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Abstract—This paper introduces a novel system for automatic =~ The work in this paper aims for automatic detection and

detection and height estimation of buildings with polygond mean height estimation of buildings with flat or flat looking

shape roofs in singular satellite images. The system is capla  ,5vq0nal roofs in panchromatic satellite images.
of detecting multiple flat polygonal buildings with no angular

constraints or shape priors. The proposed approach employs
image primitives such as lines, and line intersections, and A. Related Work

examines their relationships with each other using a g(aph— Proposed approaches for solving the problem of 3D building
based search to establish a set of rooftop hypotheses. Theidi®  reconstruction vary based on sensor modalities, complexit

(mean height from rooftop edges to the ground) of each rooftp - . .
hypothesis is estimated using shadows and acquisition geetry. of buildings, the level of human supervision/interactiand

The potential ambiguities in identification of shadows in anmage ~@dditional input resources such as digital elevation medel
and the uncertainty in identifying true shadows of a building (DEM) or digital surface models (DSM).

have motivated for a fuzzy logic-based approach that estintas Some of these methods address the problem of 2D rooftop
buildings heights according to the strength of shadows andhe detection only. In this group, curve evolution-based metho

overlap between identified shadows in the image and expected. : : .
shadows according to the building profile. In order to reduce including deformable boundaries, active contour modeis, a

the time complexity of the implemented system, a maximum S€gmentations, have been very popular [1]. Pengl. [2]
number of 8 sides for polygonal rooftops is assumed. Promisyy Proposed an improved snake model based on radiometric and

experimental results verify the effectiveness of the preséed geometric behaviors of buildings. Mayunggal. [3] proposed
system with overall mean shape accuracy of 94% and mean 5 semij-automatic approach using radial casting algoritam t
helght error of 0.53 meter on QuickBird satellite (0.6 meterpixel) initialize snake-based contours. Rutheral. [4] reported a
imageries. . . ) " .
semi-automatic approach using DSM to generate initiakrhis
structure hypotheses that were later refined via activeotont
method. One of the attractive characteristic of these nustie
their adaptivity to topological variations that obviousyist
|. INTRODUCTION in rooftop shapes. They also incorporate local features suc
UTOMATIC 3D map reconstruction from optical imagesas surface and boundary information that inherently tends
has been an active research subject with a wide rangetofvard good localization. These methods however are subjec
applications such as urban environmental planning, mjlitato inaccuracies caused by occlusion and illumination viaria
assessment simulations, resource management and conloieover most of these approaches are semi-automatic.
for disaster preparedness. 3D building reconstructiomqyes ~ Model-based approaches also have been reported for the
is the most prominent component of this research subjgooftop detection problem. Liet al. [5] developed a semi-
that includes two main tasks: building roof detection anautomatic rooftop detection algorithm for rectilinear netsl
height estimation. For many years 3D building reconstaucti using Hough transform. Bailloeet al. [6] introduced a system
is performed through semi-automatic approaches where fanbuilding recognition using specific geometrical infation
operator identifies building boundaries in a set of sterathe derived from prior knowledge of building models combined
images. Using acquisition geometry, image displacement, awith active contours models. Karantzalos and Paragios [7]
perspective projection, the height of buildings are deteemt. proposed a recognition-driven building detection methed u
This process is time consuming and tiresome with low updateg templates combined with energy minimization approach.
rate and high cost. The abundance of inexpensive frequeripdel-based methods seem to be capable of dealing with
updated satellite imageries has initiated much work towapdrtial occlusion. However, since they are model dependent
fully automated systems for 3D building reconstruction.ilh they either assume simple model profiles, or require a large
numerous semi-automatic systems have been developed, dnlgnber of prior models. Each one of the above two conditions
a limited number of automated systems are reported in then impact the quality and efficiency of the recognition.
literature. Some of these works present instances of linite Other works present complete solutions for the 3D re-
good results and are especially developed for simple mghkli construction problem. In this type of work, the rooftops
in higher resolution imageries. They however are still fani  are identified first and their heights are estimated next. The
being capable of coping with existing complexities of urbageneral solution for detecting rooftops could fall into the
structures. above mentioned categories. Proposed solutions for e#tigna
A ) i . building height and the 3D reconstruction vary according to
M. lzadi (mia4d@sfu.ca) and P. Saeedi (psaeedi@sfu.ca) dtte the

Laboratory for Robotic Vision at the School of Engineeringie®ice at Simon the number of scene Images (smgle or multlple) and addition
Fraser University, Burnaby, BC, Canada. supplementary data resources.
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Systems with single-view input images generally use cgstisystem using DEMs to model polygonal flat and symmetrical
shadows to measure the height of the buildings. Irvin ardo-plane gabled rooftops (in the absence of DEM discon-
McKeown [8] utilized relationships between shadows anihuities) at a high computational cost. Incorporating DEM
man-made structures from aerial images to firstly prediatith resolutions often within several meters could assidt o
simple structures shapes, to secondly group related steg;t for 3D modeling of large scale buildings. Therefore most
to thirdly verify individual structures and to finally estate LIiDAR/DEM/DSM-based methods include optical images to
the structure height. Lirt al. [9], [10] employed shadows to increase the accuracy and handle potential discontisuitie
verify building hypotheses and estimate their heights.sEhewhich increases the computational cost.
methods have the advantage of estimating height usingesingl In this paper we present a set of methodologies for auto-
images. The accuracy of these methods however could be ragtic extraction and 3D modeling of buildings with polygbna
fected by the quality of detected shadows and the interéererflat or flat looking rooftops in monocular satellite images.
by nearby buildings or objects. Moreover, all previous workThe suggested approach is based on existing and potential
in this group assume simple building models such as squéiree intersections in the image. These line intersectiocts a
and rectilinear. as potential vertices of rooftop candidate hypothesesh Wit

Some approaches used multiple views and stereo imagegagh intersection point, two directions defined by the inter
reconstruct 3D model of buildings. Noronha and Nevatia [1Eecting lines, are associated. Using a graph represemtatio
proposed a method that reconstructed 3D models of redilinghe relationships between intersection points and lines ar
buildings or compositions thereof (L, T, and | shapes) fromxamined. Finding a polygonal shape in the image correspond
multiple view (non-stereo) aerial images. They utilizeddb to finding a closed loop in the above graph. Local image
features to verify rectilinearly constrained rooftop hyip® properties are used to assess the quality of the found shapes
ses. They estimated the height using the overlap betwesn rooftop hypotheses. Heights (mean height from rooftop
walls, shadow boundaries and corner supporting lines witldges to the ground) of buildings are estimated using itlate
image edges. They also used visible shadow junctions simadow evidences in the image. The relevance of shadows
the shadow boundaries and the intensity information inside determined using geometrical shape constraints and the
the shadow boundary. Cord and Declercq [12] presentedsianilarity of the existing and expected shadows (for a range
method for high-resolution monochromatic aerial imagegaiof height values). To predict expected shadows, the wall
for creating DEM and modeling multi-slope rooftops. Kim anénd shadow vectors are computed by projecting the rooftop
Nevatia [13] utilized multiple overlapping images of a seea vertices on the ground. At each candidate height, a fithess
describe complex buildings. Baillaet al.[14], [15] proposed score is computed using a set of fuzzy rules that represents
methods based on 3D lines and planes in multiple viethe matching quality between existing and expected shadows
images. Stereo-based methods could be robust approachesfahat height. The performance of the proposed system is
estimating 3D height values in high resolution imageriesyh assessed using 20 QuickBird images.
ever, several issues makes them disadvantageous: fondesta The proposed method in this work has some similar aspects
required calibration with a rigid stereo platform, potanti to the work presented by Nevatia in [11]. Both methods are
ambiguity in matching uniform areas, extra computation p@roposed for detecting rooftops and estimating their hisigh
frame, and proportionality of the height estimation errathw using shadows. There are several differences between the tw
the square of the depth. Moreover, stereo based methoasthods: First, Nevatia’s rooftop hypotheses are limited t
require at least two exploitable optical images (for ins@n simple shapes that are rectangular or compositions thereof
without cloud cover), which is not necessarily the case i@ur system can detect all buildings with polygonal shapes
operational conditions (sometimes, only one of the avilabwith maximum 8 sides (the method is general and could be ex-
data can be fully exploited). 3D reconstruction using npldti tended inta/V-sided polygons). Second, Nevatia’'s system uses
views are technically more challenging due to issues suphrallel line segments to generate hypotheses and therefor
as match correspondence establishment under differemsyiecreates a large number of hypotheses that must be refinegl usin
sensitivity to extraction of features, and associationwfding local and global characteristics. We are employing corners
components. with directions of the lines that created such corners and ev

