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Abstract. This paper describes an automatic liver segmentation algo-
rithm for extracting liver masks from CT scan volumes. The proposed
method consists of two stages. In the first stage, a multi-layer segmenta-
tion scheme is utilized to generate 3D liver mask candidate hypotheses.
In the second stage, a 3D liver model, based on the Principal Compo-
nent Analysis, is created to verify and select the candidate hypothesis
that best conforms to the overall 3D liver shape model. The proposed
algorithm is tested for MICCAI 2007 grand challenge workshop dataset.
The proposed method of this paper at this time stands among the top
four proposed automatic methods that have been tested on this dataset.
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1 Introduction

An essential part of every computer assisted minimally invasive surgery is plan-
ning which is performed prior to the surgery. The planning process involves
preparing a patient specific 3D model of the organ under surgery and its sur-
roundings in order to provide the surgeon with a better understanding of the
patient specific anatomy. This 3D model is based on image data of a patient that
could be acquired from different modalities such as Magnetic Resonance Imaging
(MRI), Computed Tomography (CT) or Ultrasound Imaging. In order to build
the 3D organ model, various segmentation/extraction algorithms are applied on
the pre-operative scans. A survey of segmentation methods for computer assisted
surgery can be found in [1].

Liver is one of the most common human organs to undergo minimally inva-
sive surgeries and therefore automatic liver segmentation/extraction from pre-
operative scans for the purpose of 3D patient specific model reconstruction, is
a highly needed task. In this paper an automatic liver segmentation algorithm
is proposed. In this algorithm a multi-layer segmentation method that incor-
porates mean shift segmentation [2] is utilized to generate candidate boundary
hypotheses of the liver. Also the shape of the liver is modeled by Principal Com-
ponent Analysis (PCA). A training set of 20 liver mask volumes are used to
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generate a PCA based liver space. The liver space is used to measure the simi-
larity of volume mask candidates to the liver’s overall shape. The best volume
candidate that conforms to the PCA based model is the final result of our liver
segmentation algorithm. The main contribution of this paper is an algorithm
that encodes overall liver shape information using PCA to determine the proper
parameter settings for a segmentation algorithm that leads to the best estimate
of the reconstructed 3D liver model.

1.1 Previous Work

Various methods have been proposed in the literature for automatic and semi-
automatic segmentation of liver. In general these methods either solely rely on
the information in the input images to extract liver masks or they rely on train-
ing sets to incorporate shape information of the liver. Information available in
the input images include: liver’s texture/intensity image, spatial correlation of
the 2D liver masks in consecutive slices, and location of the liver in abdominal
area with respect to neighboring structures such as ribs. Methods in [3–5] are
examples of the group of approaches that rely only on such information avail-
able in input images. There are also active contour model based methods such
as [6] that rely on the information from the input images. In addition to the
approach taken for utilizing input liver image information, methods in [7–10]
use training sets to incorporate liver shape knowledge. These methods are in
general more successful in extracting liver boundaries. Many of these methods
use Active Shape Models (ASM) [11]. ASMs are statistical representations of
the object’s shape, which iteratively deform to fit to an example of the object of
interest in a new image. ASM is based on PCA which has proven to be a strong
tool to model organ shapes. The objective of the proposed work in this paper is
to combine an intensity based segmentation method with a PCA based model
approach to identify liver region in CT scan volumes. Such combination fuses
strong characteristics of each one of these approaches to improve the overall
quality of the liver extraction problem.

The rest of this paper is organized as follows; Section 2 describes the proposed
algorithm in details. In Section 3 performance related issues and quantitative
results of the proposed method are reviewed followed by conclusions in Section
4.

2 Proposed Method

The proposed method in this work incorporates liver intensity values, similarity
of 2D liver masks in consecutive slices and a PCA based model.

The method has two modes: offline and online. In the offline mode, a PCA
based model of the liver is generated from a training set including liver masks of
20 volumes. The output of the offline mode is a series of eigenvector (we name
them eigenliver) that represent the liver space.
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In online mode the PCA based model from the offline mode is used to assess
and verify the quality of several liver mask that are generated through segmen-
tation. The algorithm has two stages in this mode. In the first stage, several
segmentation hypotheses are generated using an algorithm based on mean shift
segmentation [2]. In the second stage of the proposed algorithm, the knowledge
of the liver space is used to determine the similarity of generated liver hypotheses
to the actual liver. The main idea at this stage is inspired by [12] where PCA was
used to build a face space and measure the similarity of an input image to a face
image. Here, every volume candidate is projected into the liver space (generated
in the offline mode) and then reconstructed using the eigenlivers. The distance
between each volume candidate and its reconstruction version by the liver space
is a measure of shape fidelity of each volume candidate to overall liver shape and
is used to identify the best candidate.

