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ABSTRACT both cases, the result is a set of iso-lightness colors tieat a

In thi N | twallv-based it useful for various visualization purposes.
n this paper we present a novel perceptually-based ahgori In this paper, we present a novel method to geneyatel

for color quantization that produces images that consuss le looking green images.e., images that consume less energy
energy than conventionally quantized images when dispilayethan conventionally colo’r-quantized (CQ) images when dis-
on energy—adaptive.displays. To evaluate the_ performaﬁce layed on an energy-adaptive display, yet have the same or
the proposed algorlthm,' we performed a subje_cnve study o etter perceptual quality. Starting with a conventional CQ
gs?andard Kodak color image dgtabe}se. Experimental sesu Fnage, colors are first converted to the CIELAB color space,
indicate that th_e proposed algorithm is able to redu_ce _the €lvhere all colors within a sphere of a suitably chosen radius
ergy consumption t_)y 4.'25.% on average, while ach_levmg th%an be considered as perceptually indistinguishable. - Just
same or t_)etter subjective image quality as conventionak col noticeable-difference (JND) model [3] is used to find theirad
quantization. of such spheres, which are then subject to search for an al-
Index Terms— Color quantization, green computing, dis- ternative color that consumes less energy, and is at the same
play energy, human visual system time perceptually indistinguishable from the original aol
This process is repeated for all pixels to obtain the “green”
version of the input CQ image. Experimental results in@icat
that such “green” images often have better contrast andrbett

. . _ subjective quality than the original CQ images. What distin-
Displays are known as the main consumers of electrical GE‘ ) g y 9 Q 9

1. INTRODUCTION

. ¢ d mobile devi ) 1 38% of th juishes our work from that in [1] is the use of a JIND model
€rgy in computers and mobile devices, using up 1o 00 corporating luminance and texture masking effects, dk we
total power in desktop computers and up to 50% of the tot

: bile devi 11 C tional thin film t st s extensive subjective evaluation of the resulting images
power in mobile devices [1]. Conventional thin film traners The paper is organized as follows. In Section 2, we re-

liquid crystal displays (TFT LCDs) use a single uniform back iew the background information. The proposed method is

light system, which consumes a large amount of energy, m_u%}esented in Section 3. The experimental results are given i
of which is wasted due to LCD modulation and low transmis-

. . . . Section 4 followed by conclusions in Section 5.
sivity. By contrast, emerging display technologies, sush a
organic light-emitting diode (OLED) and dual-layer high-dy
namic range (HDR) displays (e.g., Dolby’s Pro-monitordwit
backlight modulation), consume energy in a more control- . .
lable and efficient manner [1]. In such displays, the conven-z'l' Display energy consumption
tional backlight is replaced by an array of individually eon The consumed energy in energy-adaptive displays is propor-
trollable LEDs that can be left in a low or off state when theytional to the number of ‘on’ pixels, and the brightness ofithe
are illuminating dark regions of the image. This feature enR, G, and B components [1]. Different colors require differ-
ables the design of various energy-aware display apmiesti  ent amounts of energy. As proposed in [1], the sum of linear

Recently, a design technique was proposed in [1] for gentnon-gamma-corrected) RGB components can be used as a

erating energy-aware color sets with the purpose of lowersimple measure of the energy consumption of a pixel in an
ing the energy consumption of energy-adaptive display® TWOLED display. Hence, iilC = (R, G, B) is the color of a
variations of this technique were proposed based on a scregarticular pixel, the corresponding display energy is
space-variant energy model. The first one is based on a set
of discrete user-defined colors, while the second varigtion E(C) =R+ G+ B. (2)

based on a constrained continuous optimization of color en- .
ergy in the perceptually uniform CIELAB [2] color space. In Please r_efer to [1] for other p(_)ssuble energy measures. Note
that various hardware techniques, such as ambient-based

The corresponding author is Hadi Hadizadeh (hha54@sfu.ca) backlight modulation combined with histogram analysig] an

2. PRELIMINARIES




LCD compensation with backlight reduction, can also be LetC = (Y,Cb,Cr) be the YCbCr color of a given pixel
used to achieve energy savings [4]. However, in this papen I. Let JN Dy be the spatial luminance JND of this pixel,

we will focus on the pixel-level energy consumption. computed as in (2) from the luminance (Y) componeni.of
Given JN Dy, two new colorsC*™ and C~ are generated
2.2. Color and Human Visual Perception from C by addlng and SUbtraCtingNDy to or from the lu-