The use of additional data resources such as DEM, DSHEnce of line segment between the corners to generate poofto
rangefinders (laser-based distance estimators) and Lil&R shypotheses using an efficient graph-based approach. Taird,
sors have been reported for the problems of building detectithe height estimation, Nevatia matches edges and corners on
and height estimation. Fujii and Arikawa [16] proposed the walls and shadow boundaries. Relying on edges for such
method that utilized airborne laser elevation maps withaherpurpose is tricky as generally nearby edges from roadss tree
images for the 3D building reconstruction. Jaym¢sal. [17] and adjacent buildings could be wrongly interpreted asrilne t
used a DEM, registered to a corresponding optical view efiges corresponding to the shadow or walls. Moreover, if a
an urban site, to reconstruct variety of building types. ¥te shadow region includes bright objects with distinctive eslg
al. [18] proposed utilizing electro-optic and range images tilie estimated height might be completely wrong. Also, redyi
reconstruct buildings with flat rooftops with various shepeon wall or shadow lines potentially makes the system less
Sohn and Dowman [19] employed IKONOS images witinaccurate under occlusions, as occlusion will also resiult
LiDAR data for 3D reconstruction of the buildings with conve edges that lead to wrong estimation. The proposed method
polygonal rooftops. Lafarget al.[20] introduced an automatic in this paper is a region based method that utilizes rooftop
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shape as the matching constraint. It copes with occlusio®mo
gracefully, since it penalizes for the occluded sectionlevhi
counting in both the non-occluded section and the remaining
part of the occluded section. Moreover it can estimate ateur
height values when the shadow region includes edges within,
or when the shadow or wall boundaries are not strong.

B. Contribution
The main contributions of this paper are as followings:

1. We propose a simple yet intuitive method for automat-
ically detecting polygonal shape rooftops in panchro-
matic gray scale satellite images. The proposed method
relies on lines and their intersections to explore those
potential relationships that form rooftop hypotheses. We
make no assumption about the rooftop color or shape
except for the local texture smoothness. The system in
general is capable of finding rooftop hypotheses with any
number of sides. To reduce the time complexity, we have
limited the number of polygonal sides to a maximum of
8.

2. We introduce a reliable approach for estimating accurate
heights of complicated rooftops using single gray scale
satellite images. This method includes a fuzzy logic-
based approach that accounts for uncertainties associ-
ated with the shadow identification and complex shape
matching processes. The proposed method accounts for
inter-relationships between various parts of the rooftops
and it is capable of accurate estimation under partial
occlusion of the shadows.

Il. METHODOLOGY

The proposed system includes two main pa2f3: Rooftop
Detection and 3D Building Estimation In the first part,
rooftops are detected. The output of this part is rooftop
definitions in image coordinate system that includes anyarra
of consecutive vertices. The second part uses the rooftop
definitions and the acquisition geometry to estimate bogdi

ABLE

magnitude and gradient orientation to form line support
regions and eventually straight line segments. The fol-
lowing steps describe this procedure.

1. Partition the pixels into bins based on the gradient
orientation values. A bin size of 45 degrees was
selected. This results in eight bins being used, and
pixels are assigned to bins according to the rules set
out in Table I.

. Partitioning Pixels into Gradient Orientation Bin

[ Bin Number | Gradient Orientation (GO)|

0° < GO < 45°

0° < GO < 90°
90° < GO < 135°
135° < GO < 180°
180° < GO < 225°
225° < GO < 270°
270° < GO < 315°
315° < GO < 360°

OO ~J| O U x| W DO

2. Run a connected-components algorithm to form line
support regions from groups of 4-connected pixels
that share the same shifted gradient orientation bin
(as shown in Figure 2.

3. Eliminate line support regions that have an area
smaller than a specified threshold. Given the line
support regions shown in Figure 2 and an area
threshold of three pixels, regions 3, 5, and 6 would
thus be removed.

4. Repeat steps 1, 2, and 3 by shifting the gradient bins
to produce a second set of line support regions. This
accounts for the possibility that some true lines may
have component pixels that lie on either side of an
arbitrary gradient orientation boundary (e.g.°48
Table I). Shifted partition bins are shown in Table II.
The resulting gradient orientation partitioning and
line support regions are shown in Figure 3.

heights. Figure 1 shows the flowchart of the proposed systePABLE II: Partitioning Pixels into Gradient Orientation i&s.

Section 1I-A represents details of the 2D rooftop detection
Section II-B describes the height estimation process. Expe
mental results corresponding to each section are desciibed
Sections III.A and III.B.

A. 2D Rooftop Detection

1) Line intersection detectionThe most distinctive lines
and their potential intersections as corner features inntage
are found first. This process includes following sub-preess

o Pre-processing: The input image is low-pass filtered to
smooth out the noise. Here a Gaussian smoothing with a
standard deviation of = 0.8 and a kernel size df x 7
pixels is used.

« Straight line extraction: The objective of this step is to
extract a set of straight-line segments from the image.
The algorithm implemented to achieve this goal is the
Burns line detector [21], which utilizes both the gradient

[ Bin Number | Gradient Orientation (GO)|

i —22.5° < GO < 22.5°
225° < GO < 67.5°
67.5° < GO < 112.5°
112.5° < GO < 157.5°
157.5° < GO < 202.5°

202.5° < GO < 247.5°

247.5° < GO < 292.5°
202.5° < GO < 337.5°

Q0| [ O U [ WO DO

5. Use the following voting scheme [21] to select
preferred lines from the two sets (i.e. original set
and shifted set) of candidate lines:

a) Line lengths are determined for each region.

b) Because each pixel is a member of two regions
(one in the line support region image and the
shifted version), every pixel votes for and is as-
sociated with that region of the two that provides
the longest interpretation.
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2D Rooftop Detection (II.A) 3D Building Estimation (I11.B)
Y
Panchromatic Tmage H: Hypqtheses definition Panchromatic
—— 5 =
(ILAD) | imageodes [ Tnes [ imersetions || (ILB.1) | Accisiton (LB.2) | Shadow
and link them | | L=(1,..0,.} | | C=fe eyt geometry segmentation

'[ Sfor i=1:length(H) J

—)l Sori=1:n-2 |

or J=h i

min”""max

- Create a tree with root [

(IL.A.2) (vertices C and edges L) (I1.B.3) Create the expected (I.B.5) | Estimate the optimal
- Detect all hypotheses visible shadows at height
originating from ¢; height /
- Remove ¢; from C Compute the similarity )
(IL.A.3) - Refine hypotheses (IL.B.4) || score between the expected [€— (IIL.B) Estimate the
(IL.A.4) - Add found hypotheses (hypo;) and existing shadows confidence measure
o to the hypotheses list (H)

| — ]

Fig. 1: Flowchart of the proposed system including two confiee sub-systems.