Details of the offline mode and stages of online mode are described in fol-
lowing subsections. In section 2.1 stage 1 of online mode is explained. In section
2.2 the offline mode where the PCA based liver model is created is described. In
section 2.3 the second stage of online mode part of the algorithm is described.

2.1 Stage 1: Multi-Layer Segmentation and Candidate Generation

In the first stage, the process starts from the middle slice of the CT scan volume
where liver has its largest 2D surface. Mean shift segmentation [2] is used to ex-
tract the largest segment at this slice (our assumption in here is that the largest
segment in this slice always corresponds to the liver). The remaining slices are
then processed in two batches. Both batches start from the aforementioned mid-
dle slice but move in opposite directions. Every newly visited slice is segmented
and the segment with the largest area overlap with the liver segment from the
previous slice is marked as liver.

At each slice, the quality of segmentation is controlled by two parameters [2]:
spatial resolution and intensity resolution. These parameters are usually set man-
ually. Often a single set of values for each parameter will not be sufficient for a
complete segmentation. Therefore in this stage the mean shift segmentation is
applied over each slice several times using a range of different values for spatial
and intensity resolution parameters. The range for spatial resolution is between
5 and 11 and the range for intensity resolution is between 3 and 25. We noticed
that values outside these ranges would lead to either under segmentation or over
segmentation of the liver region. We call each set of parameters for mean shift
segmentation s. After applying the mean shift segmentation for each set, the
boundary edges of all the segmented areas are extracted forming an edge map
called EM . Different EM for each slice are added together to form one accu-
mulative edge map (AEM) for each slice. The contrast of AEM is enhanced
using Log transform. Constrast enhanced AEM is then thresholded to form an
Enhanced Edge Map (EEM) which includes isolated connected regions. The
threshold applied here is called β and is the variable parameter of the algorithm
at stage 1. Naturally a fixed parameter would not provide the best results across
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all volumes. Therefore, different values of β are utilized to generate a number of
EEM images. This is described by equations 1 and 2:

AEM =
∑

s

EM (1)

EEMβ(x, y) =

{

1 Log(AEM(x, y)) > β

0 otherwise
(2)

At this point the segment (in EEM) with the largest area overlap with the
liver segment from the previous slice is identified as liver segment. This segment
is first morphologically opened by a small structuring element (a disk with radius
of 4 pixels) to remove any excess small parts around its boundary. This procedure
is followed by a morphological hole filling process to fill any small gaps within
this segment. Sample EEM results with their corresponding segmented liver
regions at different β values are shown in Fig. 1.

It must be noted that in the transverse direction, the 2D liver mask at each
slice may consist of two or more pieces. Therefore, processing the CT volume
at this direction could lead to missing liver components. For this reason the
segmentation is performed at coronal and sagittal directions since it is observed
that 2D liver masks at these two directions consist of one single piece.

After extracting all masks of a volume for a β value, these masks are stacked
up together to form a candidate 3D liver mask volume. This implies that for
each β value, one mask volume hypothesis is generated. The range of β used for
this stage is empirically chosen from the set 1.5, 1.6, 1.7, ..., 3.5. Fig. 2 shows
three examples of 3D volumes generated for different values of β.

2.2 PCA Based Model Generation

The objective of this section is to create a model that represents the general shape
of the liver volume. One approach for extracting shape information in a series of
training liver mask volumes is to find the principal components of the distribution
for the training set. This is equivalent to computing the eigenvectors of the
covariance matrix of the set of liver mask volumes. Each volume contributes
more or less to each eigenvector. Each eigenvector looks like a ghostly liver
mask and therefore it is named eigenliver. Each new liver volume candidate can
be approximated using a linear combination of the eigenlivers. The model is
reconstructed as follows:

Let each 3D liver mask volume be a X by Y by Z array of 0s and 1s or
equivalently a 1D vector of size X×Y×Z. If L1, L2, ... Ln, are 1D vectors that
represent liver mask volumes in the training set and ψ is their average then the
distance of each volume to the average is defined by φi = Li - ψi. Here we look
for the set of n orthonormal vectors ui that best describe the distribution of
the volume data. These vectors are the result of applying PCA over the entire
training volumes and are eigenvectors of covariance matrix below:

C =
1

n

n
∑

i=1

φiφ
T
i = AA

T (3)
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Fig. 1. Sample EEM for different β values (top row) with the corresponding extracted
mask candidate (bottom row).

