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ABSTRACT

This paper presents a new solution for automatic polygo-
nal rooftop extraction (with no angular constraint) in satel-
lite/aerial imageries based on line intersections. The proposed
approach uses edge definitions and their relationships with
each other to create a set of potential vertices. Using a graph
representation, the relationship between potential vertices are
studied in an efficient way. Polygonal rooftops correspond
to closed loops in this graph. The experimental results for
images acquired from Google Earth show that this solution
has a high precision in detecting polygonal rooftops.

Index Terms— Building extraction, 3D map generation,
polygonal building models, satellite imagery

1. INTRODUCTION

Extraction of buildings’ 3D geometrical information from
satellite images has become a key element in many geospa-
tial applications such as urban city design and planning,
military simulation, and site monitoring of a particular geo-
graphic location. Nowadays almost all operational systems
for 3D building model reconstruction are semi-automated
ones, where a skilled operator is involved in the 3D geometry
modeling of building instances. In recent years, a number of
automatic approaches have been proposed for quadrilateral
building detection using edge/line detection techniques to
extract buildings footprints.

Wei et al. [1] proposed a probabilistic modeling for build-
ings in dense urban areas in high-resolution images. With
the assumption of a logistic function for building distribution
function, they show a good recognition rate at a high com-
putational cost. Li et al. [2] combined different techniques
including image segmentation, region growing, and morpho-
logical methods. Their approach however could not detect
buildings with the dark rooftops. Florent Lafarge et al. [3]
used an object-based approach for automatic building extrac-
tion from DEMs. Peng and Liu [4] used Chengs image prim-
itives with the modified partial snake model to detect build-
ings. Sohn and Dowman [5] suggested an automatic building
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extraction technique using local Fourier analysis to determine
the dominant orientation angle of a building cluster in dense
urban areas. Wei et al. [6] proposed an unsupervised clus-
tering algorithm to separate shadows from other parts of a
scene. The shadow and its directions were used to verify the
presence of a building structure. They utilized Canny edge
detector and Hough transform to refine buildings’ boundaries.
Liu et al. [7] proposed an approach based on multi-scale ob-
ject oriented classification and probabilistic Hough transform
to detect rectangular buildings roofs. Jin and Davis [8] intro-
duced an automatic system that utilized structural, contextual
and spectral information to detect buildings in satellite im-
agery. They reported an extraction rate of 72.7% with 58.8%
quality.

This paper presents a new methodology for automatic
polygonal shape rooftop extraction with no angular constraint
in remotely sensed images. The suggested approach is based
on examining lines and their existing or potential intersec-
tions using a graph presentation. Finding a polygonal shape
in the image corresponds to finding a loop in the graph. The
tree structure and backtracking algorithm are implemented
for an efficient search for potential building hypotheses. Lo-
cal refinements are also employed to verify the quality of
identified hypotheses and to reject outliers. The performance
of the system is assessed using detection rate and McKeown’s
shape accuracy factor [9].

2. METHODOLOGY

2.1. Pre-processing and corner detection

The goal of this part is to find the most distinctive edge and
corner features in the image. Some pre-processing including
a morphological opening followed by a closing are applied to
smooth all small objects including chimneys on the rooftops
or ruling on the streets. Canny edge detector is then applied
on the resultant image followed by an edge linking process.
All short edges after this process are removed from the re-
maining process. A a line fitting algorithm with a maximum
deviation of 2 pixels is then applied on the detected edges. In
the next step allpossible corners are extracted from the gray
scale image. The termpossible corner includes both inter-
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Fig. 1. Searching corners along one side of the starting corner.

sections of lines that in fact intersect within the image and
those potential intersections that their parent line segments do
not intersect in the image but their continuation will. Each
detected corner is associated with the angle between the two
parent lines. These corners are used in creating a graph in
which each corner represents a vertex and two edges. Detect-
ing polygonal rooftop hypotheses corresponds to the problem
of detecting closed loops in this graph.

2.2. Searching for loops in the graph

In order to detect loops in the corner graph, a dynamic pro-
gramming approach is employed. Here each loop is defined
with a set of vertices and edges. Starting from every corner,a
path along one of the corner’s edges is selected. A tube shape
window with a width ofw pixels and a length ofdmax pixels
is placed on the image.dmax is a configurable parameter that
represents the maximum length of a building hypothesis. In
this window, a search is performed for all corners with one
edge in the same direction as the starting edge.

Figure 1 displays two found candidate corners (shown
with light colors) each with one side approximately (a dif-
ference ofπ/4 degrees is tolerated) in the opposite direction
as the starting edge. After finding all candidate corners in
the current searching level, a filtering process is performed
to remove outlier corners. Following conditions are used for
outliers’ rejection:

1. Minimum distance between corners at leveln and level
n + 1 must be greater thandmin. dmin is the minimum
length for a building’s side.

2. Maximum distance between the corners at leveln and
a corner at leveln + 1 must be less thandmax.

3. There must exist a physical edge between the corners at
levelsn andn + 1. The length of the edge(s) between
the two levels corners must be greater thanwl × dcl.
wl is a weight coefficient,wl ∈ [0 1], anddcl is the
Euclidean distance between the two levels’ corners.

At this point, each candidate corner’s edge is indexed as either
in or out. The edge on the opposite direction is indexed asin
and the other asout, Figures 2. In order to find the loop,
for every candidate corner at leveln, all candidate corners at
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Fig. 2. Directional search for corners.

leveln + 1 will be found and filtered. A maximum value of8
(Nmax) is utilized for the level parameter in this work. This
implies that the search for polygons with a maximum8 sides
will carry out.