Shifted Gradient Orientations Shifted Gradient Orientations
2 2 8 8 8 2 2 1 1 1
2 5 8 8 6 2 6 1 8 6
6 5 8 8 6 6 6 1 8 6
6 8 8 5 6 6 1 8 6 6
8 8 2 2 2 1 8 2 2 2

Shifted Line Slupport Regions Shifted Line Support Regions
1 2 1 2
3 4 J 3 4 5
5
| 6 6 | 7] 6
| 7 8 9 10

Fig. 2: Example of converting shifted gradient orientatimns  Fig. 3: Example of converting shifted gradient orientatinns

to shifted line support regions. to line support regions.
c) Each region is associated with a count of the values. Figure 4 represents the fitted lines for the
number of its pixel. previous example case.

d) Each region is given a support which is equal « Line linking: The objective of this step is to link collinear
to the percentage of the total number of pixels line segments that are separated by very small gaps.
voting for it. The regions selected are those that  Following algorithm describes linking process:

?ha\{[e_ a maj(;ntyt;uppsoort (in th|stwork the support 1. Sortthe lines in the order they would be encountered
at s greater than percent). if a horizontal sweep was performed across the

6. For each line support region, compute the line image.
represented by that region by performing a least 2. Use a divide-and-conquer method to efficiently de-
squares fit. The least-squares fit estimates planar termine nearby pairs of lines.

model of each line using the gradient magnitude 3. Test each pair of nearby lines to determine whether
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Shifted Line Support Regions

1

2

| 6

| 7

Best Fitted Lines for each Support Region

Fig. 4: Example of converting line support regions into fine
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Fig. 5: Four criteria for line linking process.

and lines that they do not intersect in the image but their
continuations do.
These intersections are used in creating an intersectiaphgr
in which each intersection represents a vertex with two edge
Detecting polygonal rooftop hypotheses corresponds to the
problem of detecting loops in this graph. Figure 6 represent
detected intersections and their corresponding edges in an
image.

Fig. 6: Line intersections with their directions for a typic
image. Green circles represent the intersections andwello
line segments represent the lines that have created these
intersections.

2) Hypothesis creation using graph:Using graph-based
search mechanism for the rooftop detection application has
been presented previously. [22] reported a system in which
corners on the right angle line intersections (junctions of
form L, T, ...) were grouped together and used as nodes
of the graphs. [23] also presented a graph-based search
approach in their system for building detection. They u$ed t
graph concept to establish relationship between the losve |
information like line segments and the higher level infotiom

they should be linked. Conditions (a) and (b) anglke junctions and closed contours. In this work, we use
one of the conditions of (c) and (d), which aré& graph-based approach to exploit the relationship between
illustrated in Figure 5, must be satisfied for a paifine intersections in establishing polygonal shapes (ogof

of lines to be linked.

definitions).

Relaxing the threshold values in the line linking process The above detected intersections are used in creating an
can increase the number of detected lines by groupimgersection graph in which each intersection represents a
lines that indeed are not connected. Such relaxatiorrtex with two edges. Detecting polygonal rooftop hypstse
can increase the overall number of potential candidaterresponds to the problem of detecting loops in this graph.
rooftops. For instance, if threshold value of 0.15 ihn order to detect loops in the intersection graph, a dynamic
condition(d) is increased, hypotheses with two buildingerogramming approach is employed. Each loop is defined with
in them might be generated. Increasing the threshaddset of vertices and edges. Starting from a vertex, a pattgalo
10 degrees in conditiofib) could cause hypotheses toone of the corner edges (called starting edge) is selected. A
have imprecise boundaries, due to the grouping of linésbe shape window with a width af pixels (in this workw
that are not co-linear. Through the filtering steps thas set to 21 pixels), centered at the starting vertex andgalon
are implemented in Section 1I-A3, many of such faultyhe starting edge, is used to find all vertices with only one
hypotheses can be caught and removed. However, if thége in the similar direction as the starting edge. Theesfor
above conditions are too relaxed, chances of announcinfpa the first vertex ;) and along one of its edges (starting
faulty hypothesis as a real building rooftop will increaseedge), the algorithm finds all vertices with only one edge in
« Line intersection detection: Alpotential line intersec- the similar direction as the starting edge (in Figure’7; and

tions are extracted from the image next. The tegpoten-

C12). CornersCy1, Cia, ..., andCy,, represent the 1st level

tial infers both intersections that occur within the imagéor in generaln + 1) of the tree whileC; represents level 0
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(or n in general). After finding all candidate vertices in thdevel and chooses another vertex from the candidate vertice
current tree level, a filtering process is performed to reenowf that level. This process is the backward tracking process
outlier vertices. Following conditions are employed aslieut ~ Once the new vertex is chosen, the forward process will
rejection criteria, take over and one of the candidate vertices of this vertex in
1. Minimum distance between a vertex at levelwith the nextlevel is selected. In each backward tracking attemp
vertices at leveh + 1 must be greater tha.;y.. dumin only one Ieve! lower is inspected. If howevgr all candidatg
is the minimum length of a rooftop side and is set to ogertices are tried before, the backward tracking process wi
pixels in this work. move to the one level before the previous level. Reachiniyeo t

2. Maximum distance between a vertex at lewelwith lowest level (0) indicates that all potential rooftop hypeges
vertices at leveh + 1 must be smaller that, .. d,,., With C1 in them has been examined and the process should
is a configurable parameter that represents the maxim@@ntinue with the next vertex at the level 0 (e(@.,C2, and

length of building hypotheses. In this work (for all theC)- At the end of this process, when all vertices of level 0
results presented in Section 11, was set to 300 &re examined, all potential rooftop candidates are ideutifi

pixels. Figure 8 represents graphical representation of the iat#icn

3. There must exist a physical edge between the vertidé&e or graph.
at levelsn and n + 1. The length of this edge must
be smaller than the Euclidean distance between the tv§ve! 0 (™
level vertices.

Once all outliers are removed, all edges of the corners &'¢' ! D
level n + 1 are labeled ag or out The labeling of the edges
of vertices at leveh + 1 is always performed with respect to
the direction ofout edge of the vertex at level. As shown in
Figure 7, the edge with direction similar to the starting edg

(maximum difference of 45is allowed) is labeled as and

the other asut In order to find a loop, for each vertex at levef19- 8: Search tree levels are generated according to selati
n, all candidate vertices at level+ 1 are found and filtered. ShiPs between edges of corners. The black arrows represent

A value of8 (NV,,4.) is utilized for the level parameter in thisthe forward tracking path and the red arrows show a typical
work, implying that the search for polygons with maxim@m Packtracking path.
sides will be carried out. The algorithm continues with each

The parameters in this section are set in accordance to the
resolution of the input images. Initially, a number of input
images were inspected to find the maximum and minimum
length of typical buildings. The distribution of the buihdj
length for the inspected images showed & of the times
the sizes of the buildings of interest are within the range of
20 (dynin) 10 300 (@,1az) pixels.

The width ofw (10x2+1 pixels) in the tube shaped search
window was found by inspecting building boundaries. Some-
times, the rooftop of a building includes thick wedges (as ca
be noticed in the enlarged part of Figure 6) on its boundary.
For such cases, chances are that two corners exist, one corre
Fig. 7: Corner edges are indexed@sor out. sponding to the inner edge of the wedge and one to the outer

edge of the wedge. The width af allows choosing both such

one of the candidate vertices at level 1. For each vertex (egqrners and creating all potential hypotheses combingtion
s0, the location of the line intersection includes a hésag

in Figure 7,C11), all candidate vertices with one edge irf ) o o )
the similar direction as theut edge of theC; are found uncertainty that originates from the precision of detedireek.
and filtered (e.g. in Figure %111 andCy12). These vertices Through aw of 21 p|xels, a location deV|at|on. within a circle
create level 2 (or in general n+2) of the tree. The proce¥dth radius of 10 pixels around each corner is permitted.

of establishing a new level(+ 1) of tree and associating 3) Hypothesis refinementaturally for each building in-
corners to it according to the comer direction of the verex Stance, several candidate hypotheses are detected. Figure
the current level ) is called the forward tracking processShows the entire set of extracted candidate rooftop hysethe
The forward tracking process stops on€g is met again. for a sample scene. A two-step filtering scheme |S|mplt_em|bnte
Meeting C; for the second time (it was initially met at levelt0 remove weak and redundant hypotheses as followings:

0) represents a loop that includes all possible verticesdet 1. Under the assumption of smoothness of the rooftop
the first and the second viewings©f. These vertices together surface, the standard deviation of pixels intensitiesi@si
define one potential rooftop candidate. If thg, .. is reached each hypothesis,) is calculated. Only hypotheses with
before reaching ta@’;, the process returns back to the previous standard deviation smaller than 50 are kept. The value

Level 2 (n+2)

. Starting Edge
Gt ré /in

out ,*
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and

« The percentage of the mean intensity variation between
the regions inside and outside the rooftop boundaries
from Section II-A.3.2.