] minance component & as follows
Human Visual System (HVS) cannot sense changes below the

just-noticeable-diﬁerence (JND) threshold. In_the hteire, a Ct = (Y + JNDy,Cb,Cr),
variety of methods have been proposed to estimate spatial an 3 3)
temporal JND thresholds [3], [5], [6]. In this paper, we em- C™ = (Y = JNDy,Cb,Cr).
ploy the spatial luminance JND estimator in the pixel domain ) o
for the YCbCr color space as proposed in [5]. This approacﬂ—hes_e two new coIor; can bg considered perceptually indis-
considers two dominant masking effects - background lumitinguishable fromC, since their chroma components are the
nance masking and texture masking - as follows: same as those df, and the dlffe_rence between their lumi-
nance components and the luminance componeft dbes
JNDy (z,y) = Ti(x,y) + Ti,y (z,y) not exceed the JND threshold. The three col@sC',C™)
— Cpy min{Ti(z,y), Try (x,9)}, @) are then transformed to CIELAB, and the CIEDE2000 dis-

tances between them are calculated:
where JN Dy (x,y) is the spatial luminance JND value of

pixel at location(x, y), T;(z,y) andT;y (x,y) are the visi- RT = Dgy(C,C™),

bility thresholds for the background luminance masking and R~ = Dyo(C,C). (4)
texture masking, respectively, adg ;(0 < C;, < 1) is a ’
weighting factor that controls the overlapping effect inska
ing, since the two aforementioned masking factors usuaHy c
exist in most images [5].

Since our goal is to eventually perform color quantiza-
tion, we need a measure of the difference between color
To this end, we employ the CIELAB color space [2], and
in particular, we compute the difference between two color
in CIELAB using the CIEDE2000 color distance [2], which
we label Dyy. This distance possesses desirable perceptu%
uniformity properties, meaning that the distance betweaen t (
colors approximately corresponds to their perceptuakdiff
ence. For large uniform color patchd3y, = 2.3 is usually
considered as color JND [2]. However, JND in natural images

Note that due to the nonlinear transformation from YCbCr
to CIELAB, R™ may be different fromR—. We setR =
min{R", R~}. Now, all colors in CIELAB whose distance
Dqyo from C does not exceed should be perceptually in-
ﬁ'istinguishable fromC. These colors form a sphere (with
respect taD) in the CIELAB space. The desired new color
¥s a color within the sphere whose enefigys minimal.

The above process is repeated for each pixelI. With

r) = C; denoting the original CQ color of the pixel
and R(r) denoting the corresponding color distance above,
we search for the new col@r,,.,, SO as to

minimize E(C,.cw),

is affected by visual masking and is not the same for all pix- ' (5)
els. As explained in Section 3, the interplay between the JND subjectto Doo(Ci, Cnew) < R,

threshold in (2), which incorporates masking effects, Bigl

in CIELAB, forms the core of the proposed method. whereR; = ;3" ., R(r), andM is the cardinality ofP;.

To solve this optimization problem, we used the downhillsim
3. THE PROPOSED METHOD plex method [8] with100 iterations. The solutiolT,, ., will

replaceC; in the new “green” image. Hence, the new image
Consider a color imagkof sizeW x H pixels. Letr = (z,y)  Will have the same number of colors as the original CQ image,
denote the pixel location withilh, andC(r) be the color of but its display energy will be reduced.
the pixel at locatiomr. The image will first be color quantized In the proposed approach, dark pixels will contribute more
(CQ) using a well-known CQ method [7]. L&tbe the CQ towards energy minimization than bright pixels, due to the
version ofL, {Cy, Ca, ..., Cny } be the set ofV distinct colors  background luminance masking termin (2). As shown in Fig.
inI,andP; = {r € I: C(r) = C;} be the set of all pixels 3 of [3] or Fig. 1 of [5], the JND visibility threshold of dark
in I with color C;, i = 1,2,...,N. Our goal is to replace pixels is higher than that of bright pixels. But the largee th
each colorC; with another color, such that the total energy JND threshold, the larger the terR} will be in (5), which in
consumption of the image is reduced, while the perceptualirn means that the energy (and also the luminance) of dark
quality of the new image is not decreased compared to thgixels will be reduced more than that of bright pixels. There
original CQ image. To achieve this goal, we will first cassthi fore, as a side effect, the contrast of the new image may be
problem as an optimization problem, and then solve it via ancreased compared to the original CQ image. Experimental
general optimization method. results in the next section confirm this expectation.



4. RESULTS AND DISCUSSION The results are shown in Table 1, where we indicate the num-
ber of responses that showed preference for the original CQ
The proposed method was tested on the Kodak color imaggiage and the “green” (“G”) image in the second and third
database [9], with 24 lossless true color (24 bits per pixelgolumn, respectively.
images of resolutiofit8 x 512 pixels. Images were first color We used the two-sided chi-squang?) test [13] to exam-
quantized (CQ) tav = 512 colors using the method from [7]. ine the statistical significance of the results. The null hy-
The value ofC; , in (2) was setto 0.34 as in [5]. Fig. 1 shows pothesis is that there is no preference for either the CQ or
an example of the CQ image and the corresponding “greerthe “green” image. Under this hypothesis, the expected num-
image produced by the proposed method. As seen from thlger of votes is24 for both the CQ and the “green” image.
figure, the perceptual quality of the produced green image i§he probability that the null hypothesis holds (the soezll
very close to the quality of the CQ image. p-value [13]) is also indicated in the table. In experimental
In our subjective experiment, a Two Alternative Forcedsciences, as a rule of thumb, the null hypothesis is rejected
Choice (2AFC) method [10] was used to compare subjectivvhenp < 0.05. When this happens in Table 1, it means
image quality. In 2AFC, the participant is asked to makethat the two images (CQ and “green”) cannot be considered
a choice between two alternatives, in our case the origindP have the same subjective quality, since one of them has ob-
CQ image and the corresponding “green” image. This wayained a statistically significantly higher number of votasd
of comparing image quality is less susceptible to measurgherefore seems to have better quality.
ment noise [11] than quality ratings based on scale, such as As seen in Table 1, in only 8 out of 24 trials thevalue
Mean Opinion Score (MOS) and Double Stimulus Continu-is greater thar0.05 - these are indicated in bold typeface.
ous Quality Scale (DSCQS) [12], and is appropriate for thdn all other cases, subjects showed a statistically sigmitic
applications where appearance changes are not intended. preference for the “green” image. Looking across all trials

