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Abstract—In this work, we propose a novel approach for accu- divided into non-model and model based. Many of these meth-
rate 3D organ segmentation in the CT scan volumes. Instead of ods are proposed for extracting kidney and liver in medical
using the organ’s prior information directly in the segmentation images. Non-model based approaches generally rely on local
process, here we utilize the knowledge of the organ to valida information such as texture, intensity, spatial correlatof
a large number of potential segmentation outcomes that are . . ' ) y p h
generated by a generic Segmentation process. For this’ angan the 2D Organ |mage In consecutive SI|CeS, a.nd the |OcatI0n Of
space is generated based on PCA approach using which thethe organ in the abdominal area with respect to neighboring
fidelity of each segment to the organ is measured. We detail stryctures such as spine and ribs.
ﬁpplicatilggs of thg Ipropqseg_rmethod f?r 3D s'ggmentiatio_n of  Susombooret al. [1] employed texture features to perform

uman Kianey an ver In scan volumes. For evaluation, . e . . . . .

the public database of MICCAI 2007 grand challenge workshop "€9iON classmgqnon for extracting liver's soft tissue.hifé
has been incorporated. Implementation results show an avage this method utilizes several types of features to repretent
Dice similarity measure of 0.90 for segmentation of the kidey. liver’s texture in the CT images, it fails to produce goodutes
For the liver segmentation, the proposed algorithm achiewan on MICCAI's 2007 grand challenge database [2][3]. This is
average volume overlap error of 8.7 and an average surface nerhans due to the fact that in this approach there is no organ
distance of 1.51 mm. s

_ o shape model to compensate for variations of the texture and

Index Terms—Model based segmentation, statistical model jntensity levels in different slices. Seet al. [4] proposed
generation, principal component analysis, model based vidlation a multi-modal threshold method based on piecewise linear
interpolation that used spine location as a reference point
_ _ . Forouzaret al. [5] reported a multi-layer threshold technique

N_ esse_nt|al part of any compu_ter-mded_surgery IS pla[]'sing thresholds that were obtained by statistical aralgti
. ning prior to th_e surgery. Planning often involves prepafgg jjyer intensity. While both these methods take advantiHg
ing a patient specific 3D model of the organ under Surgetye |iers relative position to the spine and ribs (easign-
The 3D model is generated by segmenting the organ from;g,pje in medical images) they are also threshold dependen

s_et of medical i_mages (bundled into a volume) acquired frof_%]etermining thresholds that perform robustly and constfte
different modalities such as Computed Tomography (CT) agg}. \5riant imaging conditions and different intensity we

Magnetic Resonance Imaging (MRI). Medical image VOlum%uch as those in the MICCAI's data set) is very difficult if

generated by various sensors at different imaging COMmtitio, o+ jmnossible. Pan and Dawant [6] incorporated a geonagtric

could be affected by conditions such as non-uniform intgnSie,e| set method for automatic segmentation of the liver in
distribution (both inside a single slice and across the W@l ,,40minal CT scans that did not rely on prior knowledge of
an_d noise. Therefore, techniques fo_r med|cgl image S_egmgﬂépe or size. Although this method relies on a model based
tation that rely only on low-level |nformat|_on are h_'gh_lytechnique that outperforms threshold based technique it
depend_ent on the setyr?g of parameters. G|ve.n the intricalg; | se prior knowledge of the liver shape. As a result, it
anatomical structures,_lt is more logical to use prior kremigle performs relatively poorly in the cases where the liveridels
about the organ of interest than merely relying on oWy a5 Moreover, this method is verified only on a very
level image content._ In this sense, probabilistic mo_debbas”mited number of datasets. In [7] a method for liver extiact
seg_mgntanon techniques have been p_ro_posgd to_mcorpowég proposed that combined non-rigid registration and di-mul
statistical knowledge of an organ aspriori to identify the layer segmentation technique to identify liver regionseobsen

organ of interest in an image. In this work, we propose i 1), ndary edges. Since this method does not rely on any
novel approach that incorporates statistical informatsna shape model, it will not be affected by the diversity of the
mean of outcome quality measurement. Using a large numlé%

) -y sting liver shapes in the training set. For the same reaso
Of_ segmentaﬂon (_)utc_omes and a sta_\t|s_t|cal _model hypcﬁthe{’f’l‘ough, the presented results are not comparable with those
with the highest fidelity to the organ is identified.