In the tree structure, the forward tracking starts at level0
with the first corner,C1. It traverses down to find all candi-
date corners untilC1 is met again. If, however, theNmax is
reached before reaching toC1 again, the backward tracking
will start. In each backward tracking attempt, only one level
lower is inspected. If at that level there is another candidate
corner left, the forward tracking once again is initiated and
otherwise the backward tracking will move on to one level
lower. If the lowest level (0) is reached, a new corner is cho-
sen and the process will continue. At the end of this process,
after all corners at level0 are inspected, all potential rooftop
candidates are detected. Here the use of tree structure witha
back tracking scheme achieves faster rooftop identification.

2.3. Hypothesis refinement

Generally, for each true building several candidate rooftop hy-
potheses are detected that vary only slightly. In this section a
two-step filtering scheme is implemented that removes weak
hypotheses.

1. In the first step, the standard deviation of pixels’ gray
level values within each hypothesis is calculated. Only
hypotheses with small standard deviation are kept.

2. In the second step, image intensities inside and outside
each hypothesis are inspected. The relative gray level
difference between the rooftop surface points and out-
side points is calculated. If this difference is small the
candidate hypothesis will be filtered out.

2.4. Hypothesis retrieval

Occasionally, true hypothesis corresponding to actual build-
ings would be removed due to parameters setting sensitivity.
To recover such hypotheses after first step in Section 2.3, hy-
potheses that are physically close to each other are grouped
into one group. The number of created groups defines the



Fig. 3. Detected rooftops for scene 3.

potential number of rooftop hypotheses that could exist in
the image. Now, if after above refinements, the number of
detected hypotheses is smaller than the number of identified
groups, a recursive local retrieving process will be initiated.
To ensure that the true hypotheses are not removed, due to the
setting values of the global parameters, the sensitivity ofsome
parameters will be automatically adjusted. These parame-
ters include the number of corners, rooftop intensity variation
threshold, and the threshold associated with intensity varia-
tion on inside and outside of the hypothesis definition. Each
iteration follows with a refinement process. If after 5 succes-
sive iterations, no hypothesis is obtained, the missing group
will be eliminated and otherwise a new rooftop hypothesis
will be added to the detected hypotheses.

2.5. Hypothesis merging

Connected buildings with apparent edge on their roof top
could be identified as one or two buildings. In this system,
if the apparent edge is strong, two hypotheses will be de-
tected. Therefore a search among all extracted hypotheses
will be initiated. Hypotheses with a distance smaller than a
predefined threshold are combined together into one.

3. EXPERIMENTAL RESULTS

The proposed system was tested on 18 different satellite test
images that were acquired from Google Earth. Figures 3 to 6
represents some detection examples.

To evaluate the algorithms quantitatively, three metrics are
employed: Detection Rate (DR), False Negative Rate (FNR),
and the McKeowns shape accuracy factor [9].

{

DR = NT P

NTP +NF P

FNR = NF N

NFN +NTP

(1)

Here,TP , FP andFN represent True Positives, False Pos-
itives and False Negatives in each scene. To calculate the
McKeown’s factor the areas of buildings in the ground truth
is compared against the areas of the detected buildings.

Fig. 4. Detected rooftops for scene 4.

Fig. 5. Detected rooftops for scene 15.

Fig. 6. Detected rooftops for scene 16.



Table 1. Summary of the detection results.

Scene Total No. No. No. No. DR FNR

No. of of dmin of of % %

Buildings TP FP FN

1 4 4 42 0 0 100 0

2 2 2 40 0 0 100 0

3 3 3 65 0 0 100 0

4 4 4 8 0 0 100 0

5 2 2 35 0 0 100 0

6 3 2 70 1 1 66 33

7 38 35 20 3 3 92 7.8

8 10 10 14 1 0 90 0

9 2 2 23 1 0 66 0

10 4 4 75 0 0 100 0

11 13 13 18 0 0 100 0

12 3 3 12 0 0 100 0

13 4 4 30 0 0 100 0

14 19 18 11 0 1 100 5

15 9 9 35 0 0 100 0

16 4 4 20 0 0 100 0

17 3 3 25 0 0 100 0

18 5 5 80 0 0 100 0

Table 2. Comparison of the average DR.

Method Average DR

Wei et al. [6] 68.9%

Jin et al. [8] 72.7%

Wei et al. [1] 84.3%

Proposed method 95.2%

Shape accuracy = 1 −
|AGT − ABD|

AGT

× 100 (2)

AGT andADB represent areas of a building in the ground
truth and the detected hypothesis by the proposed system. The
mean shape accuracy of the proposed method is 96.5% which
is substantially more than the value reported in [8], 58.8%.
Table 1 summarizes results for all test images. In comput-
ing these results, partial buildings on the image (near to the
image sides) are not included. Also buildings with at least
one dimension equal or smaller thandmin are excluded from
the results presented in this table. Here, parameterdmin is
twigged between different runs of the program for different
images. The reason for this is merely the running time com-
plexity. Table 2 compares the performance of some of the
previous work with that of the proposed method.

4. CONCLUSIONS

This paper introduced a new method for detecting buildings
with polygonal footprints in satellite/aerial images. In this
approach all corners are detected by intersecting lines. The
orientation of the parent lines was incorporated as a feature
for each corner. These corners are utilized to create a graph.
Detecting buildings in an image corresponds to finding loops
in this graph. A back tracking algorithm was incorporated to
search the graph in a fast manner. Experimental results show
the performance superiority of the proposed method.
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