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Abstract—Automatic creation of 3D urban city maps could
be an innovative way for providing geometric data for varieties
of applications such as civilian emergency situations, natural
disaster management, military situations, and urban planning.
Reliable and consistent extraction of quantitative information
from remotely sensed imagery is crucial to the success of any
of the above applications. This paper describes the development
of an automated roof detection system from single monocular
electro-optic satellite imagery. The system employs a fresh ap-
proach in which each input image is segmented at several levels.
The border line definition of such segments combined with line
segments detected on the original image are used to generate
a set of quadrilateral rooftop hypotheses. For each hypothesis a
probability score is computed that represents the evidenceof true
building according to the image gradient field and line segment
definitions. The presented results demonstrate that the system is
capable of detecting small gabled residential rooftops with variant
light reflection properties with high positional accuracies.

Index Terms—Building extraction, satellite image processing,
aerial image processing, photogrammetry, computer vision, geo-
metrical shape extraction.

I. I NTRODUCTION

The problem of detection and characterization of 3D build-
ings in the urban/suburban areas is a very complicated one that
has many applications in a vast variety of areas. Automatic
creation of 3D urban city maps could be an innovative way
for providing geometric data for varieties of applicationssuch
as civilian emergency situations, natural disaster management
(flooding, earthquakes, and landslides), military situations
(active engagement of force, counter terrorism and peace
keeping measures), urban planning, airport hazard analysis,
and statistical geographic localization (such as health, crime,
and past natural disasters). Reliable and consistent extraction
of quantitative information from remotely sensed imagery is
crucial to the success of any of the above applications.

Almost all operational approaches developed over the years
for 3D building/map reconstruction are semi-automated ones,
where a skilled human operator is involved in the 3D geometry
modeling of building instances. Perhaps the most key role of
the human operator in such systems is the identification of the
building rooftops by, for instance, drawing lines and curves
that depict buildings walls and borders. This is an expensive
and tedious process with a low update rate.

While numerous semi-automated systems have been devel-
oped, a limited number of automated systems are reported in

the literature. Some of these works present instances of limited
good results especially for aerial imageries (higher resolution)
and larger size buildings. These systems are still far from being
capable of coping with the existing complexities of urban
structures and maps. A system that can robustly detect and
identify/measure building structures with high reliability is yet
to be developed.

A. Previous work

Prior building extraction systems generally consider two
main processes [2]: footprint detection and 3D reconstruction.
In this concept, building outlines and roof structures can
be described with the use of lines, regions, planar patches,
polyhedral shapes, geometrical models, and multiple images
[8], [17], [21], [7].

Early works in the area of building detection are mostly
based on the main assumption that the buildings have quadri-
lateral image footprints and therefore the detection model
has a quadrilateral shape. With such assumption, almost all
the previous works have used edge/line detection techniques
(Canny, DoG, Laplace, Hough, Boldt, Weiss, gradient val-
ues/directions) [15], [12], [10], [5], [13] to extract straight
lines. The relationships between extracted lines are identified
and classified to generate building hypotheses. This group
of works generally has shown some success when detecting
large buildings with flat rooftops. They however tend to fail
(or suffer instabilities) in cluttered scene scenarios or scenes
including small buildings.

Some approaches utilize image cues and geometric
constraints with sophisticated methodologies to create more
complex primitives. These primitives are then matched against
predefined models. Cheng et al [4] introduces a segmentation
method based on 2D histograms for partitioning the aerial
images into four distinctive regions. [16] uses [4]’s image
primitives to detect buildings by employing a modified partial
snake model. [9], [11] propose sophisticated surface fitting
methods using image corners. [20] devises a system for
detecting flat or gabled roofs using textured segments and
image corner points that are matched at the pixel level using
mutual information. Sohn and Dowman [19] suggest an
automatic building extraction technique using local Fourier
analysis to determine the dominant orientation angle of a
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building cluster in dense urban areas of IKONOS imagery.
The main problem with this group of work is that only a small
number of overall features is used for building identification,
and therefore these methods usually have a low true-positive
rate.

B. Objective

In this work the problem of automatic building rooftop
detection, as a key element of the 3D map reconstruction,
is addressed. The system is designed with the following
assumptions:

• The images to be processed are panchromatic: This is to
restrict the scope of this work to the fundamental problem.

