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Abstract—In this paper, we propose an unsupervised 

segmentation algorithm for extracting moving objects/regions 

from compressed video using Markov Random Field (MRF) 

classification. First, motion vectors (MVs) are quantized into 

several representative classes, from which MRF priors are 

estimated. Then, a coarse segmentation map of the MV field is 

obtained using a maximum a posteriori estimate of the MRF label 

process. Finally, the boundaries of segmented moving regions are 

refined using color and edge information. The algorithm has been 

validated on a number of test sequences, and experimental results 

are provided to demonstrate its superiority over previously 

proposed methods. 

 
Index Terms—Motion segmentation, Markov Random Field. 

I. INTRODUCTION 

Moving object segmentation is important in a variety of 

applications such as video surveillance, video database 

browsing, object-based video transcoding, etc. During the last 

two decades, a number of approaches have been proposed to 

tackle this problem. Especially interesting is the problem of 

moving object segmentation in compressed video, due to the 

abundance of compressed video content.  

State-of-the-art object segmentation methods can be broadly 

grouped into pixel domain approaches (e.g., [1–3]) and 

compressed domain approaches (e.g., [4-11]). The former 

extract objects by exploiting visual features such as shape, 

color and texture. In this case, the compressed video has to be 

fully decoded prior to segmentation. The high computational 

load and over-segmentation of possible moving objects are 

two major drawbacks of these methods. On the other hand, 

compressed domain methods exploit compressed domain data, 

such as motion vectors (MVs) and DCT coefficients, to 

facilitate segmentation. Some methods [4–5] operate directly 

on sparse (block-based) MV field. These methods have low 

complexity, but often suffer from poor localization of object 

boundaries, and inconsistency in the number or segmented 

regions from frame to frame. Alternatively, one can create a 

dense (pixel-base) MV filed by interpolation, and then run 

segmentation on the dense field, at the cost of significantly 

higher complexity [6–8]. Combinations of compressed-domain 

and pixel-domain operations have also been proposed to 

balance complexity and accuracy [9–11]. These methods first 
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create a coarse segmentation from the sparse MV field, and 

then refine it in the pixel domain. Although these methods 

generally have higher segmentation accuracy near object 

boundaries than purely compressed domain approaches, 

maintaining a consistent number of segmented regions across 

frames is still a challenge for them. 

The segmentation method proposed in this paper is a 

combined compressed domain and pixel domain approach. A 

distinctive feature of our method is the use of MV quantization 

based on local motion similarity to find the most likely number 

of moving objects/regions, and use the statistics of the 

resulting clusters to initialize prior probabilities for subsequent 

Markov Random Field (MRF) classification. This way, the 

proposed method is able to overcome some of the difficulties 

faced by previous methods, such as over-segmentation [1-3], 

under-segmentation [4], and segmented region inconsistency 

[9-11]. Further, pixel domain boundary refinement yields more 

accurate region boundaries than can be achieved by purely 

compressed domain methods [4-5], while still having a much 

lower complexity than pixel domain methods [6-8].  

The paper is organized as follows. The segmentation 

framework and its major components are elaborated in Section 

II, followed by the experimental results in Sections III. The 

conclusions are drawn in Section IV.  

II. MARKOV RANDOM FIELD MOTION SEGMENTATION 

Block diagram of the proposed segmentation system is 

shown in Fig. 1. The system incorporates two major 

segmentation components: coarse segmentation from motion, 

which can be carried out in the compressed domain, and fine 

segmentation, carried out in the pixel domain. Coarse 

segmentation further consists of two units: MV quantization, 

which generates the preliminary segmentation map, and MRF 

MV classification. 

 

Figure 1: Overview of the MRF motion segmentation system 
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A. Markov Random Field motion model 

Our approach to coarse motion segmentation is based on a 

Markov Random Field (MRF) motion model [1] [3] [8]. In this 

model, motion vectors MV = (MV
X
, MV

Y
) within a given 

moving region ω follow a conditional distribution P(MV | ω), 

while region labels (ω's) follow a 2-D MRF distribution based 

on a given neighborhood system. The goal is to infer region 

labels (ω's) from the observed MV field. 

To simplify calculations, we assume that within each region, 

MVs form an independent bivariate Gaussian process. Under 

this assumption, the likelihood function for the j-th block in 

the frame is 
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where 
X

j
mω and 

Y

j
mω  are the means of the horizontal and 

vertical MV component within the region labeled ωj, while 
X

jωσ  and 
Y

jωσ  are the corresponding standard deviations. The 

dependence among the labels of neighboring blocks is 

modeled by a MRF which follows the Gibbs distribution: 
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where Z is the normalizing constant ensuring that ΣP(ωj) = 1, 

C is a clique (a set of neighboring blocks) and V(C) is the 

clique potential. We only consider 4-adjacency cliques. In 

other words, two blocks form a clique if one is immediately to 

the North, South, East, or West of the other, as shown in Fig. 