of methods using shape models. leéhal. [8] segmented the
) kidney based on an adaptive region growing and an elliptical
A. Previous Work kidney region positioning that used spine as landmark. &vhil
Previous work for automatic 2D and 3D segmentation a@fiey achieve good results based on Dice measure, they fail to
organs in medical applications of image processing can bempute and/or report comparable measures similar to those
_ _ . of MICCAI's grand challenge workshop. Also since their
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in the MICCAI's dataset volumes). Wu and Sun reported @f the required steps for constructing the model. Here, we
deformable contour based method using texture classditatpresent a different approach for utilizing the ASM that uses
and shape to identify kidney in ultrasound images [9]. Thibe organ space as a selection tool to automatically choose
proposed work was tested and verified only on ultrasousdgmentation parameters that lead to segmentation resthits
images. Ultrasound images are essentially very diffenemhf highest fidelity to the model.
CT and MRI images which contain other similar looking The main advantage of the model based techniques is
structures and organs in close vicinity of the kidneys. in their accuracy and robustness. They are also capable of
Non-model based methods for organ segmentation are sabmpensating for the missing image features via interjmriat
ject to inaccuracies due to variation in imaging conditiorThe performances of these methods however are dependent
presence of tumor inside the organ and noise. Relying on the number and the type of the training data. Also if the
texture and image values could cause inaccuracies in 8tepe to be segmented lies too far away from the model space,
segmentation process as such features could change fibmmight not be reachable even by those better methods that
one patient to another. Moreover, most of these methods areorporate free-form deformation and statistical modeded
parameter dependent and for the best performance oftea thegsproaches. Therefore for some test volumes and organs, due
parameters require adjustment from one CT volume to anothter diversity in shape and size, their performance could.vary
In recent years, model based image segmentation algorithiiso, all of the model based organ segmentation techniques
have been developed for various medical applications. &hgsoposed up to now have utilized statistical informatiorhef
methods aim to recover an organ based on statistical inforneagans asa priori to their main segmentation algorithm.
tion. State of the art algorithms on model based segmentatio In this paper, we propose a novel alternative approach
are based on active shape and appearance models [10][fid].utilizing statistical model information in an identifiton
Active shape and appearance models incorporate staltisticaphase that is devised to choose the best segmentation candi-
parametric shape models (from training data) in the actuddtes according to its distance from an organ’s model space.
segmentation process. Here, first a general segmentation algorithm that covers all
Cooteset al. [10] described point distribution models tosegmentation results from under to over segmentation id. use
construct statistical models of general shapes from ait@in After generating segmentation hypotheses, a statisticalet
set. They exploited a linear formulation of the shape moddiased on PCA, is used to generate an organ space. The distance
named Active Shape Models (ASM) to iteratively search faf each candidate from the organ space is measured to choose
specific shapes in the image. In the work proposed heretha closest candidate as the best segmentation result. dime m
similar method to [10] is utilized by applying a PCA-basedontributions of this work are as follows:

(Principal Component Analysis) model on a set of training 1) |ntroducing a novel approach to validate all potential
data to generate a space (called organ space) that regresent ynpjased segmentation outcomes according to the sta-
the object of interest. Here however, we propose a novel tistical characteristics of the organ, instead of leading
approach for incorporating the knowledge of the organ space  the segmentation process towards results that are biased
for segmentation purposes. Kainmulkgral. [12] used ASM by the prior information.

in combination with a model of the typical intensity distri- 2) A dynamic scheme that enables variation of segmenta-
bution around the liver boundary and neighboring strusture tion quality control parameters for each slice of a CT
The method in [13] incorporated statistical shape model in  yolume independently and according to the fidelity of the

combination with an eVO|uti0naI‘y algorithm to prOVide iakt generated outcome for that slice with the model (Organ
ization for a deformable mesh that searches for human liver  gpace).

boundaries. Both of the two previous methods performed.[%ese two contributions take advantage of both non-model

search strategy similar to ASM with an improved initialipat and model based approaches to segment organs in CT scan
step. Linget al. [14] expanded ASM by two new IearningvoIumes accurately

techniques, marginal space learning and steerable fsature
accompanied with a new shape space initialization. They
improved the original ASM by handling highly heterogeneous
texture patterns. Wimmer proposed a new ASM [15] which The proposed work in this paper is a model based general
was entirely built upon non-parametric estimates of prdbab algorithm that instead of using the model information teedir

ties. Spiegeét al.[16] proposed to apply non-rigid registrationthe segmentation algorithm towards segmenting an organ in
to remove the problem of establishing point correspondenae image, uses the model information to choose a segment
among training data samples in ASM. Al al.[17] estimated (among all possible segmentation outcomes) with the highes
kidney shape variations using a distance probabilistic ehodidelity to the organ. The data flow diagram for this work is

to approximate densities of kidney and its surroundingsgisidepicted in Fig. 1.

