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ABSTRACT

In this paper we present a novel perceptually-based algorithm
for color quantization that produces images that consume less
energy than conventionally quantized images when displayed
on energy-adaptive displays. To evaluate the performance of
the proposed algorithm, we performed a subjective study on
a standard Kodak color image database. Experimental results
indicate that the proposed algorithm is able to reduce the en-
ergy consumption by 4.25% on average, while achieving the
same or better subjective image quality as conventional color
quantization.

Index Terms— Color quantization, green computing, dis-
play energy, human visual system

1. INTRODUCTION

Displays are known as the main consumers of electrical en-
ergy in computers and mobile devices, using up to 38% of the
total power in desktop computers and up to 50% of the total
power in mobile devices [1]. Conventional thin film transistor
liquid crystal displays (TFT LCDs) use a single uniform back-
light system, which consumes a large amount of energy, much
of which is wasted due to LCD modulation and low transmis-
sivity. By contrast, emerging display technologies, such as
organic light-emitting diode (OLED) and dual-layer high dy-
namic range (HDR) displays (e.g., Dolby’s Pro-monitors with
backlight modulation), consume energy in a more control-
lable and efficient manner [1]. In such displays, the conven-
tional backlight is replaced by an array of individually con-
trollable LEDs that can be left in a low or off state when they
are illuminating dark regions of the image. This feature en-
ables the design of various energy-aware display applications.

Recently, a design technique was proposed in [1] for gen-
erating energy-aware color sets with the purpose of lower-
ing the energy consumption of energy-adaptive displays. Two
variations of this technique were proposed based on a screen
space-variant energy model. The first one is based on a set
of discrete user-defined colors, while the second variationis
based on a constrained continuous optimization of color en-
ergy in the perceptually uniform CIELAB [2] color space. In
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both cases, the result is a set of iso-lightness colors that are
useful for various visualization purposes.

In this paper, we present a novel method to generategood
looking green images, i.e., images that consume less energy
than conventionally color-quantized (CQ) images when dis-
played on an energy-adaptive display, yet have the same or
better perceptual quality. Starting with a conventional CQ
image, colors are first converted to the CIELAB color space,
where all colors within a sphere of a suitably chosen radius
can be considered as perceptually indistinguishable. Just-
noticeable-difference (JND) model [3] is used to find the radii
of such spheres, which are then subject to search for an al-
ternative color that consumes less energy, and is at the same
time perceptually indistinguishable from the original color.
This process is repeated for all pixels to obtain the “green”
version of the input CQ image. Experimental results indicate
that such “green” images often have better contrast and better
subjective quality than the original CQ images. What distin-
guishes our work from that in [1] is the use of a JND model
incorporating luminance and texture masking effects, as well
as extensive subjective evaluation of the resulting images.

The paper is organized as follows. In Section 2, we re-
view the background information. The proposed method is
presented in Section 3. The experimental results are given in
Section 4 followed by conclusions in Section 5.

2. PRELIMINARIES

2.1. Display energy consumption

The consumed energy in energy-adaptive displays is propor-
tional to the number of ‘on’ pixels, and the brightness of their
R, G, and B components [1]. Different colors require differ-
ent amounts of energy. As proposed in [1], the sum of linear
(non-gamma-corrected) RGB components can be used as a
simple measure of the energy consumption of a pixel in an
OLED display. Hence, ifC = (R,G,B) is the color of a
particular pixel, the corresponding display energy is

E(C) = R+G+B. (1)

Please refer to [1] for other possible energy measures. Note
that various hardware techniques, such as ambient-based
backlight modulation combined with histogram analysis, and



LCD compensation with backlight reduction, can also be
used to achieve energy savings [4]. However, in this paper
we will focus on the pixel-level energy consumption.