2. If ω1 and ω2 are the region labels of the two blocks in the 

clique C, the potential of C is defined to be 
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where β > 0 is a parameter controlling the homogeneity of the 

regions. Based on (2) and (3), nearest neighbors are more 

likely to have the same region label. 

 

Figure 2: First-order neighborhood system and clique configuration. 

B. MV quantization and MRF parameter estimation 

The main difficulty in MRF segmentation is to determine 

the parameters that specify the MRF, particularly the number 

of motion segments and their statistics. Our approach is to first 

perform vector quantization of MVs in order to estimate these 

parameters. To achieve robust quantization, we suppress the 

influence of possibly inaccurate MVs by examining the 

smoothness of the MV field [12]. A MV that is very different 

from its neighbors, and therefore suspected to be inaccurate, 

will have less influence on the resulting quantization. A similar 

idea was studied in [2] in the context of color quantization. We 

first apply a 3×3 vector median filter to the MV field. Then, 

for each motion vector MVj, find the maximum Euclidean 

distance DMAX,j from its 8-adjacent neighbors, and assign it the 

weight Wj = exp(−DMAX,j). Using these weights, we run a 

generalized Lloyd algorithm for vector quantization: 

1)  Start with a single cluster (all MVs in the frame), compute 

its centroid MVcent as  
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then split it into two clusters by deriving two new 

centroids as MVcent ± MVcent/2.  

2)  Quantize all MVs in the frame into existing clusters using 

the nearest neighbor criterion. Then, for the i-th cluster Ci, 

update the centroid MV as:  












= ∑∑ ∈∈ inin

i

C nC nn
C
cent WW

MVMV
MVMV / .  (5) 

3)  Compute the weighted distortion of each cluster Ci: 
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Let Ck be the cluster with the maximum weighted 

distortion, and let Xmax, Xmin, Ymax, and Ymin be, 

respectively, the maximum and minimum horizontal and 

vertical component among the centroids. Split cluster Ck 

into two clusters with centroids PMV ±kC
cent , where  
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and N is the total number of clusters prior to splitting. 

4)  Repeat steps 2) and 3) until the total weighted distortion 

(sum of all WD
Ci

) becomes less than a given threshold (in 

our experiments, 5% of its initial value in step 1), or the 

smallest cluster size becomes less than another threshold 

(in our experiments, 5% of the total MV field size).  

Upon completion, a preliminary segmentation map is 

obtained: MVs in cluster Ci obtain the region label ωi, which 

enables us to compute X

i
mω , Y

i
mω , X

iωσ , Y

iωσ  and P(ωi).  

C. MRF motion segmentation 

For block j, based on the Bayes' theorem, the posterior 

probability P(ωj | MVj) is proportional to P(MVj | ωj)P(ωj), so 

the Maximum A Posteriori (MAP) estimate of ωj is given by:  

( ) ( )jjjj PP
j

ωωω
ω

|maxargˆ MV= ,                (8) 

where P(MVj | ωj) is computed as in (1), and P(ωj) is 

computed as in (2)−(3). The MAP segmentation for the entire 

MV field corresponds to maximizing  
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and is obtained using the method of Iterated Conditional 

Modes (ICM) [13], by iteratively solving (8) for each block in 

the frame. We use the ICM implementation from [3] (modified 

for MV segmentation rather than pixel segmentation), with six 

iterations. The final step is to identify small regions whose size 

is less than 2% of the total MV field, and group each block in 

those regions to the neighboring large region with the closest 

centroid MV. 

D. Boundary refinement 

Segmentation map obtained in the previous section is block-

based. Since real object/region boundaries rarely follow block 

boundaries, segmentation map needs to be refined. Fig. 3 

illustrates the refinement steps on frame #22 from Flower 

Garden. The steps involve boundary block identification, edge 

detection, and interior region growing.  

 
Figure 3: (a) Interior regions grow within boundary regions, (b) Coarse 

segmentation and identified boundary blocks, (c) Initial boundary region and 

edges within them, (d): Result of interior region growing. 

