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ABSTRACT

This paper describes a semi-automatic algorithm for extract-
ing liver masks of CT scan volumes. The proposed method
relies on two types of information: liver’s shape and its in-
tensity characteristics. Here the liver shape information is
retained by measuring the shape similarities between consec-
utive slices of the liver’s CT scans. This is done through a
deformable registration scheme. The liver intensity is utilized
by a multi-layer image segmentation algorithm that empha-
sizes on the true boundaries of the liver. The proposed algo-
rithm is tested for MICCAI 2007 grand challenge workshop
dataset. The average results for volumetric overlap error and
relative volume difference is 11.12% and 2.21% respectively.

Index Terms— Liver segmentation, 3D organ reconstruc-
tion, deformable registration, mean shift segmentation

1. INTRODUCTION

Planning is an important part of computer assisted minimally
invasive surgeries that is done prior to the surgery. It in-
volves preparing a 3D model of the organ under surgery and
its surroundings in the patient’s body to provide the surgeon
with a better understanding of the patient specific anatomy
of the surgical site. This 3D model is based on patient’s im-
age data that could be acquired from different modalities such
as Magnetic Resonance Imaging (MRI), Computed Tomogra-
phy (CT) or Ultrasound Imaging. The 3D reconstruction of
the organ model and its surrounding generally requires var-
ious segmentation/extraction algorithms that are applied on
the pre-operative scans. A survey of segmentation methods
for computer assisted surgery can be found in [1]. Liver is one
of the most common human organs that undergoes minimally
invasive surgeries and therefore liver segmentation/extraction
with least amount of user interaction from pre-operative scans
could highly reduce the surgery planning time.

In this paper an algorithm is proposed that does not rely on
any training dataset. This approach relies on both the inten-
sity and liver shape information of the CT slices. It is novel

in the way that it incorporates the liver shape similarity be-
tween consecutive slices by the use of deformable registra-
tion. Moreover through a multi-layer segmentation approach
true boundaries of the liver regions are detected. Any active
contour based method can be added as a fine tuning post pro-
cessing in cooperation with the proposed algorithm.

1.1. Previous Work

Several methods are proposed in the literature for segmenta-
tion of the liver. Some such as [2, 3, 4] use active contours
to find liver boundaries. Although effective, they don’t take
advantage of the shape similarities between the consecutive
slices of a liver volume. Some methods use segmentation re-
sults of other structures/organs such as ribs in the image as
positional reference or limiting boundaries for liver segmen-
tation [5, 6]. The method in [6] utilizes the liver data from pre-
vious slices that have been processed by the algorithm. This
method however does not exploit the shape similarities be-
tween consecutive slices. Other methods such as those based
on statistical shape models [7, 8, 9] rely on a training dataset
of liver volumes. The performance of these methods is depen-
dent on the type and the number of volumes in the training set.
Also there are texture-based classification techniques that do
not take advantage of the liver shape information along with
intensity information of the liver [10].

The rest of the paper is organized as follows; Section 2
describes the proposed algorithm in details. Section 3 reviews
the performance related issues and quantitative results of the
system and conclusions are presented in Section 4.

2. PROPOSED METHOD

This paper describes a semi-automatic algorithm for extract-
ing the human liver masks from the CT scan volume of the
abdominal area. Although the method is described as semi-
automatic, the amount of user interaction is very minor. In-
puts to the algorithm are images of one abdominal CT scan
volume and one manually identified mask of the liver from a
middle slice of the volume in which the liver area is near to
its largest size. The output of the algorithm is a set of liver



masks for all the remaining slices of the volume. The algo-
rithm starts from one of the middle slices whose liver mask
is provided in the input set. It processes input slices in two
batches. Both two batches start from the middle slice but
one moves in the proximal direction towards the head and
the other in the direction towards the feet. In every step, the
liver mask of the slice number i − 1 (previous step’s slice) is
manipulated to form the liver mask for slice number i (current
slice). Such order in processing is held until the last slice in
each proximal direction is visited and its liver mask extracted.

Fig. 1 displays the main stream of operations for the pro-
posed method. Details of each process are described next.

Find a guesstimate of the liver mask at slice by registering slice 1 to

Stage 1: Deformable Registration

i i- i

Find liver areas around guesstimated liver position by segmenting slice

Stage 2: Image Segmentation

i

Remove non-liver parts using the accumulative edge map of all segments

Stage 3: Multi-layer Segmentation

Rough estimate of the liver mask for slice i

Output mask

Input: image slice and mask of slice 1i i-

Guesstimated mask and candidate regions surrounding liver at slice i

Fig. 1. Order of operations for slice i.