• Space-borne imagery: To develop an algorithm that find
smaller buildings on lower resolution imagery.

• The walls are vertical: This assumption applies within
each rectangular building component.

• The imagery is acquired on a clear day, with the sun not
on the horizon: This will ensure that good shadows may
be available as supporting evidences of rooftop structure.

• Quadrilateral footprints: The building rooftops could be
closely fitted within a quadrilateral shape.

The primary novelty of this work is a methodology for
detecting building outlines with an accuracy within a pixelon
general satellite/aerial imageries (some obtained from Google
Maps). Moreover the system is capable of processing smaller
suburban buildings with gabled rooftops.

C. Paper outline

The basis of 2D image primitives detection is explained
in Section II. Section III describes details for hypothesis
generation, validation and refinement. Section IV represents
the experimental results. Conclusions and future work are
represented in Section V.

II. 2D I MAGE PRIMITIVES

The goal of this section is to apply a series of image
processing algorithms to an input image to extract image
primitives that are used in later stages. The outputs of this
section are:

• The gradient field of the image, including both gradient
magnitude and direction.

• A set of straight line segments (location, extent, orienta-
tion) found in the image.

• A set of image segments that represent similar image
regions at various sensitivities.

A. Gradient field

The objective of this step is to generate the gradient field
of the image including gradient magnitude and direction at
each image pixel. For this purpose first a 3×3 pixel Gaussian
low-pass filter is applied over the image to reduce pixel-level
noise. The horizontal and vertical gradients are then computed
at each pixel by convolving 2×2 pixel horizontal and vertical
masks across the image. The gradient magnitude and direction

are estimated from the horizontal and vertical gradients ateach
pixel.

B. Straight line extraction

The objective of this step is to extract a set of straight-line
segments from the image, given the gradient field computed in
Section II-A. The algorithm implemented to achieve this goal
is the Burns line detector [3], which utilizes both the gradient
magnitude and gradient orientation to form line support regions
and eventually straight line segments. The following steps
describe this procedure.

1. Partition pixels into bins based on the gradient orienta-
tion values. A bin size of 45 degrees was selected.

2. Run a connected-components algorithm to form line
support regions from groups of 4-connected pixels that
share the same gradient orientation bin.

3. Eliminate line support regions that have an area smaller
than a specified threshold.

4. Repeat steps 1, 2, and 3 by shifting the gradient bins
to produce a second set of line support regions. This
accounts for the possibility that some true lines may
have pixels that lie on either side of an arbitrary gradient
orientation boundary.

5. Use a voting scheme to select preferred lines from the
two sets (original and shifted) of candidate lines.

6. For each line support region, compute the line repre-
sented by that region by performing a least squares fit.

C. Line linking and filtering

The objective of this step is to link collinear line segments
that are separated by very small gaps. Following algorithm
describes linking process:

1. Sort the lines in the order they would be encountered if
a horizontal sweep was performed across the image.

2. Use a divide-and-conquer method to efficiently deter-
mine nearby pairs of lines.

3. Test each pair of nearby lines to determine whether they
should be linked. All 5 criteria, which are illustrated in
Figure 1, must be satisfied for a pair of lines to be linked.

Two line filtering processes are applied to remove lines that
are not likely to positively contribute to rooftop hypothesis
generation process.

• The first filter acts on the line length. In general, long lines
are more likely to contribute to hypothesis formation and
subsequent steps.

• The second filter employs the gradient across the line
segment to separate regions of high contrast from low
contrast. In this process the gradient across lines are
normalized with respect to the average intensity across
the scene.

All detected lines at this stage are saved for future use in
Section III. Figure 2 depicts the lines for the sample imagery
after the linking and filtering processes.
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Fig. 1. Five required criteria for line linking process.

Fig. 2. Detected lines after liking and filtering processes.

D. Image segmentation

The objective of this process is to segment input image
into connected regions that fully or partially overlap withareas
corresponding to the rooftops.

For this purpose a graph-based segmentation [6] is em-
ployed that is capable of preserving details in low-variability

image regions while ignoring details in high-variability areas.
The algorithm includes following steps:

1. Each image pixel is considered as a region where it
corresponds to a node (v∈ V) in the overall image graph
of G(V, E).

2. Neighboring pixels are connected by undirected edges
(e ∈ E). For each edge a weight coefficient is computed
according to the dissimilarities between pixels.