In each successive iteration;, is increased by 18 (e.qg.
in the first iteration a value of 55 pixels and in the second
iteration a value of 60 pixels) and the percentage of the
mean intensity variation is decreased by%l@e.g. in the
first iteration a value of 1% and in the second iteration a
value of 16%). If after 5 successive iterations, no hypothesis is
obtained, the missing group will be eliminated and otheevais
Fig. 9: Detected candidate rooftop hypotheses for a sampiew hypothesis will be added to the detected list. Figure)L1(
scene. displays a group of hypotheses that were dismissed in the firs
run of the algorithm and Figure 11(b) shows the retrieved
hypothesis.

of 50 was found by analyzing 10 input images and in-
specting rooftops and regions around them. Figure 10(a)
displays the results after this step.

2. Image intensities inside and outside hypotheses are
compared against each other. The mean values be-
tween the interior and exterior pixels of a rooftop are 35
computed. The difference percentage is computed by r —
|mean;, — meanyyt|/mean;, and only rooftops with y
a ratio larger than 26 are kept. The exterior pixels (@ (®)
are chosen by extending the rooftop boundary towards
outside by 40 pixels. Figure 10(b) depicts the resulfsig. 11: Missing hypothesis is retrieved by fine tuning of the
after this process. system global parameters.

While this process is designed to retrieve missing hypothe-
ses, it could potentially add to the number of false positive
(cases where wrong regions are identified as rooftops). In
the data set used in this work we did not observed such a
case; however, if images with poorer qualities are used, the
above suggested retrieval may cause detection of falséygosi
rooftops.

Figure 12 highlights extracted hypotheses for the sample
satellite image. More results, including both quantitatand
gualitative evaluations are presented in Sectiogperimental

Fig. 10: (a) Rooftop hypotheses after first (a) and second [@§sults
elimination steps for a sample scene.

4) Hypothesis retrieval:Occasionally, true hypothesis cor-
responding to an actual building would be removed due to the
sensitivity to parameters setting (as shown in Figure 10(b)
for the bottom-left building). To recover such candidates,
hypotheses that have overlaps with each other are groupeed in
one group. The number of created groups defines the potential
number of rooftop hypotheses in the image. If after the
previous 2-step refinement, the number of detected hypethes
is smaller than the number of identified groups, a recursive
local retrieving process will be initiated. To ensure thiae t
true hypotheses are not removed, due to the value setting of
the global parameters, the sensitivity of threshold patarse Fig. 12: Final detected hypotheses for a typical scene image
in the filtering process will be automatically adjusted. 3&e
parameters include: 5) Discussion: The presented rooftop detection algorithm

« The threshold related to the standard deviation of pixelgas originally designed for QuickBird satellite imager{@s6

inside the rooftop boundaries(,) from Section lI-A.3.1, meter/pixel). Later the algorithm was tested on gray scale
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aerial imageries (Pictometry, 0.15 meter/pixel). Aftejumsting Sun

some of the input parameters,(;,, dmaz, w, Line linking

conditions a to d) for the higher image resolution, good \
results were obtained. Unfortunately same cannot be said if Top

the quality of the image is worse or the image resolution is
less than 0.6 meter/pixel.

b(lys)

B. 3D Building Estimation

This section describes steps involved in creation of 3D
models of buildings corresponding to rooftops detected in P(s)
Section 1I-A. The main idea is to identify casted shadows
and use them to estimate the height of buildings. Utilizing
shadows in estimating building heights requires two sets bfd- 13: The geometry of the system of rays from the sun and
information: 1) the acquisition and sun geometries, and #)e camera position when a 3D building is imaged.
the length of the shadows of a building on the ground. The
sun geometry provides us with the location of the sun and
therefore the direction of the expected shadows on the groufiere the azimuth and elevation angles of the camera and the
The acquisition geometry provides us with information suchtin area, A, o/, and X' respectively. The described acquisi-
as 3D location of the camera system and the heading, scéile) geometry is implemented to project the shadows of the
and calibration parameters. Acquisition geometry infotiora  Fooftop vertices (at any given height) onto their corresjiog
is necessary in predicting the building walls and base arl&ations on the ground.
especially when the viewing is not perpendicular to theaaef ~2) Shadow segmentatiorMany shadow segmentation ap-
of the earth. To measure the length of the shadows, fiR§ioaches rely on threshold values to separate shadow from
the shadow areas in the image must be identified. Cleafign-shadow regions [24]-[27]. These methods could suffer
taller buildings project longer shadows. Also as the suna@govifom inaccuracies when encountering variant shadow inten-
towards the horizon, the area (and the length) of the shadéiiies that may exists under natural varying/non-unifoo i
will increase. Accurate identification of shadows in eacfination conditions. Tsai [28] utilized a segmentation inoet
image, therefore is a requirement for correct estimation 8t an automatic de-shadowing approach for shadow detection
building heights. In this section we describe the acquisiti COMpensation in color aerial images. He employed spectral
geometry and the shadow segmentation method first. \igdio values with an automatic thresholding technique tecte
will then explain the proposed approach for estimating tHghadows. He showed that shadow detection usfrity color
height using the acquisition geometry, shadow regions, af@ace has very high accuracy. Therefore we utilize the sdect
the rooftop definition. ratio of (H + 1)/(I + 1) to construct a ratio image. In the

1) Acquisition geometry:The acquisition geometry de-ratio image, pixels corresponding to shadow areas haveehigh
scribes the geometrical relationships between the sun, ¥@lues than those of others. The ratio image is then seguhente
sensor and the horizontal plane at the target location. TH&iNg the Mean Shift Segmentation algorithm [29]. The otitpu
image metadata contain a large amount of information amofifythis stage includes a set of potential shadow regigjs
which only the sensor and the sun azimuth and elevation angle3) Expected shadow predictiotit is important to establish
are used for this work. the difference between existing shadows on the ground (de-

We adopted the acquisition geometry proposed by Hua .te_d in Section II.—BZ) and expeeted shad.ows due_to a specifi
and Kwo [24] which handles the normal viewing of the inpuUilding height. This section provides details on estimathe
imageries. Figure 13 shows the geometry of the system ®fPected shadows corresponding to a building at a specific
rays, when a 3D building is imaged. From this figure, thBeight. The geometry of a rooftop, in general, could create
top point of the building in the 3D world is projected on thé@rtial occlusions on some of the projected shadows of the
p(l, s) of the 2D satellite image, while its base is located &ilding on the ground. The procedure for estimating the
b(ly, ). The shadow of this point is casted at poifi,, s. ). visible expected shadows of a building can be explained by
By measuring the length af,,, and the length of.,, in the the following steps:
2D image, the height of the building) can be estimated by: e In the first step, visible wall regions are computed. To

create the visible wall regions corresponding to a rooftop

L
Pixel ps

h = tanA.Lyp 1) at a given height, first the vanishing point (using the
, intersection of all vertical lines) is computed. Next, all
h = tanX' L @) vertices of the rooftop are projected onto the ground in
the direction of the vanishing point using equation (1).
Lfm - Lf)b + L3 = 2Ly Lap.-cos(a — o) ®) The projected vertices are then connected together (in
I the same order as the rooftop) to create the base of the
h= = (4) building (Ryese). By changing the height of a building

\/ L L eoslaca) from zero to a given heighth) (with steps ofAR) and
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projecting the base region in each case, regions associated the logical sum of the projected shadows by the rooftop
with the walls are identified as shown in Figure 14(b). and all the base regions is then estimated by:
These regions include invisible parts of the walls that
are occluded by the rooftop. Therefore, by removing the
rooftop, the visible wall regions are calculated.