2.2. Color and Human Visual Perception

Human Visual System (HVS) cannot sense changes below the
just-noticeable-difference (JND) threshold. In the literature, a
variety of methods have been proposed to estimate spatial and
temporal JND thresholds [3], [5], [6]. In this paper, we em-
ploy the spatial luminance JND estimator in the pixel domain
for the YCbCr color space as proposed in [5]. This approach
considers two dominant masking effects - background lumi-
nance masking and texture masking - as follows:

JNDY (x, y) = Tl(x, y) + Tt,Y (x, y)

− Cl,t min{Tl(x, y), Tt,Y (x, y)},
(2)

whereJNDY (x, y) is the spatial luminance JND value of
pixel at location(x, y), Tl(x, y) andTt,Y (x, y) are the visi-
bility thresholds for the background luminance masking and
texture masking, respectively, andCl,t(0 < Cl,t < 1) is a
weighting factor that controls the overlapping effect in mask-
ing, since the two aforementioned masking factors usually co-
exist in most images [5].

Since our goal is to eventually perform color quantiza-
tion, we need a measure of the difference between colors.
To this end, we employ the CIELAB color space [2], and
in particular, we compute the difference between two colors
in CIELAB using the CIEDE2000 color distance [2], which
we labelD00. This distance possesses desirable perceptual
uniformity properties, meaning that the distance between two
colors approximately corresponds to their perceptual differ-
ence. For large uniform color patches,D00 = 2.3 is usually
considered as color JND [2]. However, JND in natural images
is affected by visual masking and is not the same for all pix-
els. As explained in Section 3, the interplay between the JND
threshold in (2), which incorporates masking effects, andD00

in CIELAB, forms the core of the proposed method.

3. THE PROPOSED METHOD

Consider a color imageI of sizeW×H pixels. Letr = (x, y)
denote the pixel location withinI, andC(r) be the color of
the pixel at locationr. The image will first be color quantized
(CQ) using a well-known CQ method [7]. LetĨ be the CQ
version ofI, {C1,C2, ...,CN} be the set ofN distinct colors
in Ĩ, andPi = {r ∈ Ĩ : C(r) = Ci} be the set of all pixels
in Ĩ with color Ci, i = 1, 2, ..., N . Our goal is to replace
each colorCi with another color, such that the total energy
consumption of the image is reduced, while the perceptual
quality of the new image is not decreased compared to the
original CQ image. To achieve this goal, we will first cast this
problem as an optimization problem, and then solve it via a
general optimization method.

LetC = (Y,Cb, Cr) be the YCbCr color of a given pixel
in Ĩ. Let JNDY be the spatial luminance JND of this pixel,
computed as in (2) from the luminance (Y) component ofĨ.
Given JNDY , two new colorsC+ andC

− are generated
from C by adding and subtractingJNDY to or from the lu-
minance component ofC as follows

C
+ = (Y + JNDY , Cb, Cr),

C
− = (Y − JNDY , Cb, Cr).

(3)

These two new colors can be considered perceptually indis-
tinguishable fromC, since their chroma components are the
same as those ofC, and the difference between their lumi-
nance components and the luminance component ofC does
not exceed the JND threshold. The three colors (C,C+,C−)
are then transformed to CIELAB, and the CIEDE2000 dis-
tances between them are calculated:

R+ = D00(C,C+),

R− = D00(C,C−).
(4)

Note that due to the nonlinear transformation from YCbCr
to CIELAB, R+ may be different fromR−. We setR =
min{R+, R−}. Now, all colors in CIELAB whose distance
D00 from C does not exceedR should be perceptually in-
distinguishable fromC. These colors form a sphere (with
respect toD00) in the CIELAB space. The desired new color
is a color within the sphere whose energyE is minimal.

The above process is repeated for each pixelr ∈ Ĩ. With
C(r) = Ci denoting the original CQ color of the pixelr,
andR(r) denoting the corresponding color distance above,
we search for the new colorCnew so as to

minimize E(Cnew),

subject to D00(Ci,Cnew) ≤ Ri,
(5)

whereRi =
1
M

∑
r∈Pi

R(r), andM is the cardinality ofPi.
To solve this optimization problem, we used the downhill sim-
plex method [8] with100 iterations. The solutionCnew will
replaceCi in the new “green” image. Hence, the new image
will have the same number of colors as the original CQ image,
but its display energy will be reduced.

