise level increases. 
 

At each level the mean location of the noise 
distribution is moved from -0.7 to 0.7 in the test space, 
while the noise samples still maintained a uniform 
distribution around the mean location within the (0,1) 
interval. Figure 7 shows that around point zero, the 
error is very small for both methods. However, as the 
noise distribution center moves farther, the error 
increases significantly and rather quickly for k-means. 
The Force seems to handle the 30% added noise very 
gracefully. For the 40% added noise, Figure 7-b, only 
when the noise distribution center moves about +/-0.5 
from the real data mass centroid, the Force’s error 
becomes large 

 
                                            (a) 
 

  
                                            (b) 

Figure 7 Mean location of noise distribution varies between -0.7 to 
0.7: a) 30% added noise. b) 40% added noise. 

 
VI. CONCLUSION 

In this paper, a new unsupervised learning method for 
data clustering has been introduced. This method 
employs the rules of electrostatics, and finds the 
equilibrium points of a electric field, formed by data 
points as negative charges, and cluster centers as 
positive charges. The algorithm controls the path and 
charges assigned to the centers, to ensure that they 
converge to the equilibrium points regardless of the 
initial position.  
The performance of the proposed algorithm is 
evaluated through simulation experiments, and is 
compared against k-means algorithm. Simulation 
results show that the proposed method is capable of 
handling noise better than k-means. Moreover, it does 
not suffer from instability rising from initial starting 
centroid guesses. An interesting future enhancement 
could be to incorporate histograms with large bins for 
estimating initial centers resulting in faster 
convergence to the final solutions. 



 One of the applications of data clustering is in image 
processing, especially in image segmentation. 
Investigating the performance of the Force scheme in 
processing very noisy images is of importance to the 
future development of this algorithm.  
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