2.1. Stage 1: Deformable Registration

In this stage, shape changes are estimated and tracked from
image slice i − 1 to image slice i. These changes are then
applied on the liver mask of slice i− 1 to form a guesstimate
of liver mask for slice i. This operation is done as following:

1. The image of the slice i−1 is registered with the image
of slice i. Registration is performed using Drop soft-
ware, which registers using non-rigid registration based
on discrete labeling and linear programming [11, 12].
Here the output is a deformation field.

2. The estimated deformation field projects mask points
of slice i − 1 onto their new locations at slice i. Since
the transformation transfers integer locations to non-
integer locations, the nearest neighbor scheme is used
to estimate new transformed locations.

3. The rounding error from nearest neighbor scheme man-
ifests itself by a number of scattered undefined/empty
points inside new masks. A morphological closing is
applied to close empty points on the new mask.

Due to the fact that often each liver dataset contains sudden
and large changes including additive connected or isolated
pieces from one slice to the next, the results of this opera-
tion cannot account for all changes that exist between two
consecutive slices. Hence, these results are basically a rough

estimate of the liver’s profile at slice i, which might not nec-
essarily cover the entire actual liver region. The result of this
stage for a typical case is shown in Fig.2-b. Fig. 2-a shows
the initial mask for slice i− 1.
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Fig. 2. Intermediate image results at different Stages.

2.2. Stage 2: Image Segmentation

After having a guesstimate of the liver mask at slice i, the al-
gorithm inspects those regions that are newly appeared in the
slice i compared to slice i−1. For this, first the liver image is
segmented using the mean shift segmentation algorithm [13].
A set of parameters is chosen for the segmentation so that re-
gions with texture similarity, regardless of the regions’ noise
level, are segmented into the same class.

Using results of the segmentation, all image regions that
are physically connected to each other and have overlaps with
the mask guesstimate of the liver, are connected to each other
to generate an updated liver mask definition. This step is in-
tended for identifying and admitting all liver regions that just
appeared in slice i and were not present in slice i − 1. It
must be noted that, organs and tissues in close proximity of
the liver with similar textures to the liver could be wrongly
added to the liver mask at this stage. A typical result for this
stage is shown in Fig. 2-c.

2.3. Stage 3: Multi-layer Segmentation

This stage removes those regions that were wrongly identified
as liver and added to the mask. For this purpose, a boundary
that surrounds the liver region at slice i is required. To esti-
mate such boundary an edge map that contains all edges of the
liver is utilized using a multi-layer segmentation technique.
In this technique the image of slice i is segmented with the
mean shift algorithm several times using a range of param-
eters. The boundary edges of all segmented slices are then
extracted. The extracted edges are added together to form
an accumulative edge map (AEM ). The AEM highlights
more dominant edges such as liver external boundaries which



are less sensitive to the parameter setting of the segmenta-
tion algorithm. The contrast of AEM is enhanced using Log
transform. The enhanced AEM is thresholded (computed
automatically) to form an Enhanced Edge Map (EEM ) that
contains only liver’s boundary edges. If the edge map of a
segmented image is called EMSI and s represents the seg-
mentation parameters for the mean shift algorithm, the above
operation can be described by:

AEM =
∑
s

EMSI (1)

EEM(x, y) =

{
1 Log(AEM(x, y)) > Thresh
0 otherwise

Where: Thresh = max(Log(AEM))−min(Log(AEM))
2

(2)

A sample result for generating the EEM is shown in Fig. 2-
d. EEM is then subtracted from the output of segmentation
operation at Stage 2 (Fig. 2-c) to separate the liver from non-
liver regions. The result for this stage is shown in Fig. 2-e.
The results of proposed method and the manual extraction are
overlaid on a sample slice as shown in Fig. 2-f.

2.4. Refinement of Non-single Piece Liver Masks

Due to anatomical features of the liver, often its cross sections
consist of two or more pieces. When processing such slices,
the proposed algorithm creates only a one piece mask for the
largest piece of the liver. In order to identify and add the miss-
ing secondary pieces of the liver to the mask, a supplementary
process is required.

In the supplementary process the system first returns to
the starting slice (middle slice, say index i − 1). The liver
mask for this slice will be transformed onto the slice i using
the deformable transformation scheme proposed in Stage 1.
Comparing results of this transformation with the actual mask
of slice i (found by running Stages 1 to 3) the algorithm deter-
mines whether there is any large piece of the expected mask
missing. If not, the supplementary process moves to the slice
i and uses its mask as the ground truth for slice i+1. If how-
ever one or more pieces of the expected mask are missing, the
algorithm has estimated the guesstimates of the missing mask
pieces (through the subtraction) in slice i. The following two
conditions must be satisfied for each of the secondary pieces
to be examined as a potential missing mask piece.