In the proposed approach, dark pixels will contribute more
towards energy minimization than bright pixels, due to the
background luminance masking term in (2). As shown in Fig.
3 of [3] or Fig. 1 of [5], the JND visibility threshold of dark
pixels is higher than that of bright pixels. But the larger the
JND threshold, the larger the termRi will be in (5), which in
turn means that the energy (and also the luminance) of dark
pixels will be reduced more than that of bright pixels. There-
fore, as a side effect, the contrast of the new image may be
increased compared to the original CQ image. Experimental
results in the next section confirm this expectation.



4. RESULTS AND DISCUSSION

The proposed method was tested on the Kodak color image
database [9], with 24 lossless true color (24 bits per pixel)
images of resolution768×512 pixels. Images were first color
quantized (CQ) toN = 512 colors using the method from [7].
The value ofCl,t in (2) was set to 0.34 as in [5]. Fig. 1 shows
an example of the CQ image and the corresponding “green”
image produced by the proposed method. As seen from this
figure, the perceptual quality of the produced green image is
very close to the quality of the CQ image.

In our subjective experiment, a Two Alternative Forced
Choice (2AFC) method [10] was used to compare subjective
image quality. In 2AFC, the participant is asked to make
a choice between two alternatives, in our case the original
CQ image and the corresponding “green” image. This way
of comparing image quality is less susceptible to measure-
ment noise [11] than quality ratings based on scale, such as
Mean Opinion Score (MOS) and Double Stimulus Continu-
ous Quality Scale (DSCQS) [12], and is appropriate for the
applications where appearance changes are not intended.

In each trial, participants were looking at two side by side
images (in the same vertical position, and separated by 1 cm
horizontally) on a mid-gray background. Each image pair was
shown for 10 seconds. After this presentation, a mid-gray
blank screen was shown for 5 seconds. During this period,
participants were asked to indicate on an answer sheet, which
of the two images looks better (Left or Right). They were
asked to answer either Left or Right for each image pair, re-
gardless of how certain they were of their response. Partici-
pants did not know which image was obtained by our method
and which was the original CQ image. Randomly chosen half
of the trials had the CQ image presented on the left side of the
screen and the other half on the right side, in order to coun-
teract side bias in the responses. This gave a total of 48 trials
(duplicated to balance left and right presentation).

The experiment was run in a quiet classroom with 24 par-
ticipants (all male of age between 21 and 24) at Simon Fraser
University, and the study was carried out as part of a course
on multimedia communications engineering. All participant
had normal or corrected to normal vision. Two participants
were tested in parallel, on two systems with the same dis-
play settings and hardware configuration (17-inch Dell mon-
itor P170S, max brightness 250 Lux, with resolution1024 ×
768 pixels). The brightness and contrast of the monitors were
set to 50%. The size of all images were reduced by a factor of
1.16 using a bicubic interpolation algorithm to fit the screen.
The actual size of the displayed images on the screen were
17.5× 12.3 centimeters. The illumination in the room was in
the range 105-140 Lux. The distance between the monitors
and the subjects was fixed at 70 cm. Each participant was fa-
miliarized with the task before the start of the expeirment via
a short printed instruction sheet. The total length of the ex-
periment for each participant was approximately 12 minutes.

The results are shown in Table 1, where we indicate the num-
ber of responses that showed preference for the original CQ
image and the “green” (“G”) image in the second and third
column, respectively.

We used the two-sided chi-square (χ2) test [13] to exam-
ine the statistical significance of the results. The null hy-
pothesis is that there is no preference for either the CQ or
the “green” image. Under this hypothesis, the expected num-
ber of votes is24 for both the CQ and the “green” image.
The probability that the null hypothesis holds (the so-called
p-value [13]) is also indicated in the table. In experimental
sciences, as a rule of thumb, the null hypothesis is rejected
when p < 0.05. When this happens in Table 1, it means
that the two images (CQ and “green”) cannot be considered
to have the same subjective quality, since one of them has ob-
tained a statistically significantly higher number of votes, and
therefore seems to have better quality.

As seen in Table 1, in only 8 out of 24 trials thep-value
is greater than0.05 - these are indicated in bold typeface.
In all other cases, subjects showed a statistically significant
preference for the “green” image. Looking across all trials
(i.e., summing up all the votes for the two options), the re-
sults show that participants have preferred the “green” im-
ages more than CQ images (800 vs. 352 votes) with overall
p = 0.0001, which is a very statistically significant result,
because the odds of it occurring by chance are 1 in 10000.