3. Similar regionsA andB are merged together to produce
a larger region if the following condition is held:

Dif(A, B) ≤ MInt(A, B) (1)

where

Dif(A, B) = min
vi∈A,vj∈B,(vi,vj)∈E

w((vi, vj)) (2)

Here E is the graph edge set andw((vi, vj)) is the
weight between vertexvi andvj .

MInt(A, B) =

min (Int(A) + τ(A), Int(B) + τ(B))
(3)

Int(A) = max
e∈MST (A,E)

w(e) (4)

MST represents the Minimum Spanning Tree graph
G(V, E).

τ(A) =
k

| A |
(5)

The value ofk defines the sensitivity level. Since each scene
could include a number of buildings with different sizes, each
input image is segmented with eight different values ofk. All
the segments generated from variousks are placed in an image
segment dataset.

In order to improve segmentation results, small modification
is applied to the above algorithm by replacing the calculation
of the Euclidean color distance with a closer representation to
the human brain’s perception [1] using following equations:

∆C =
√

(2 +
r

256
) × ∆R2 + 4 × ∆G2 + (2 +

255 − r

256
) × ∆B2

(6)
where

r =
C1,R + C2,R

2
(7)

∆R = C1,R − C2,R (8)

∆G = C1,G − C2,G (9)

∆B = C1,B − C2,B (10)

Figure3 depicts segmentation results at 4 different levels.

III. ROOFTOPDETECTION

The objective of this step is to generate a set of rooftop
hypotheses based on the previously extracted straight lines and
image segments.



(b)(a)

(d)c)(

Fig. 3. Segmentation results at 4 different sensitivity levels.

A. Rooftop hypothesis generation

In this section, each segment is processed to create a set
of possible rooftop hypotheses. The algorithm implementedto
achieve this goal is as follows:

1. For each segment in the image segment dataset, apply
morphological filtering by an opening followed by a
closing with a structuring element of size3 × 3.

2. Detect lines that describe the boundaries of each segment
using the line detection algorithm described in II-A, II-B
and II-C.

3. Identify segment’s boundary pixels (Canny edge detector
is employed in the implementation).

4. Find all the line segments in close vicinity with border
points.

5. Combine the lines detected from steps 2 and 4 to
generate one set of line segments associated with the
current segment.

6. Generate a list of anti-parallel pairs of line segments.
The direction of each line segment is computed based
on the gradient direction of pixels.

7. For each pair of lines (denoted as West and East to
follow the convention established in [14]), search for all
approximately perpendicular line segments which could
form North and South sides to the line pairs.

8. Generate a set of rooftop hypotheses from each com-
bination of West, East, North, and South line segments

Fig. 4. Four rooftop hypotheses initiated from one segment.

found.

Note that measures such as parallel, antiparallel, and perpen-
dicular are determined in object space; however, with nadir
imagery, it is assumed that angular measures taken in image
space are approximately the same as those in object space.
Figure 4 represents an example where all the hypotheses
detected for one specific segment is over imposed on the
original image.

B. Hypothesis probability computation

In this section for each hypothesis a probability score is
computed.

1. For each hypothesis create a tube around its sides.
2. Find all the lines that fully or partially fall within the

tube. These lines are chosen from the set generated in
Section III-A-5.

3. Remove lines with an orientation difference (from the
side) higher than 15o.

4. Project each line on the closest side of the hypothesis.
5. For each side compute the normalized coverage due to

the line projection in Step 4. Sum the four scores and
normalize it.

Figure 5 represents a candidate hypothesis with all the lines
that fall inside or intersect with the tube of 5 pixels aroundthe
rooftop definition.

C. Local hypothesis refinement

The objective of this process is to inspect all hypotheses
generated from one segment and choose the best hypothesis
that could represents the area under inspection. In this process,
from each set of overlapping hypotheses at most one hypothe-
sis will be maintained. If the evidence for the best hypothesis
is not strong enough, it will be eliminated. Following steps
describe the refinement process:

1. Compute the normalized ratio of each hypothesis area
covered by the initiating segment.

2. Compute the percentage of the overlap between the
segment and the area of the hypothesis.



Fig. 5. Line segments that fully or partially fall within thetubes (shown by
blue lines) are projected onto the corresponding sides.