Boundary blocks are identified based on the segmentation 

map from Section II-C and the Region Motion Deviation 

(RMD) map. The RMD value Ij
C
 of MVj within region C is the 

normalized deviation of MVj from the centroid MV of region 

C: ( )CC
j

C
j DDI max/255 ⋅= , where j

C
cent

C
jD MVMV −= , 

and 
C
jj

C
DD maxmax = . A two-pass procedure is employed to 

classify a block as either a boundary block or interior block. In 

the first pass, we scan all the blocks in the raster scan order, 

and for each block we check its East (E), South (S), and South-

East (SE) neighboring blocks, if available. If any of these 

blocks belong to a different region than the one the current 

block belongs to, we compare the RMD values of all four 

blocks (current, E, S, SE), and label the block with the highest 

RMD value as a boundary block. In the second pass, we seek 

to extend the boundary to be at least 2 blocks (16 pixels) wide, 

to improve the chance that the real region boundaries lie 

within boundary blocks. To do this, we check 4-adjacency 

neighbors of all boundary blocks found so far, and check if 

they have at least one horizontal (vertical) neighbor classified 

as a boundary block. If not, we label the horizontal (vertical) 

neighbor with the higher RMD value as a boundary block. At 

the end, all blocks not classified as boundary blocks are 

labeled interior blocks. An example is shown in Fig. 3(b), 

where boundary blocks are indicated in darker color. 

Canny edge detector on the Y-component is used to identify 

edges within boundary blocks as shown in Fig. 3(c). Then, 

interior regions are grown towards each other via 

morphological erosion of the boundary blocks using a 3×3 

structuring element. The structuring element is not allowed to 

cross an edge. Hence, this restricted erosion will move the 

interior region boundaries up to the nearest edge(s). In this 

process, some boundaries of neighboring interior regions may 

meet, in which case the pixel-wise boundary between these 

regions is identified. In other cases, boundaries do not meet 

due to a complicated edge pattern between them, so we further 

employ region growing based in color information as in [11] to 

finalize region boundaries. 

III. EXPERIMENTAL RESULTS 

The proposed segmentation algorithm has been tested on a 

variety of standard sequences with different motion 

characteristics. Sequences are CIF (352×288) and SIF 

(352×240) resolution with a frame rate of 30 frames per 

second. In this work, we use the XviD MPEG-4 codec 

(http://www.xvid.org/) for compression, using the IPPP… 

GOP structure, at 512 kbps. We point out that the 

segmentation framework is generic and easily adapted to other 

video compression standards. The MVs extracted from the 

bitstream are normalized to form a uniformly sampled MV 

field, where each MV corresponds to an 8×8 block.  

A. Estimation of the number of MRF classes 

We first evaluate MV quantization as a way to determine 

the number of MRF classes, and to provide the initial 

segmentation map. Figs. 4(a) and (b) show how the weighted 

quantization distortion changes as a function of the number of 

classes on sample frames from Flower Garden (frame #2) and 

Table Tennis (frame #4). Fig. 4(a) indicates that three classes 

seem to be appropriate for the frame #2 of Flower Garden, 

while Fig. 4(b) indicates that two classes are appropriate for 

frame #4 of Table Tennis. The corresponding initial 

segmentation maps are shown in Figs. 4(c) and (d), 

respectively. These initial segmentation maps enable us to 

calculate the means and variances of horizontal and vertical 

MV components within each region.  

B. MRF motion segmentation and boundary refinement 

Next, we evaluate MRF segmentation, especially the 

number of ICM iterations and the role of parameter β in (3) 

which influences the spatial structure of the MRF. In the top 

left part of Fig. 5, we show the posteriori energy (the sum of 

potentials in (3) of all cliques in the field) vs. the number of 

iterations of ICM implementation from [3], when β = 3.5. The 

graph indicates that 4-6 iterations are sufficient, as suggested 

in [3]. Hence, we used 6 iterations in all our experiments.  

The rest of Fig. 5 shows the segmentation of frame #2 of 

Flower Garden obtained by setting β to 0, 1.5, and 3.5, 
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respectively. When β = 0, no spatial constraints are imposed 

on the MRF, so the segmentation does not change from its 

initial layout obtained by MV quantization (Fig. 4(c)). As β 

increases, neighboring blocks are more likely to be in the same 

region, so region boundaries end up being more compact. Our 

experiments indicate that β = 3.5 provides a good balance 

between boundary compactness and segmentation accuracy, so 

we use this value in the remaining experiments. 

( a ) ( b )

( c ) ( d )
 

Figure 4: (a) and (b): weighted quantization error vs. the number of motion 

classes, (c) and (d):  the corresponding segmentation map after MV 

quantization, where segments are distinguished by different colors.  

  
Figure 5: [Top Left]: Posteriori energy vs. iterations; Other figures: MRF 

segmentation with β∈{0, 1.5, 3.5}. 