=

—_—

Rbases at all heights — OR [fshadow(fbase(Rroofa
Vz € {0,Ah,...,h}, P),h— 2, P)] @)

To compute the bases at all heights from zerohto
parameter ofz is used in the above equation that holds
an incremental value of the height. At the beginning
this parameter is zero and therefore the base at height

Rooftop Bases at different heights Visible walls = h is computed. As:z increases towards the value bf
@ © Bases at d‘ffe(r:)“‘ heights -Rooftop projection of the base on the ground at different heights is

) . _ - ) o estimatedRyqses ot ali heights iINCludes overlaps with the
Fig. 14: Visible walls are identified using base projectidn a  rooftop and the wall regions; therefore rooftop and wall

different height values. regions must be removed (logical subtraction) to estimate
the complete visible shadow of the building at height
The above procedure can be summarized by: Equation 8 highlights this procedure.
Rshadow =OR [fshadow (fbase (Rroofa
Rwa” = OR[ fbase(Rmof,Vh S {0, Ah, ceey h}, P)] Vz € {0, Ah, ey h}, P), h — Z, P)] — Rmof — Rwall
— Rroof (5) 8

In our implementatiorAh was set to half image pixel
size or 0.3 meter. Heré,;, 40,0 COMputes the shadow of
the building at a specific height afusing the acquisition
geometry of P in the sun direction.

In this equation "OR” presents the union operation and "-
" represents the logical subtraction. Functifify;. com-
putes the base region associated with a building at height
z using the rooftop definition #,..s) and acquisition

geometry P) fshadow (Rroofa Z, P) — Rshadow (9)

Frase(R 2 P) — R ©6) Figure 15 represents the shadow estimation results at dif-
baselftroof, <) base ferent stages. In this example, the estimation is performed

« To predict the visible part of the expected shadow at any ~at the exact height of the building. Figure 15(a) shows a
height, first the unit vector of the sun direction is com-  rooftop that is highlighted with red contour. The green
puted. This vector represents the direction along which ~dots represent the vertices of this rooftop. Figure 15(b)
shadow points on the ground are projected. The shadow depicts the region generated by the first term in equa-
regions are generated by the rooftop definition and wall  tion 5. Figure 15(c) displays the results of equation 5
areas that naturally block the sun rays. The location of O Ruau. Figure 15(d) depicts results generated by the
the projected shadow associated with a building point OR term in equations 8 and Figure 15(e) highlights the
depends on the location of that point, its height and the estimated shadow regions found by equation 8.
acquisition geometry oP (computed using equation (2)). Ideally, in the absence of occlusion by other surrounding
To estimate the projected shadow of a building, wbuildings or objects,Rsn.q40 Will be exactly the same as
propose an incremental approach that is fast and edbg existing shadow of that building in the image at its
to implement. Given a candidate height/afthe rooftop true height. SinceR;nq.d000 Changes at various heights, it
definition of R,..¢, and the acquisition geometry ¢f, must be recalculated at each candidate height. Next section
the wall regions are estimated using equation 5 first. Alescribes details of the fitness function that is used tosasse
heighth, the projected shadow of the rooftop boundariethe similarity of predicted shadows with the existing ones.
on the ground are identified by projecting all vertices of 4) Fuzzy rule based fithessn this section an evaluation
that rooftop along the sun direction onto the ground. Thisinction using fuzzy rules is introduced. The purpose o$ thi
creates a polygonal region on the ground that, partiallfynction is to measure the similarity between existing sivesd
represents the expected shadow of the building at thiat the image and all predicted shadows of a building at
height. Generally, this region has some overlap with thdifferent heights. Naturally, the height associated wli inost
rooftop area. The non-overlapping part of this regiorsimilar region is chosen as the estimated height of the imgjld
however, corresponds to the visible projected shadow atJustification for using a fuzzy-based approach originates
height h. The remaining parts of the shadow originatérom two facts. Firstly, the intensity of the shadow regions
from the walls. To add the contribution of the walls tovaries according to the amount of indirect sky light and the
the expected shadow, the base region profile (polygomneflective properties of the regions or objects within them.
presentation) at each height (incremental value\éf Therefore, in large satellite/aerial images shadows hifferd
from 0 to k) is computed and projected along the suent characteristics across each image. Assuming a fuzayenat
direction onto the ground. The region corresponding tr shadows is not an unrealistic assumption. Secondlyincas
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Bt

Fig. 15: (a) A polygonal rooftop defined by a set of verticds. Base regions at height zero (red) aindyellow) are shown
and the dotted lined show the locations where vertices ghiteibetween zero andare projected onto. (c) Wall regions. (d)
Projection of all expected shadow regions for heighte) Visible expected shadow regions of the building.

shadows of buildings are related to the geometrical shapgions and the existing shadow in an image, we need to
characteristics of these buildings. Depending on the mgld validate the shadow property of pixels inside the expected
shapes and neighboring buildings or objects, the projectslladow regions. As described in Section 11-B2, in the ratio
shadows of a building could partially be obstructed (by otge image, a pixel with higher spectral ratio value has a higher
or their shadows). Therefore, even for a precisely knowglhtei probability of belonging to a shadow region. Therefore, an e
value, the expected shadows could be only partially sinbdar pected shadow region with a higher mean spectral ratio value
the existing shadows in the image. has a higher probability to belong to a real shadow region tha
The proposed fuzzy assessment function is based on shadmwther region with a lower mean. In our fuzzy assessment
properties of the spectral ratio segments;§) and shape function, we have defined a variable, Spectral Ratio (SR),
characteristics of the expected shadow regioRs.44.) at to present pixels shadow property. We classify image pixels
a given height. The result of assessment function fde@ght in two classes of shadow and non-shadow pixels. Shadow
Score Given a set of candidate heights for a building, thpixels have large spectral ratio values and non-shadowspixe
height score is estimated for each height and the heidfdve small spectral ratio values. We define two membership
associated with the highes$ieight Scoreis chosen as the functionsu(z) and us(x) for the spectral ratio variable. We
estimated building height. also assume normal distribution for both of these membgrshi
Since the proposed fuzzy function is based on the buildifignctions, as we are dealing with a natural phenomenon.
shape and shadow properties, two fuzzy sets input variables
(Spectral Ratio or SR and Shape Fitness or SF) are defined for
the function. Table Il lists labels and variables for the#y

function. o . .
Hence, spectral ratio image pixels are clustered into two

TABLE ”l Llngwstlc variables and labels for the fUZZy <7 classes by fuzzy c-means C|ustering method [30] and the
based fitness function mean and standard deviation of the two clusters are computed
The smaller mean value is called and its corresponding
Linguistic Variable  Linguistic Label standard d_ewatlon multiplied by 2 is namedl. Also ¢ and _
| . oo are assigned to the larger mean value and its corresponding
nput Spectral Ratio Small, Large L S . ;
Shape Fitness Small, Medium, Large standard deviation multiplied by 2, respectively. The clkodf
twice standard deviations of the two clustersdgrando,; was
to guarantee that there is no gap between the two Gaussian
functions. This prevents ignoring those pixels on the twdsen
of the shadow and non shadow boundaries. The following
To evaluate the similarity between building expected sihaddzaussian models are used to definéz) and us(z):

Output  Score Negative Large, Negative Small,
Moderate, Positive Small, Positive Large
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Table IV represents the fuzzy rules for generating the autpu

—(z—cq)?
(( 1))

o2 H
ma) =4¢ T Trza (10)
1 ifz < ¢
and
(*('17*22)2
20 i
pa(a) =4 € 2 if z < ¢ (1)
. 1.
1 if v > ¢

Here z represents the mean value of a region in the ratio

image. A large value ofi; (z) implies that the spectral ratio of 2.

the region is small, indicating lower probability of thagren
to be part of the shadow region. Large valueggfz) indicate

that the spectral ratio of the region is large and the regiostm 3.

likely belongs to the shadow segment. Figure 16 represents a

graphical representation or the two Gaussian models. 4.
5.
| pi(x) Ha(x) 1
[e7} G,
0 — T
0 c ¢ 1

Fig. 16: Graphical representation of the membership fomsti

variable Score (Scr,). As shown in this table, there are six
different combinations for the two input fuzzy sets. Among
these combinations, two (no. 1 and no. 4) are assessedequall
(where the Shape Fitness is small). This reduces the nunfiber o
score variables into five. Each combination representsgueani
case as described below:

Negative Large: Non-shadow pixels exist in the expected
shadow region and the expected and existing shadow
regions fully overlap.