3. Combine each hypothesis probability with its coverage
ratios (computed above). A simple mean is used in this
work’s implementation.

4. Choose the hypothesis with the highest score.
5. If the score is larger than a configurable threshold add

this hypothesis to the hypothesis data set and otherwise
remove it from the rest of process.

Steps in Sections III-A, III-B, and III-C are repeated for
every segment in the segment data set.

Since each scene is segmented a number of times, there
is a high possibility that for each physical building multiple
hypotheses generated. Segmentation with different sensitivity
parameter could cause partial or over segmentations. This issue
could create overlapping hypotheses that partially or fully
correspond to the same physical building but with different
definition. Figure 6 shows all 72 hypotheses that are detected
for the sample imagery.

Following steps are performed to eliminate false hypotheses
or to choose the best representative hypothesis among two or
more overlapping hypotheses.

D. Removing pools and green areas in color images

The objective of this process is to eliminate hypotheses
that have been generated over pools or yard areas. For this
purpose the blue and green band images are processed to
compute a Green-Blue ratio. This ratio is computed for each
hypothesis by accumulating the hue value of the pixels inside
each rooftop region. After normalizing this ratio by the area of
the hypothesis, hypothesis with a ratio more than a predefined
threshold is classified as an outlier and removed from the hy-
potheses candidate list. Figure 11.(a) shows the results before
this step. Figure 11.(b) shows removal of a false hypothesis
corresponding to the green area. The hypothesis in the mid-
right section of image (a) is removed in image (b).

E. Global hypothesis refinement

The objective of this process is to select the best hypothesis
representing a building among a group of overlapping hypothe-
ses.

Fig. 6. Hypotheses before filtering.

(a)                                    (b)

Fig. 7. Hypotheses with high concentrations of Blue and Green are filtered.

1. The geometrical overlap is computed by measuring the
intersection of convex polygons that define the rooftop
hypotheses.

2. After all the geometric overlaps are computed, overlap-
ping groups will be generated. If a hypothesis overlaps
with image instances of two or more buildings, it will be
moved to the group with the highest amount of overlap.

3. In each group the best representative will be chosen
using the hypothesis probability measures computed in
Sections III-B and III-C.

Figure 8 represents refined hypotheses shown Figure 8. The
number of hypotheses is reduced from 72 to 17.

IV. EXPERIMENTAL RESULTS

The proposed system is implemented in Matlab except
for the segmentation routine that was written in C++ and is
called from Matlab environment. The performance on an Intel



Fig. 8. Final results for scene 1, Los Angeles, CA, USA.

Fig. 9. Final results for scene 2, Los Angeles, CA, USA.

CoreTM2 Duo processor at1.83 GHz with 1 GB RAM for an
image of300 × 200 pixels is 363 seconds.

The performance of the system is assessed using many
sample images from Google Maps, QuickBird satellite and
aerial resources. Figures 8 to 13 illustrate the final results in
each case. Note that partial buildings (at image border lines)
are not processed and therefore have no correspondences in
the presented results.

Table I describes a summary of the rooftop hypotheses from
the above images.

Fig. 10. Final results for scene 3, Richmond, BC, Canada.

Fig. 11. Final results for scene 4, Richmond, BC, Canada.

In this table, BDP represents the Building Detection Per-
centage and QP stands for the Quality Percentage. These
measurements were originally introduced by [18]. We have
adjusted one of them.

BDP =
100TP

TP + FN
(11)

QP =
100TP

TP + NTP + FP + FN
(12)

V. CONCLUSION

This paper described a system for detection of the building
rooftops in satellite/aerial imageries. The system combines line
definitions with segmented areas in the city images to detect
buildings of various sizes. The system relies on blue band for
color images (with an exception in Section III-D).

The plan for the future work is to improve the current
system to incorporate refinement processes that inspect final
results and adjust them accordingly. Generalizing the fitting
algorithm for polygon shapes (other than quadrilateral) is
currently under investigation. It is also planned to reducethe
number of false negatives by means of a second process that
runs on areas with high edge intensity and low hypothesis



Fig. 12. Final results for scene 5, Ottawa, ON, Canada.

Fig. 13. Final results for scene 6, Los Angeles, CA, USA.

correspondance. The long term goal for this project is to
be incorporated in an automatic 3D building detection using
monocular satellite imageries.
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