Poisson distribution. Algorithms proposed in [12]-[17¢all The algorithm includes two phases of training and testing.
variations of the original method by Cootes$ al. [10][11] In the training phase, using the ground truth provided by the
where the shape model of the organ was utilized as a priorittaining dataset, an eigen space is constructed that descri
lead the segmentation algorithms to better results. Alhese the organ (this space is referred to as the organ space). The
methods suggest improvements over the original approamiyan space is a group of eigenvectors that are generated by
either by improving the performance time or simplificatiormpplying PCA over the ground truth of the training dataset.

Il. PROPOSEDMETHOD



In the testing phase, unknown CT volumes are processedntodule could be 2D or 3D vector data of organ’s mask or
segment the organ of interest. cropped image.
The testing phase includes four main procedures: In this work, we have used different sets of information for

1) Pre-processing: This procedure includes an alignméh€ applications of the proposed method. In Section IlI, 3D
process in which the orientation of the CT volumekidney organ reconstruction, we have incorporated thepedp
are automatically estimated and corrected to a refererlfB&ges of the kidney region in each training dataset volume.
orientation. It is also responsible for establishing &€ction IV we present the application of the proposed method
starting point for the volume under process. This startirf@r construction of 3D liver models. For this applicatiohet
point relies on unique characteristics of the organ &P liver masks from the training data sets are used for crgati
interest and the general knowledge of the organ thie organ space. Fig. 2 shows image slice of abdominal area
occurs at a specific location within the volume. with its 2D mask and the extracted liver’'s image region. Big.

2) Candidate Hypotheses Generation: This procedure S§50w§ how 2D extracted masks of the Iivgr in the CT slices
ments each image slice into a large number of overlapte Piled up together to represent the 3D liver.
ping regions among which one region could potentially

be the true region corresponding to the organ of interest >
on that specific slice.
3) Candidate Hypotheses Refinement: This procedure re-
duces the search space (candidate hypotheses) by con- ¥
straints that incorporate relationships between organ’s
regions in consecutive slices of the volumes. 4
4) Best Hypothesis Selection: This procedure measures the

quality of all generated candidate hypotheses (after StEiB. 2
3) according to the organ space generated in the training
phase and identifies the best candidate.

Image of the abdominal area with its correspondiaer.li
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Hypotheses v
Best Hypothesis One approach to create an organ space that encodes vari-
Orean Space Seleeton ations of an organ in a series of training data is to find the
Final Results ‘ principal components of the distribution. This is equivelt
Fig. 1. Flow diagram of the proposed method computing the eigenvectors of the covariance matrix of #te s

of vector data. Each input vector contributes more or less to
In the following subsections, details of the training andach eigenvector. Each eigenvector looks like a ghostlgrorg
testing procedures are described. mask or image depending on the input type. The eigenvectors
form a space that represents the organ where each new organ
. ) vector data can be approximated using a linear combinafion o
A. Training Phase: PCA Based Model Generation these eigenvectors. Here, without loss of generality wéda@xp
The objective of this section is to create a vector space thiae generation of the model for a training set of 3D input
represents an organ. Such space is a model that encapsulaetors. Note that these vectors can contain either imagdspi
the variations of the organ according to the training ser binary mask values.
volumes. In general an organ space can be created usingll the volumes in the training set of MICCAI's 2007 grand
boundaries, masks or image regions of the organ of intemesichallenge workshop have the same size in sagittg] énd
CT images. Such information is used to either create mast@onal {") directions {12 x 512 pixels) but the sampling in
for the organ or extract the cropped image of the organ frotime transverseA) direction is not the same and therefore each
the CT scan data to create the organ space. The space camobeme has a different number of slices. Also the thickndss o
created for 2D images/masks of the organ or 3D volumes @ich volume is different and it varies fror88mm to 213mm
images/masks of the organ. Therefore the input data to thigh a mean ofl 75mm. In this work, all the volumes used