Negative Small: Non-shadow pixels exist in the expected
shadow region and the expected and existing shadow
regions only partially overlap.

Moderate: The expected and existing shadow regions
have very small overlaps.

Positive Small: Shadow pixels exist the expected shadow
region and both regions partially overlap.

Positive Large: Shadow pixels exist in the expected

shadow region and both regions fully overlap.

The five membership functiong,(z) to gs(x) for the
output Score variableYcr,) are presented in equation 13 and
Figure 17(b)).

1 r<-—1

pr () and iz o). plo)=l-2 <<y
0 —% <z

The second set of the fuzzy input variable is the Shape 1 -2z + %| 2|z + %| <1
Fitness (SF) variable. This variable is designed to predent 92(x) = 1 '
shape similarity between the expected shadow regions and 0 2w+ 5l>1
existing image shadows. We expect that the expected and the 1-2Jz] 2z|<1
existing shadow regions are fully or partially (in the cade o g3(x) = {O 2) 1 (13)
occlusion by other objects or shadows) matched. We have zl >
considered three values for the Shape Fitness variablell Sma 1-2z—3 2z—13|<1
(when the expected and existing shadow regions have no or 94(z) = 0 oz — 1| >1 '
very little overlap), Medium (when regions partially ovpl) 2
and Large (when regions fully overlap). Therefore, three 1 <z
triangular membership functiong (z), f2(x) and f3(x) are gs(x) =322 -1 L<az<1
defined for the shape fithess set (Figure 17(a)) such that they .
do overlap with each other. We have used a triangular shape 0 T<3

for the shape fithess function since it is easy to implemedt an gor gz predicted shadow of a buildingR{,ad00) at a
it provides good accuracy as later shown in Section lll. Theandidate height, all regionsR; (extracted in Section 11-B2)

implemented membership functigh(z), f2(z) and f3(x) are
detailed in equation 12.

1 <0
filz) = 1—%1‘ 0<x§% ,
0 %<x
f2<x>={1—2'x_%' sl st g
0 2r — 5| >1
1 1<z
fix)=q3c-4 1<z<1
0 x<%

that partially or fully overlap withR, .40, are extracted from
the segmented ratio image and placed into the SefFor
each regionR; in S, two parametersng, andvg, are then
estimated.

mp, represents the mean value Bf in the segmented ratio
image.vg, denotes the overlap betweét) and Rgj,q40 and
is computed from:

S Area(Rshadow N R;)
i Area(R;)

To compute a score foR;, a fuzzy inference method is
required to process and deduce the fuzzy rules. Two of the
common methods for the fuzzy inference are proposed by
Mamdani [31] and Takagi-Sugeno [32]. In this work we have
adopted Mamdani's method since it works well when the rule

(14)
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TABLE 1IV: Fuzzy rules for generating output variable Score.

1. IF Spectral Ratio is Small AND Shape Fitness is Small THEbeSis Moderate.
2. IF Spectral Ratio is Small AND Shape Fitness is Medium THEEDre is Negative Small.
3. IF Spectral Ratio is Small AND Shape Fitness is Large THEbleSis Negative Large.
4. IF Spectral Ratio is Large AND Shape Fitness is Small THEbISis Moderate.
5. IF Spectral Ratio is Large AND Shape Fitness is Medium THEENre is Positive Small.
6. IF Spectral Ratio is Large AND Shape Fitness is Large THEEDreSis Positive Large.
%) fx) () gx) &(x) g5(%) g4x) gs(x)
Ji 1
Small Medium Large Nli:g agtive Nsefgtlilve Moderate Pé);igﬁe 110:;;\,3
0 x X
13 12 23 1 -1 -0.5 0 0.5 I

(a) (b)
Fig. 17: Membership functions of Shape Fitness (a) and Seariables (b).

base presents a static mapping between the input and the

output (such as the one presented in this work). The static . .

mapping here refers to the fact that the rules are fixed during 1(z) = min(hy, g3(2)),  D2(z) = min(hz, g2(z))

the process and are not added/modified/removed. Mamdani's D3(z) = min(hs, g1(z)), Da(x) = min(ha, gs())

fuzzy inference method involves five processing steps thclu Dy (z) = min(hs, g4(x)), Deg(x) = min(hs, gs(z))

ing (in order): input fuzzification, fuzzy operator appliican, (16)

implication, finding maximum output and defuzzification. In the fourth step, the total contribution from all rules is
In the first step, each input is fuzzified over all the quatifyi calculated for each candidate height

membership functions as required by the rules shown in

Table IV. For instance, for the rule no. 1, the two inputs C(z) = maxz(D;1(z), ..., Dg(x)) a7)

mp, andvg, are fuzzified using:; (mg,) and f1(vg,). Next a

fuzzy operator is applied on the fuzzified inputs for eaclkerul In the last step, the output fuzzy set is defuzzified by

Here, minimum and maximum functions are used in the placemputing the centroid of the output fuzzy set. This ceuiroi

of logical AND and OR, respectively. Therefore, the stréngtvalue represents the score of regifin

of each rule is computed by:

1 xC(z)dx
hy :min(ﬂl (mRi)7 fl (vRi))’ ha :min(ﬂl (mRi)? fQ(URi)) S(Rl) _ -1 (18)
hs =min(u1(mg, ), f3(vr,)), ha =min(uz2(mg,), fi1(vr,)) jl‘ C(z)dx
hs =min(p2(mg,), f2(vr,)),  he =min(uz2(mg,), fs(vr,)) -1
(15)

. S ) In this work, the integral terms in equation 18 have incretakn
In the third step, the implication is applied on each rulgteps of 0.01. Finally, théleight Score is computed for the
The strength of each rule represents the amount by whichyggqow regionRsnadew by calculating the mean of computed
rule is satisfied. It is a number between 0 and 1. A StrengéEores,S(Ri), for all R; in the setS. Each computed score

value closer to 1 indicates that the rule is more satisfied gf S(R;) is weighted by the percentage of overlap between
closer to the truth. By definition, the implication of eacheru . and g

is the conclusion (or the logical judgment) made based on the

shadow-

strength of that rule. If the strength is closer to 1 (trued th Z Area(Rshadow N Ri) x S(R;)
implication of that strength is closer to the predefined atitp , VR,eS

of the rule Gcore variable in Table V). Here, the computed 1 ¢ight Score = S Area(Rshadow)

strength of a rule{) is compared against the output function (29)

of each rule ¢). The minimum function is adopted for thisNote that in the above equation thteight Scorerepresents
purpose (as suggested by [31]). Therefore, the output of ttihe similarity between the existing shadows in the image and
implication for each rule is the minimum value between thiéhe expected shadow at a specific height for a building. Also
rule strength §) and the output function of each rulg)( As note that the contributiof(x), the intermediate score( R;)
shown in Figure 17(b), the range gfis [—1 1]. Therefore the and the finalHeight Score are computed for every candidate
range of values foD; to Dg is within [—1 1]. heighth.
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5) Optimal height estimationTraditionally when estimat- Rate (DR), False Negative Rate (FNR), and the McKeown
ing a building height, an estimate goodnegse{ghtScore) shape accuracy factor [37].
is computed for an incremental range of height values from N N
which the best score is chosen [10], [33]. For our system DR = SEAE L — , FNR= S
the HeightScore for values between 2 meters to 60 meters Nrp + Nrp Ny + Nrp
are computed. An incremental step of 0.3 meter is utilized Here, TP, FFP and I'N represent True Positives, False
in accordance with the QuickBird satellite image resolutioPositives and False Negatives in each scene. To calcukate th
(0.6 meter/pixel). Therefore estimating the height of dding McKeown'’s factor, the areas of buildings in the ground truth
requires computing théfeightScores 193 times. (Agr) is compared against the areas of the automatically
In an attempt to improve the efficiency of the heighdetected buildings by our algorithmi s).
estimation process, the Genetic Algorithm [34], [35] (GA)
was utilized. GA is based on a population of candidate Shape accuracy =1 —
solutions that evolves toward the best height estimate.eto s
the GA's population settingV, the formula proposed in [36] Table V summarizes results for all test images. The mean