1. They had been part of liver mask in slice i− 1, and

2. Its area must be at least 10% (an empirical threshold)
of the previously calculated mask area at slice i.

The mask identification process (Stages 2 to 3) then will
be applied to all secondary pieces that have satisfied the above
two conditions to fine estimate each secondary mask piece.
Once all pieces are estimated, they will be added to the mask
of slice i and the process continues by finding all secondary
pieces of slice i + 1 using the updated mask of slice i as the

ground truth. This process is performed for all slices of the
volume in two batches on the two sides of the middle slice.

Some results are shown in Fig. 3. Figs. 3-a and -b display
results for non-single pieces and 3-c and 3-d for dark slices.
Figs. 3-h and 3-i depict examples of less than perfect results.

a: Vol. 1 Slice 95             b: Vol. 18 Slice 130             c: Vol. 6 Slice 61

d: Vol. 17 Slice 43        e: Vol. 4 Slice 150             f: Vol. 3 Slice 30

g: Vol. 7 Slice 159             h:Vol. 10 Slice 121           i: Vol. 5 Slice 235

Fig. 3. Sample results from the training volumes of MICCAI
2007 dataset (red: ground truth, green: boundaries by the pro-
posed algorithm, yellow: their overlaps).

3. RESULTS AND DISCUSSION

In order to evaluate the results of the proposed method, the
datasets and evaluation metrics from MICCAI 2007 grand
challenge workshop [14] are adopted. The dataset includes
20 training and 10 test volumes. The results for the test vol-
umes are shown in Table 1. The definition of the metrics used
can be found in [14].

The average runtime for extracting one liver mask for this
algorithm is 30 seconds using MATLAB 7.6.0.324 environ-
ment on a PC with an Intel Core 2 Duo (2 GHz) processor.

The proposed method is similar to the methods in [6, 10]
in the way that it does not require training data. The results
of the proposed method are superior compared to the result
of [6, 10] in terms of all metrics. It must be noted that the
algorithm does not outperform the method proposed by [7, 8,
9] due to the fact that these algorithms rely on a training set
and ours does not.

It is also important to mention that the performances of [7,
8, 9] are dependent on the number and the type of training
data available for segmenting the liver from patients CT scan.
Due to diversity of liver shape and size, performance of such
method could differ from patient to patient.



Table 1. Quantitative results for the proposed method.
Data Vol Score Ave Score Ave symm Score RMS symm Score Max symm Score Total
set overlap symm surface surface surface
No. error% diff% dist [mm] dist [mm] dist [mm]

1 10.08 60.63 -1.99 89.39 1.54 61.62 2.53 64.86 17.96 76.36 70.57

2 11.00 57.03 -3.57 81.02 1.90 52.58 4.13 42.67 40.95 46.11 55.88

3 12.18 52.41 -9.63 48.80 4.72 0.00 9.38 0.00 50.44 33.63 26.97

4 10.52 58.90 1.66 91.19 2.03 49.18 3.94 45.22 27.34 64.03 61.70

5 12.95 49.40 0.50 97.33 2.81 29.79 6.69 7.14 73.15 3.75 37.48

6 11.57 54.80 -4.03 78.59 1.91 52.15 3.32 53.88 24.28 68.05 61.49

7 9.55 62.71 2.30 87.77 2.21 44.83 5.67 21.23 47.68 37.26 50.76

8 9.68 62.18 0.99 94.74 2.25 43.73 4.58 36.33 34.81 54.20 58.24

9 8.34 67.41 -2.18 88.42 1.01 74.82 1.85 74.27 20.83 72.59 75.50

10 15.33 40.11 -6.18 67.11 3.55 11.25 6.66 7.57 37.20 51.06 35.42

Mean 11.12 56.26 -2.21 82.44 2.39 41.99 4.87 35.32 37.47 50.70 53.40

4. CONCLUSIONS

In this paper an algorithm for extracting liver masks of CT
scan volumes from abdominal area is proposed. The algo-
rithm is semi-automatic since it requires one accurate liver
mask from a middle slice of the processed volume. This al-
gorithm is novel in the way that instead of relying on training
dataset to estimate liver shape (which can be dependent upon
the number and the type of training volumes), it capitalizes on
gradual shape changes on consecutive CT slices. Changes on
consecutive slices are estimated by deformable registration. A
multi-layer segmentation algorithm is incorporated to acquire
border points of the liver. The quantitative segmentation re-
sults show an overall improvement of 9.14% in the volumet-
ric overlap error and 2.3% in the relative volume difference
comparing to the results by [6]. The algorithm generates re-
sults that are better in the maximum symmetric distance by
6.34mm, the average symmetric surface distance by 1.72mm
and the RMS symmetric surface distance by 2.83mm compar-
ing to the similar non-training based technique in [6].
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