in the training set for generating the PCA based model arel) Pre-processing: Most interactive/semi-automatic seg-
re-sampled in the transverse direction to the same numbemuéntation algorithms [5][7] require a starting point (oreth
slices (100 for each volume). Because the size of an orgamgan of interest) to be manually identified. This startiognp
is different in different patients, and also the PCA inpus a crucial element with high impact on the accuracy of the
vector requires a fixed number of elements, the organ masgmentation results. Here the proposed work is fully auto-
volume is re-sampled tb00 slices in thez direction using the matic and therefore does not require identifying such isigrt
nearest-neighbor scheme. Clearly, re-sampling volumesnagpoint via manual interaction. To initially localize pointisat
into a fixed number of samples creates slices with differebelong to the organ of interest, we propose a pre-processing
thicknesses (between different volumes). However, we douprocedure. This procedure utilizes specific and uniqueipblys
that within the range of organ sizes (in both training andttributes of the organ and its environment to identify oegi
test datasets) the PCA sufficiently encapsulates the dverdICT volume images (in one slice or more) that belong to that
variations of the organ to represent general characesisti organ. Clearly this procedure must be customized for dfier
that organ. organs. We discuss in details examples of such procedure in
We assume that each 3D input vector in the training settise applications of the proposed method for kidney and liver
a 3D array ofX by Y by Z or equivalently a 1D vector of 3D modeling.
size X-Y-Z. If Ly, Lo,..., L,, are 1D vectors of the training 2) Candidate Hypotheses GeneratioRor creating poten-
set andy is their mean, the distance of each vector from itgal segment hypotheses, any common segmentation algorith
mean is defined by; = L; - ¢. Here, we look for the set may be utilized. The basic idea is to create a set of variant
of n orthonormal vectors,; that best describe the distributionsegmentation parameters (algorithm dependent) that sdrive
of the vector data. These vectors are the result of applyittgie segmentation results from under segmentation to over
PCA over the entire training set. They are eigenvectors ®f tsegmentation. For instance, let's assume that a segnmntati

following covariance matrix: algorithm Seg depends onN parametersp,..., py. If the
N lower and upper boundaries of these variables, presented by
C = l Z ¢i¢§r — AAT 1) (v11, vlu),...,(le: UNu)s drive_the_output results from under to
n over segmentation, a combination of values gore [vy;, vy,

+ Aly,...p1ulsepn € [ung + Aln,..., vy, ] Will be generated

C . : . . to segment the input image multiple times. Every unique
computing its eigenvectors is exhaustive. [20] introdueed gme P 9 P Y q
combination ofpy,..., py generates one set of segmentation

computationally effective way to estimate these vectorse T
. : . results. The number of overall output segments depends on
number of data points in the organ spacenis therefore .
Al; wherei € 1,...,N.

only n — 1 meaningful eigenvectors exist and the remainin . ' .
ny n ning gen : 9 3) Candidate Hypotheses Refinemenhe purpose of this
eigenvectors will have associated eigenvalues of zero.tbue

this, the eigenvector equation can be solved fornahy n process Is tolrefin.e. po_tential candidates.by utilizing infa¥
matrix instead of aX-Y-Z by X-Y-Z matrix. Consider the :'r?lg thagsvga;sanrtg:;dow é?ga%rzgégi?ii Sisr:pogrrpr)]g?iz?\. tlcr: I;?r’rr:ﬁve
X e )
eigenvectors; of A7.A such that outliers. It could also involve further analysis (based ocal
AT Av; = s @) or global features) to verify the fidelity of a hypothesis e t
organ.
AAT Av; = p; Av; 3 4) Candidate Selection Based on Similarity to the Organ
Space: Similar to the approach proposed by [20], where the
Using this, instead of calculating the eigenvectorsiaf”, the face space was used f.or.fac.e detection,lthe organ space can be
eigenvectors ofA” A are calculated and are called Linear used to measure t.he similarity of.alcandldate hypotheststo t
combination ofs; and then training set vectorse) is used organ. Each candidate hypothesis is a vector data, same as th
St tra(ljnlng dataset that was used to create the organ space. For
to form the eigenvectors that represent the organ space an , S . ;
are calledu;. This is done by: measuring the similarity (_)f each cand|date_hypothe5|sovect.
‘ (Lhypo) With the organ, first, the mean adjusted hypothesis
1 vector ¢p,p, iS projected onto the organ space using:
U; = — Z 'Uijd)j (4)
" j=1 ¢hypo = Lhypo - ’[/) (5)
Once eigenvectors are approximated, they are used to model
the organ. This model is used (as explained in the Sec-

tion 11-B4) to measure the similarity of segmented regiongne result of this projection is a vector ofifmz,...qm].

where A = [¢1 ¢2 ... ¢,]. Usually matrix C' is large and

Equation 3 shows thatdv; is an eigenvector ofAA7”.