(21)

|[Acr — ApB|
e PPl

100 22
Aor (22)

is incorporated: shape accuracy of the proposed method is 94.1%.
N~[1+ logz(%)] (20) TABLE V: Summary of the detection results.
In(a
. . No. | Tol No. | No. | No. | No. M M
In this equation, N represents the number of GA population, (?f Ot?)f ° ch) ch) O(f) Shape?:wracy F,’f&n
is the variable length in bits and is the reliability factor (the | Scenes| Buildings | TP | FP | FN % %
GA convergence probability). In this work, building height | 20 | 70 [ 62 ] 6 | 8 | 94.1 [ 11.08]]

represented by an 8 bit variable £ 8) with a reliability of

90% (@ = 90%). Placing these two values in equation 20 . . - .
results in the value of 12 folV. The maximum number of In computing these results, partial buildings at image labun
: aéies are not processed. The ground truth data were prepared

building height at most 1210 individuals (heights) are create y ”_‘a”“a'_ identification Of_ the _rooftop boundaries. Also
Idings with at least one dimension smaller th&g,, were

and evaluated. We found that the accuracy of the two meth i
vad v uracy ]xcluded from the detection process. Table VI compares the

are very similar for 61 out of 62 cases (mean difference 5 ; ¢ £ 1h ) K ed i
0.1 meter). There was one case in which the estimated heirgaﬁ{ ormances of some of the previous works (as reported in

through GA was wrong by 13 meters. Although the processi ¢ literature) with that of the proposed method.
time was improved using the GA by 37%, we ruled out the use

of GA in this case. Therefore all estimated heights (pressbnt TABLE VI: Comparison of the average DR.

in the r_1gxt section) are esumgted using uniform incremen SNiethod T Wi R Jin Wei T Nevatia T Our
from minimum to maximum height values. [38] [10] 139] [40] [11] method
Average
DR 68.9% | 71.9% | 72.7% | 84.3% | 95.45% | 95.2%

IIl. EXPERIMENTAL RESULTS

‘The performance of the system is assessed using 2G-rom this table, it can be observed that the proposed method
QuickBird satellite images. To prevent the propagation®f t yejivers an average detection rate that is much better teset
errors from the 2D rooftop detection process and to verigy ”bresented by [10], [38]-[40]. The presented result is chose
accuracy of the height estimation independently, falsétopo ihe one presented by [11]. The proposed method however has
hypotheses are removed manually before they are procesggd agvantage of detecting general polynomial shapes which
by the 3D estimation procedure. The ground truth in each cagg not limited to simple rectilinear profiles. The proposed
is prepared manually. method also assumes that the rooftops are flat or flat looking.
Under even lighting illumination condition with sun at nadi
often gabled rooftop look flat and the algorithm can detect
them correctly. If however the sun is closer to the horizbe, t

Figure 18 represents several examples in which rooftaptensity variation on different components of a gabledtam
boundaries overlaid over input images. To evaluate the preuld cause the algorithm to detect these parts as separate
posed method quantitatively, three metrics are used: Derec rooftops, or miss one or more such components. This issue

A. 2D Rooftop Detection
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Fig. 18: Examples of the output results for the proposed 2@top detection algorithm.

however is a general problem in most of the previous worleach of these works. Unfortunately, each researcher hak use
especially if single input imagery is utilized. his/her own set of images. Moreover, all of these algorithms

It must also be noted that the presented average DR res i€ Very complicated and do not have open sources which
in Table VI, are adopted directly from the results preserited Made it impossible for us to assess the DR rate for these
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methods based on the input images that were used in ttlisrefore the estimated height can be potentially fullgted.

system. Since in this work the main focus is on building detection and
o height estimation, the belief measure is defined based @®tho
B. 3D Estimation detected buildings in close vicinity of the building of ingst.

Each rooftop definition is presented by a vector of verticehis however does not mean that the presented results are
in a connected loop format. Using the methodology describafays fully trustworthy. For instance, Figure 20 represemn
in Section 1I-B, the best estimated height value for eadtase (building 5 of image 1 of Table VII) withizelief measure
building is computed. Clearly, the quality of shadows anaf one. As shown in this image, the estimated height is wrong
specific characteristics of buildings in the input imagel widue to two large trees with shadows that interfere with the
affect the performance and reliability of the estimatecghts building shadow. The undisturbed shadow of the building on
by this algorithm. Relying on shadows in estimating the heigthe vertical side is very small and therefore is not suffitten
of a building is advantageous by requiring minimum amouccurately estimate the correct height. In an interferezeca
of information for such estimation. However, in dense area§ the sun is not at nadir and the shadows of the building
shadows of a building can be obstructed by neighborirgge not disturbed from at least one side, the estimated heigh
buildings from one or more sides. To present our algorithmill be correct (building 2 and 4 of image 17 of Table VII).
confidence in estimated heights, we present a belief meastlirereforebelief measurés a good measure to be more aware
(B) that simply is a confidence score indicating how reliablef potential wrong estimates. A sub-system that can idgntif
the estimated measure of the height is. For every buildihg,trees and account for their disturbance would be a necessary
is computed using the following algorithm: component for further improvement of this work.

1. Estimate the height of for the building A using the
proposed methodologies in Section II-B.

2. Extract the expected shadow regions ®f},qq0., fOr
building A at the estimated height &f as described in
Section 11-B3 (regions surrounded by the red-solid lines
in Figure 19).

3. Find all the immediate neighboring buildings of the
building A.

4. Estimate the overlap between the expected shadow of

building A and rooftop areas of all neighboring buildingssig  20: Shadow disturbance by trees around a building. The

(12n). ) _ belief measurés equal to one. The red dotted line represents
5. Compute thebelief measurdrom: the shadow due to the height estimated by the system. The
Z Area(Rshadow N Rn) blue dotted line represents the ground truth shadow.
g=1-1n (23) | i
Area(Rshadow) Table VII represents the estimated height values for 62

buildings in 20 satellite images. It also compares the heigh
values with the manually found ground truth in each case.
From this table the mean error of all cases (without consid-
o ering thebelief measurgeis 0.53 meter and the RMS error is
3 1.18 meters. Figure 21(a) displays the estimated heiginssige
the ground truth. Figure 21(b) shows the absolute error @ghea
case.
In these results, there are 9 (out of 62) cases in which the
error between the estimated height and the ground truth is
:}.l-/ more than 0.6 meter. In all these cases the belief measure
/

KL .._ bR PN is equal to 1. Further investigations for these cases redeal
o R that the error in each case is due to either overlap of the
Fig. 19: Estimating théelic f measure. actual shadows with the non-building objects (such as Yrees
or their shadows in the vicinity, or poor quality of the exisf
If a building is in complete isolation or far from neighbagin shadows. Among 62 cases there are also 4 cases for which

buildings or obstacles, its shadow will not be disturbed arestimated heights are off by 3 meters or more.
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Height [m]

TABLE VII: Comparison of the estimated heights with the maltyiprepared ground truth.