In Fig. 6(a), we illustrate the final MRF segmentation of 

frame #2 of Flower Garden (after merging blocks from small 

regions to neighboring regions), and in Fig. 6(b) we show the 

boundary refinement results. We also show the results from 

four other state-of-the-art segmentation algorithms: [2], [4], 

[7], and [11] for comparison. Fig. 6(c) shows the segmentation 

result using the algorithm from [2], which is image-based, and 

does not use motion information, and hence results in over-

segmentation. This problem has been mitigated to some extent 

by our earlier work [11], shown in Fig. 6(d), which utilizes k-

means clustering and motion consistency. However, the scene 

is still over-segmented. Fig. 6(e) shows the result of using the 

method from [4], which is based on MRF with two motion 

classes (background and foreground). The result is an under-

segmented scene, with part of the background (garden) 

included in the same segment as the foreground (tree trunk). 

Finally, Fig. 6(f) shows the segmentation result from [7], 

which is a MV-based approach using the Expectation 

Maximization algorithm on a dense MV field. This method 

ends up with same number of motion classes as ours, but these 

motion classes (segments) are less compact that in our case, 

and some are not even spatially connected. A few other 

segmentation results of our method are shown in Fig. 7.  

 
Figure 6: (a): Coarse MRF segmentation, (b):boundary refinement. (c, d, e, f): 

segmentation result from Ref. [2], [11], [4] and [7], respectively.  

 
Figure 7: Final segmentation results, [Left to Right]: Sequence Table Tennis 

(frame # 5),  Coastguard (frame # 40), and Hall Monitor (frame # 50).  

C. Quantitative evaluation 

In addition to the visual results above, we provide a 

quantitative evaluation of our method, using the manually 

segmented sequences Flower Garden and Table Tennis 

(available at: http://www.sfu.ca/~ibajic/datasets.html). We test 

how accurately the fastest moving objects (tree trunk in 

Flower Garden, player’s hand and ball in Table Tennis) can be 

segmented. By counting the pixels correctly identified as 

moving region pixels (True Positives - TP), the pixels 

correctly identified as the background (True Negatives – TN), 

the pixels wrongly identified as moving region pixels (False 

Positives - FP), and the pixels wrongly identified as 
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background (False Negatives – FN), we can compute several 

quantities for measuring segmentation accuracy: Precision = 

TP / (TP + FP), Recall = TN / (TN + FN), and F-measure as 

the harmonic mean of Precision and Recall. In terms of these 

quantities, we compare our method and the method from [4], 

which is the latest work addressing MRF motion segmentation 

in block-based compressed video. In our implementation, 8×8 

uniformly sampled MV field is used. 

TABLE I 

AVERAGE PRECISION, RECALL, AND F-MEASURE. 

Flower Garden Table Tennis 
Sequence 

Proposed Ref. [4] Proposed Ref. [4] 

Precision 0.86 0.41 0.91 0.79 

Recall 0.94 0.98 0.67 0.69 

F-measure 0.90 0.56 0.75 0.72 

 
Figure 8: Quantitative evaluation – Garden. [Top]: the proposed method, 

frame #1, #3, #5, #7, from left to right, [Middle]: corresponding segmentation 

using method from [4], [Bottom]: the quantitative evaluation for the proposed 

method (left) and method from [4] (right). 

 
Figure 9: Quantitative evaluation – Tennis. [Top]: the proposed method, 

frame #1, #3, #5, #7, from left to right, [Middle]: corresponding segmentation 

using method from [4], [Bottom]: the quantitative evaluation for the proposed 

method (left) and  method from [4] (right). 

The top and middle rows in Figs. 8-9 show the segmented 

objects in frames #1, #3, #5, and #7, extracted by our method 

and the one from [4]. TP, TN, FP, and FN pixels are also 

shown. The last row in both figures shows the quantitative 

measures for the first 25 frames of Flower Garden and Table 

Tennis, while their averages are listed in Table I. For Flower 

Garden, the method from [4] has an average precision of 0.41 

due to under-segmentation (background pixels included in the 

foreground, shown as blue pixels in Fig. 8), while our method 

maintains a much higher precision of 0.86. The performance of 

the two methods is more similar on Table Tennis, where the 

assumption made in [4] about two motion classes (foreground 

and background) is more appropriate. Nonetheless, our 

boundary refinement yields more accurate boundaries, which 

again leads to higher precision (0.91 vs. 0.79). Finally, note 

that our segmentation method has a reasonably low 

complexity. On a standard desktop PC with Intel Pentium CPU 

at 3.0 GHz, with 2 GB of RAM, on a CIF sequence, motion 

segmentation (in Matlab) takes about 80 ms per frame, while 

boundary refinement (in C/C++) takes about 20 ms. 

IV. CONCLUSION 

In this paper, we have presented an unsupervised moving 

region/object segmentation algorithm for compressed video, 

which includes MRF-based coarse segmentation, and 

boundary refinement using color and edge information. The 

proposed method achieves a good balance between accuracy 

and complexity, and compares favorably against other state-of-

the-art segmentation methods.  
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