i = ui¢hypo (6)

(candidate hypotheses) to the organ. Each 7, represents the contribution of an eigenvector
in the reconstruction of projected candidate hypothedie T
B. Testing Phase reconstructed candidate hypothesis is then generated by:

This phase is responsible for processing unknown CT scan "
volumes to identify regions of the organ of interest. Thiagh Grec = Z N 7)
includes four main processes that are explained next. P



For each refined candidate hypothesis, generated in Sect) Aligning volumes:In order to identify the orientation
tion 11-B3, the Euclidean distance between the mean adjustef the dataset volume and to correct for potentially various
volume @nypo) and the reconstructed version,(.) is com- orientations the following algorithm is implemented:

puted by: i) The area associated with the spine (refer to as spine

E :” ¢rec - ¢hypo H (8)

The candidate hypothesis with the smallest Euclideantista
from its reconstructed version in the organ space is chosen a
the best segmentation result.

mask) in the physical middle slice of each test volume
in the transverse direction is extracted according to the
described procedure in Section 1lI-B2.ii.a. The center of
gravity of this mask is also computed.

i) The lengths of all line segments passing through the

IIl. APPLICATION OFPROPOSEDMETHOD FORKIDNEY
SEGMENTATION

iii)
In this section, the application of the proposed method for

segmentation of the 3D right kidney in CT scan volumes is
presented. We follow the same organization as in Section Il
for presenting processes utilized in this application.

A. Training Phase: PCA based Model Generation

For this application, a kidney space is generated for the
2D cropped images of the kidney from the training set of
MICCAI's grand challenge workshop [2][3]. It is worth to
mention that different volumes of the data have different
thicknesses. They usually range betweefimm to 5mm
in the Z direction (transverse). In order to establish corre
correspondences between different volumes, all the vadum
are re-sampled to the same number of slices (100) itde
rection. First the CT volume is divided into several sectiom
the transverse direction with each section containing démees
number of slices in them (5 slices in this work). The kidney

center of gravity and limited to the boundaries of the
mask ([-90:1:90] degrees) are computed.

The rotation angle corresponding to longest line segime
is found. The image is then rotated back by that angle.
After the rotation the longest axis of the spine mask
becomes parallel with image horizontal axis. To make
sure that the spine is always rotated in the correct
direction (we want the spine to be on the right side
of the image) the distance of the spine mask’s center
of gravity from image right border is used. Once the
rotation angle and the rotation direction are estimated,
all slices of the volume are rotated, Fig. 5.

enoth Mixel]

E o W5
Rotation angle [rad]

is then manually extracted for all slices and translated inkig. 5. Visual presentation of the aligning process for settarolumes.

the center of a blank image with the same size as the image

slice. The kidney images of each section, from the training2) Organ region identificationin this phase, first the upper

set of MICCAI's CT volumes, are used to train the kidnewnd lower slices, corresponding to the beginning and enlaieof t
space for that section of slices. Here, shape, textureqsitie  kidney in the CT volume, are automatically identified. Once
and size of kidney regions are more similar to each other ftitese slices are identified, their middle slice is proceseed

closer slices. Therefore, multiple kidney spaces are gee@r find the kidney region in it. This section includes two main
for different transverse sections of CT volumes along thgrocesses.

transverse direction. The process of assigning differkcess
to different sections is shown in Fig 4.

CT scan
volume

A section including
several slices

Fig. 4. Different sections of CT scan volumes used for kidapgces.

B. Testing Phase: Pre-processing

The pre-processing phase includes two main automatic
processes: aligning the dataset volumes, and identifyioget
slices of each volume that indeed include the organ of igtere
and finding an initial starting point within the organ.

i) A fully automated organ reconstruction system requires

automatic identification of slices that include that organ
within each volume. Such algorithm varies from organ
to organ as characteristics of various organs differ. In
this section, we introduce a method for identification of
the lower and upper boundary slices of the CT volume
that contain the kidney (in the transverse direction). This
algorithm includes three steps:
a) In the first step, each slice is thresholded in the
transverse direction using a dynamic threshold that
is determined for each slice by:

TR =k x mean(I) 9)

here k is set to 1.35 (a constant value for the
entire dataset volumes, found empirically) and
is the image region corresponding the abdominal
area of each slice (estimated as described in Sec-
tion 1l1-B2.ii.b), Fig. 6.

b) Next we identify a slice that includes the kidney
(starting slice). Based on the observation from the



Fig. 6.