We believe that the reason for this preference for “green”
images is related to the contrast enhancement brought by the
proposed energy minimization. To examine this issue fur-
ther, we computed the expected context-free contrast (ECFC)
measure as defined in [14] for all CQ images and their corre-
sponding “green” images. The quantity∆C = (C2−C1)/C1

is used as a measure of contrast enhancement, whereC1 and
C2 are the ECFC’s of the CQ image and the “green” image,
respectively. The results are shown in the fifth column in Ta-
ble 1. These results indicate that, on average, the ECFC of the
“green” image is higher by about 13.25% with respect to the
CQ image, which often seems to be preferred by the viewers.
This phenomenon can be observed in Fig. 1, where the con-
trast in the hair and shoulder area of the “green” image (right)
is higher than in the CQ image (left).

Finally, the energy reduction percentage for each image
in the database is shown in the last column of Table 1. Here,
∆E = (E2 − E1)/E1, whereE1 andE2 are the total ener-
gies of the CQ image and the “green” image, respectively.
As seen from these results, the proposed method is able to re-
duce the energy by about 4.25% on average. While seemingly
small, this saving can translate to many MegaWatts when all
the displays around the world are taken into account. We also
observed that images with a larger percentage of dark pixels
or textured regions result in higher energy savings, because
these kinds of pixels provide larger JND values in (2).

The average processing time of the proposed method (im-
plemented in MATLAB without code optimization) on an In-



Table 1. Experimental results.
Image CQ “G” p-value ∆C (%) ∆E (%)

kodim1 15 33 0.0094 5.11 -3.70
kodim2 10 38 0.0001 3.19 -5.71
kodim3 13 35 0.0015 5.35 -4.00
kodim4 12 36 0.0005 5.50 -4.12
kodim5 13 35 0.0015 14.33 -6.25
kodim6 18 30 0.0833 16.90 -3.28
kodim7 19 29 0.1489 14.60 -3.67
kodim8 14 34 0.0039 9.33 -3.60
kodim9 11 37 0.0002 7.73 -2.81
kodim10 14 34 0.0039 9.85 -2.30
kodim11 14 34 0.0039 26.37 -4.70
kodim12 12 36 0.0005 10.07 -2.70
kodim13 8 40 0.0001 10.24 -4.35
kodim14 8 40 0.0001 14.14 -5.00
kodim15 13 35 0.0015 16.15 -5.20
kodim16 19 29 0.1489 8.90 -3.93
kodim17 18 30 0.0833 11.54 -6.85
kodim18 16 32 0.0209 9.70 -7.94
kodim19 25 23 0.7728 8.74 -3.42
kodim20 19 29 0.1489 51.16 -3.00
kodim21 17 31 0.0433 10.78 -3.40
kodim22 18 30 0.0833 17.28 -3.51
kodim23 8 40 0.0001 19.70 -3.90
kodim24 18 30 0.0833 11.20 -3.87

Total 352 800 0.0001
Mean 13.25 -4.25

(a) (b)

Fig. 1. (a) Color-quantized (CQ) imagekodim4with 512 col-
ors; (b) the corresponding “green” image, with∆C = 5.5%
and∆E = 4.12%.

tel Core 2 Duo @ 3.33 GHz, with 8 GB RAM was about
23 seconds. Hence, in the current form, the proposed method
would be suitable for server-side implementation, where color
conversion is done once for all users. Further optimizationis
needed for making this method feasible for mobile users.

5. CONCLUSION

In this paper, we presented a novel perceptually-based algo-
rithm for color quantization. The resulting “green” images
consume less energy than conventionally color quantized im-
ages, yet have the same or often better perceptual quality. Ex-
perimental results indicate that the contrast of “green” images
is higher than that of conventional CQ images, which often
leads to better subjective quality. Compared to conventional
color quantization [7], the proposed method reduces the en-

ergy by an average of 4.25%, improves the contrast by an av-
erage of 13.25%, and produces images with better subjective
quality in most cases.
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