Img. | Bldg. | Estimated Actual Abs. Belief Img. | Bldg. | Estimated Actual Abs. Belief
No. No. Height[m] | Heightim] | Diff.[m] Measure || No. No. Heightim] | Height[m] | Diff.[m] Measure
1 1 6.2 6.124 0.076 0.55 1 2 5.6 5.524 0.076 1
1 3 8.6 8.507 0.093 1 1 4 95 9.453 0.047 1
1 5 11.3 6.382 4.918 1 2 1 5.9 6.756 0.855 1
2 2 5.9 6.042 0.142 1 2 3 47 4.697 0.003 1
2 4 7.1 7.549 0.448 0.42 2 5 5.9 8.964 3.063 1
2 6 10.1 5.393 4.707 1 2 7 6.5 6.562 0.062 0.31
3 1 11.3 11.711 0.246 1 3 2 11.6 11.214 0.111 1
3 3 11.0 11.685 0.213 1 4 1 6.8 6.625 0.085 1
4 2 7.4 8.348 0.175 1 4 3 8.6 8.430 0.947 1
5 1 13.4 13.680 0.171 1 5 2 12.8 13.023 0.279 0.81
5 3 13.4 13.773 0.223 0.45 5 4 13.4 13.492 0.373 0.73
6 1 9.8 9.947 0.092 1 7 1 5.9 5.627 0.147 1
7 2 9.8 9.810 0.274 1 7 3 9.8 10.109 0.009 1
8 1 8.8 8.852 0.309 1 9 1 18.8 18.576 0.224 1
9 2 5.9 6.665 0.764 1 10 1 7.4 6.889 0.512 1
10 2 5.3 5.528 0.227 1 10 3 5.3 5.419 0.119 1
10 4 5.6 5.129 0.471 1 11 1 7.4 7.221 0.179 1
12 1 8.0 8.375 0.374 1 12 2 8.6 8.690 0.089 1
12 3 4.4 9.314 4.913 1 12 4 8.0 7.928 0.072 1
12 5 7.7 8.316 0.616 1 12 6 6.2 6.225 0.025 1
12 7 10.4 10.275 0.125 1 13 1 12.5 12.151 0.349 1
14 1 7.7 8.248 0.548 1 14 2 9.8 9.848 0.048 1
15 1 8.9 8.383 0.518 1 16 1 16.4 17.149 0.748 1
16 2 19.7 18.873 0.827 1 17 1 9.8 9.917 0.116 1
17 2 2.0 1.956 0.044 0.36 17 3 5.9 6.022 0.121 1
17 4 2.9 2.952 0.052 0.21 17 5 6.8 6.889 0.088 1
18 1 8.6 9.016 0.415 1 19 1 7.7 7.486 0.214 1
19 2 7.7 7.891 0.190 1 19 3 6.5 6.213 0.288 1
19 4 6.5 6.836 0.335 0.73 19 5 5.3 5.633 0.335 1
19 6 6.2 5.535 0.139 1 19 7 4.1 3.961 0.538 0.13
20 1 6.5 7.038 0.123 1 20 2 9.8 9.923 0.123 1
20 T T T T op T 5
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Fig. 21: Comparison of actual heights (ground truth) with tlalues estimated by the proposed system.
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Figure 22 represents several examples of building profiléme will be. This is due to the fact that higher number of
with their casted shadow footprints at the estimated height lines contributes to a larger number of line intersectiond a
ues. In these images, for each rooftop hypothesis the esgheqbotentially more hypotheses that need to be verified. A large
shadow footprint corresponding to the estimated height iimage from an urban area includes many line segments and
overlaid on the ground by the red lines. The manually preghartherefore requires a high processing time. However, sagee si
ground truth shadows (corresponding to the true heights) amage, if taken from a forest region, will be processed much
displayed with the blue lines. faster since it does not include manmade edges and straight

Figure 23-right represents 3D models of buildings for Bnes.
sample aerial scene image (shown in left) reconstructed byGenerally smaller image cuts lead to much faster processing
the proposed method. and more accurate results (due to less building candidates)

In the literature, there are a few methods estimating builéfrocessing smaller images and stitching the results tegeth
ings heights using shadow [8]-[10], [24]-[26], [41]. Somfe ocould be a way for improving the systems processing time.
these are semi-automatic and require user’s interactidh [2
[41]. Others could automatically estimate height of buigs System Portability Issues

with simple rooftop shape such as rectilinear with the con- . . R
dition that their shadows are completely visible and iden- The proposed system is adjusted for grayscale QuickBird

tifiable [8]-[10], [25], [26]. To our best knowledge, theresatellite images. Like any complex system, there are a few

is no comparable shadow-based method similar to ours i atmeters th?t arz se-tt acc?[rdlr?g tf[)hthe c?ara;:ten;t]lda;eof
is capable of estimating heights of buildings with comple§1pu Imagery. In order to customize the system for otheetyp

rooftops. Therefore we only evaluated our estimating h;zsighOlc images (captl:lred_ by differenF photometric sensors) &sofn
using manually prepared ground truth. The method by Ne 1e parameters in different sections of the proposed worktmu

tia [11], which has some similar aspects to our work, does n T adjusted accordingly. In Section II-A.2, parametéfs.,

present any quantitative results regarding the accuradpeof . ™" gndw should be set according to the plx_el siz€ of the
estimated heights. input images. Moreover, the rooftop candidate filteringed

parameters in Section 1I-A.3 smoothness of intensity \@lue
C. Performance Issues inside each rooftopd(,), and the ratio of intensity difference

' between inside and outside regions of each rooftop caralidat

All presented algorithms are implemented in Matlab 7.4 eani, —meanqy:|/mean,) should be adjusted according
a PC with CPU Intel Core2 2.4GHz with 2GB RAM. Forg nojse level of in the input imagery. These two parameters
the rooftop detection, the system processing time is highlte adjusted later in Section 11-A.4 (Hypothesis retriguat
dependent on the dimensions of the input image, the amoy@;, This percentage may also require changing for different
of details, and maximum and minimum lengths of potenti@l,pe of input images. In the 3D Building Estimation, the
buildings in the image. The processing time ranges frogptimal height estimation part of the system (Section B)B.
several seconds up to several minutes (for larger imag incremental height step should also be adjusted acgprdi
Table VIII represents the typical time for images of specifigy the resolution of the input image. For example, in this
sizes. In generating these results we have used images Wj#ik (QuickBird images with resolution of 0.6 meter/pixel)
similar building density. the incremental height step is set to 0.3, i.e., half the Ipixe
size. In Pictometry images where the pixel size is 15 cmlpixe

TABLE VIII: Processing time versus image dimensions. this parameter should be set to 7.5 cm.

| Image Size (pixels)] Time (minutes) |

IV. CONCLUSIONS

100 x 100 0.57
200 x 200 3.54 This paper presented a new system for detecting flat or flat-
288 i 288 28?;1182 looking rooftops with polygonal profiles and estimatingithe
500 X 500 50.52 heights using singular satellite/aerial images. In the fitmse

600 X 600 62.44 of this work, lines and their intersections (real or potahti
700 x 700 71.05 are detected. The orientation of the lines at their intdisas

800 x 800 120.24

is used for creating a graph-based search algorithm in which
subsequent polygonal vertices are tracked and identifiegrer
One of the main factors (beside the image size) affectiiig no angular limitation in detection of such rooftops. The
the processing time is the number of detected lines in eagéneral algorithm has no limit in the number of sides of
image. The higher this number is the higher the processitite detected polygonal rooftops. However as this number
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: Shadow estimated by the proposed algorithm
: Manually prepared ground truth

Fig. 22: Examples of the building 3D profiles of the input Hinlgs (casted shadow footprints at the estimated heighiesgal
In these images, for each rooftop hypothesis the expectadioghfootprint corresponding to the estimated height isrlaia
on the ground by the red lines and the manually prepared grtuth projected shadows (corresponding to the true hgjght

are displayed with the blue lines.
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Fig. 23: Visual representation of 3D models of buildingsdaample aerial scene image reconstructed by the propogadane

increases the computational complexity of the algoritheoal [2]
will increase. For that reason, in this work a limit of 8 was
imposed on the number of sides of the detected polygonﬁl]
rooftops.

In the second phase of this work, to estimate the height)
of each building, we proposed a new method which incor-
porates rooftop definitions, shadows, and satellite mésada
The profiles of buildings expected shadows, at various ltgigh [g)
are estimated and projected into the image using acquisitio
geometry provided by the satellite metadata. The best heigh
is found by measuring the similarity between the expecte
shadows at various heights and the existing shadows on the
ground using a fuzzy-based approach. Special attention is
paid in creating accurate geometrical representation ef th’]
projected shadows on the ground so that the visible parts
can be identified and separated from the hidden parts. System
results are compared against the manually found grountd trut8]
and against results reported by previous work in the litesat
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