Where A = [φ1 φ2 ... φn]. Matrix C is however very large and computing
its eigenvectors is exhaustive. [12] introduces a computationally effective way
to compute these vectors. Once eigenvectors/eigenlivers ui are approximated,
they are used to represent the liver space. This model is used (as explained in
the next subsection) to measure the similarity of each volume candidate to the
overall liver shape.

2.3 Stage 2: Candidate Selection Based on Liver Shape Fidelity

As proposed by [12], where the face space knowledge is used to detect faces, we
can use the liver space to measure the similarity of a liver mask volume to an
actual liver shape. For this purpose, first mean adjusted input volume φ = L - ψ
is projected onto the liver space. The result of this projection is vector [η1, η2, ...
ηn] where each ηi represents the contribution of each eigenliver in reconstructing
the projected liver volume. The reconstructed liver is then computed as:

φrec =
n
∑

i=1

ηiui (4)

For all candidate volume generated at stage 1, the Euclidean distance between
their mean adjusted volume φ, and their reconstruction φrec is computed. The
liver volume candidate with the minimum Euclidean distance is the volume with
most fidelity to overall liver shape and therefore is chosen as the best representing
liver mask by the proposed algorithm. Fig. 3 shows some 2D examples of the
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Fig. 2. Sample 3D volume mask representation for different β values.

detected liver mask boundaries along with their corresponding ground truth
segmentation.

3 Results and Discussions

To evaluate the proposed method, the datasets and evaluation metrics from
MICCAI 2007 grand challenge workshop [13] are adopted. The dataset includes
20 training and 10 test volumes. Each volume consists of CT scans of size 512 by
512. For faster simulation the size of the images are rescaled to 256 by 256. The
results for the test volumes are shown in Table 1. The definition of the metrics
applied can be found in [13]. Brief descriptions of these metrics are as follows.

1. Volumetric Overlap Error, in percent. This is the number of voxels in the
intersection of segmentation and ground truth divided by the number of
voxels in their union, subtracted from 1 and multiplied by 100.

2. Relative Volume Difference, in percent. This is the total volume difference
between segmentation and ground truth divided by total volume of ground
truth multiplied by 100.
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Fig. 3. Sample results of segmentation in transverse direction (left column), coronal
direction (center column) and sagittal direction (right column), from training volumes
of MICCAI 2007 dataset (white contours: ground truth boundaries, dotted contours:
boundaries by the proposed algorithm).

3. Average Symmetric Surface Distance, in millimeters. First the Euclidean
distance between every bordering voxel in segmentation and the closest bor-
dering voxel in ground truth is determined. Then the Euclidean distance be-
tween every bordering voxel in ground truth and the closest voxel in ground
truth is determined. These two sets of distances are stored. The average of
all these distances gives the Average Symmetric Absolute Surface Distance.

4. Symmetric RMS Surface Distance, in millimeters. This measure is similar to
the previous measure but here the squared distances are used and the root
of the average value is taken.

5. Maximum Symmetric Absolute Surface Distance, in millimeters. This mea-
sure is similar to the two previous measures but only the maximum of all
the distances is considered.

The average runtime for extracting one liver mask using the proposed algo-
rithm is 2 minutes using MATLAB 7.6.0.324 environment on a PC with an Intel
Core 2 Duo (2 GHz) processor.
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Presented results in Table 1 at this time stand among the top four automatic
segmentation algorithms that have been tested on MICCAI 2007 dataset ( [7], [9]
and [10]) in terms of segmentation accuracy. Our method is also comparable to
those by some of the interactive methods.

Table 1. Quantitative results for the proposed method.