In each trial, participants were looking at two side by side(i-€., summing up all the votes for the two options), the re-
images (in the same vertical position, and separated by 1 cftlts show that participants have preferred the “green” im-
horizontally) on a mid-gray background. Each image pair wagges more than CQ images (800 vs. 352 votes) with overall
shown for 10 seconds. After this presentation, a mid-grap = 0.0001, which is a very statistically significant result,
blank screen was shown for 5 seconds. During this perioddecause the odds of it occurring by chance are 1 in 10000.
participants were asked to indicate on an answer sheethwhic We believe that the reason for this preference for “green”
of the two images looks better (Left or Right). They wereimages is related to the contrast enhancement brought by the
asked to answer either Left or Right for each image pair, reproposed energy minimization. To examine this issue fur-
gardless of how certain they were of their response. Particther, we computed the expected context-free contrast (ECFC
pants did not know which image was obtained by our methodneasure as defined in [14] for all CQ images and their corre-
and which was the original CQ image. Randomly chosen hal$ponding “green” images. The quantihC = (Cy—C1)/C4
of the trials had the CQ image presented on the left side of this used as a measure of contrast enhancement, Whesed
screen and the other half on the right side, in order to counc’; are the ECFC'’s of the CQ image and the “green” image,
teract side bias in the responses. This gave a total of 48 triarespectively. The results are shown in the fifth column in Ta-
(duplicated to balance left and right presentation). ble 1. These results indicate that, on average, the ECF@of th

The experiment was run in a quiet classroom with 24 par-green” image is higher by about 13.25% with respect to the
ticipants (all male of age between 21 and 24) at Simon Frasé&Q image, which often seems to be preferred by the viewers.
University, and the study was carried out as part of a courséhis phenomenon can be observed in Fig. 1, where the con-
on multimedia communications engineering. All participan trast in the hair and shoulder area of the “green” image {yigh
had normal or corrected to normal vision. Two participantds higher than in the CQ image (left).
were tested in parallel, on two systems with the same dis- Finally, the energy reduction percentage for each image
play settings and hardware configuration (17-inch Dell monin the database is shown in the last column of Table 1. Here,
itor P170S, max brightness 250 Lux, with resolutid24 x ~ AE = (E; — E,)/E,, whereE; andE, are the total ener-
768 pixels). The brightness and contrast of the monitors wergies of the CQ image and the “green” image, respectively.
set to 50%. The size of all images were reduced by a factor ¢ks seen from these results, the proposed method is able to re-
1.16 using a bicubic interpolation algorithm to fit the seree duce the energy by about 4.25% on average. While seemingly
The actual size of the displayed images on the screen weggnall, this saving can translate to many MegaWatts when all
17.5 x 12.3 centimeters. The illumination in the room was in the displays around the world are taken into account. We also
the range 105-140 Lux. The distance between the monitoi@bserved that images with a larger percentage of dark pixels
and the subjects was fixed at 70 cm. Each participant was f&r textured regions result in higher energy savings, becaus
miliarized with the task before the start of the expeirmaat v these kinds of pixels provide larger JND values in (2).

a short printed instruction sheet. The total length of the ex = The average processing time of the proposed method (im-
periment for each participant was approximately 12 minutesplemented in MATLAB without code optimization) on an In-



ergy by an average of 4.25%, improves the contrast by an av-
erage of 13.25%, and produces images with better subjective
quality in most cases.

Table 1. Experimental results.
Image | CQ [ “G" | p-value | AC (%) | AE (%)

kodimi | 15 | 33 | 0.0094 511 3.70

kodim2 | 10 | 38 | 0.0001 3.19 5.71

kodim3 13 35 0.0015 5.35 -4.00

kodim4 | 12 | 36 | 0.0005 | 550 412 6. REFERENCES

kodims | 13 | 35 | 00015 | 14.33 -6.25
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Total 352 [ 800 | 0.0001
Mean
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Fig. 1. (a) Color-quantized (CQ) imad@dim4with 512 col-
ors; (b) the corresponding “green” image, WiNC' = 5.5%
andAE = 4.12%.
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