Data Vol Score Ave Score Ave symm Score RMS symm Score Max symm Score Total
set overlap symm surface surface surface
No. error% diff% dist [mm] dist [mm] dist [mm]

1 8.95 65.03 -4.69 75.04 1.32 66.98 2.52 65.06 18.37 75.83 69.59

2 9.90 61.32 -6.16 67.42 1.33 66.75 2.44 66.14 18.23 76.02 67.53

3 7.37 71.20 4.09 78.25 1.58 60.51 3.16 56.07 25.00 67.11 66.63

4 10.01 60.91 0.30 98.42 2.01 49.68 4.27 40.73 39.54 47.98 59.54

5 8.69 66.04 -5.28 71.92 1.45 63.71 2.83 60.73 23.73 68.78 66.24

6 8.12 68.28 -1.82 90.32 1.26 68.45 2.41 66.53 15.06 80.18 74.75

7 6.29 75.41 -2.81 85.08 0.86 78.41 1.67 76.85 12.99 82.91 79.73

8 7.83 69.40 -4.35 76.86 1.13 71.75 2.12 70.54 20.71 72.75 72.76

9 7.33 71.38 -1.03 94.54 0.90 77.39 1.78 75.23 20.77 72.67 78.24

10 10.90 57.41 -2.64 85.95 1.69 57.71 3.03 57.86 29.28 61.48 64.08

Mean 8.54 66.64 -2.44 82.38 1.35 66.14 2.62 63.57 22.37 70.57 69.86

4 Conclusions

In this paper an automatic algorithm for extracting liver masks of CT scan
volumes from abdominal area is proposed. The algorithm starts scanning the
CT volumes in the coronal and sagittal directions to extract 2D liver mask
candidates based on a multi-layer segmentation scheme that relies on mean shift
segmentation. Multiple 3D liver mask candidates are generated as a result and
the best candidate is chosen according to its similarity with its reconstructed
version through a PCA based 3D liver model. This algorithm is novel in the
way that it encodes overall liver shape information using PCA to determine
the proper parameter setting for a segmentation algorithm that leads to the
best estimate of the 3D reconstructed liver model. The idea of eigenliver can
be utilized by previously proposed non-model based approaches to determine
an optimal set of parameters that could potentially lead to better segmentation
results.

References

1. Yaniv, Z., Cleary, K.: Image-guided procedures: A review. Technical report, Com-
puter Aided Interventions and Medical Robotics (2006)



Liver Segmentation using Multi-Layer Segmentation and PCA 9

2. Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space
Analysis. IEEE Transanction PAMI 24(5), pp. 603-619 (2002)

3. Seo, K., Ludeman, L.C., Park, S., Park, J.: Efficient Liver Segmentation Based on
the Spine. In: ADVIS pp. 400-409 (2004)

4. Forouzan, A.H., Zoroofi, R.A., Hori, M., Sato, Y.: Liver Segmentation by Intensity
Analysis and Anatomical Information in Multi-Slice CT images. In: Proc. of Int.
Journal CARS, vol. 4, pp. 287-297 (2009)

5. Susomboon, R., Raicu, D., Furst, J.: A Hybrid Approach for Liver Segmentation.
In: 3D Segmentation in the Clinic - A Grand Challenge, pp. 151-160 (2007)

6. Pan, S., Dawant, B.M.: Automatic 3D segmentation of the liver from abdominal
CT images: a level-set approach. In: SPIE Medical Imaging, vol 4322, pp. 128-138
(2001)

7. Kainmuller, D., Lange, T., Lamecker, H.: Shape constrained automatic segmentation
of the liver based on a heuristic intensity model. In: 3D Segmentation in the Clinic
- A Grand Challenge, pp. 109-116 (2007)

8. Heimann, T., Meinzer, H.P., Wolf, I.: A Statistical Deformable Model for the Seg-
mentation of Liver CT Volumes. In: 3D Segmentation in the Clinic - A Grand
Challenge, pp. 161-166 (2007)

9. Wimmer, A., Soza, G., Hornegger, J.: A Generic Probabilistic Active Shape Model
for Organ Segmentation. In: MICCAI, pp. 26-33 (2009)

10. Wimmer, A., Hornegger, J., Soza, G.: Implicit Active Shape Model Employing
Boundary Classifier. In: ICPR, pp. 1-4 (2008)

11. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active Shape Models - their
Training and Application. CVIU 61(1), 38-59 (1995)

12. Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuro-
science (1991)

13. van Ginneken, B., Heinmann, T., Styner, M.: 3D Segmentation in the Clinic - A
Grand Challenge. In: MICCAI Workshop Proceedings (2007)