Left is the slice from transverse direction contagnionly the

abdominal area and right is the thresholded image.

c)

i) In this section, the middle slice of the kidney slices is
processed to estimate the approximate location of thq
kidney. The relative location of the kidney with respect
to the spine is used for this purpose. This proceduré
includes the following steps:

a) In CT scan images of the abdominal area, pixel

training datasets, usually slices that fall between
the bottom slice of the liver and the slice corre-
sponding to the largest 2D liver surface (in the
transverse direction) contain a slice that corre-
sponds to a large 2D segment of kidney. ldenti-
fication of slices containing the largest 2D surface
and the bottom slice of the liver are described in
section IV-B. Therefore, the slice corresponding
to the midpoint between these two slices is cho-
sen as the starting slice of each volume. Using
the kidney subregion area, as described in sec-
tion 111-B2.ii.c, a kidney mask guesstimate is ex-
tracted for the starting slice. The thresholded image
from step llI-B2.i.a is then utilized to identify the
segment with largest area in kidney subregion.
Finally, the algorithm propagates the kidney mask
guesstimates in two directions from the starting
slice (in the transverse direction). The propagation
is performed by choosing the segment with the
largest area overlap with the kidney mask guessti-
mate of the previous slice. This process continues
in both directions until the mask guesstimates reach
to zero at the two ends.

corresponding to bones (spine and ribs) appeal
substantially brighter than pixels of soft tissue re-
gions. Using intensity based thresholding approac
(similar to [8]), the middle slice is thresholded.
The threshold value is found empirically based
on the training dataset. For CT scan images with
maximum and minimum pixel values of 1024 and
-1024, this threshold was set to 400. To make thg

process more robust, 10 slices before and 10 slicel

after the middle slice are also thresholded. The

b)

<)

a) Mask of the
thresholded image

d) Canny
of Log transformed image

points are usually sparse and filtered out using a
morphological operations that first fills the holes
and then removes rib regions (connected to the
spine) using a disk structuring element (SE) of
radius 4 pixels (Fig. 7.b). The largest connected
piece in the resultant image is then identified as
spine, Fig. 7.c.

Now, we extract the boundary of abdominal area.
For this, first the middle slice is enhanced using
a Log transform. Canny edge detector is then
applied. The NOT of the resulting edge map image
is opened with a circular SE of radius 4. The
largest piece of the resultant mask is selected. This
region represents the entire abdominal area and its
boundary is extracted to highlight the region in
which the kidney is located (Figs. 7.d, e and f).

In the final step, we require to identify a subregion
within the abdominal area that most likely contains
the kidney or parts of it. Focusing on processing
a smaller region of the image, reduces the chance
of misidentification of the kidney which is a real
problem given it's size and texture in comparison
with its neighboring organs such as heart and gall
bladder. Usually, the location of the kidney with
respect to spine, lies on a line that creates & 70
angle with the horizontal line passing from the
center of the spine (Fig. 8.a). The“7i8 determined
empirically. Therefore from the center (center of
gravity) of the spine mask, a line is emitted at
70° and its intersection with the boundary of the
abdominal region is found (length &Y. Center of
the kidney is usually located at a distance 0fl0.3
from the center of spine. A circular region (radius
of 50 pixels) that most likely withholds the kidney,
is then centered at the location of D,3Fig. 8.b.

b) After filling holes
and removing ribs

c) Largest piece
corresponding to spine

f) Boundary of the largest
piece of NOT image

¢) The NOT image
opened

¢ map

thresholded results of all 21 images are unionizedig: 7. Kidney extraction: extracting spine and abdomera &reundary.

The resulting image is a binary mask that holds val-
ues of 1 for spine and rib regions and 0 otherwise.

In this process, some soft tissues with brighté?- Testing Phase: Candidate Hypotheses Generation
intensities (Fig. 7.a) could be wrongly thresholded After the pre-processing, segmentation is performed on all
and therefore will be added to the mask. Thedemages of the CT scan volume and all candidate segments



a) Kidney center
calculation

b) Kidney area
highlighted

Kidney extraction pre-processing: extracting kigocation center.

Fig. 8.
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Fig. 9.
are identified. These candidates are generated for every 2%)
slice of each volume of the test set using the graph based
segmentation method [18]. Graph-based segmentation iglataset volumes. The observation scalekgfroved to have
method capable of preserving details in low-variabilityaie minimal affects on the results and therefore was kept cahsta
regions while ignoring details in high-variability areaéhe at 50.
algorithm includes following steps: At the end of this process, for each slice of the CT volume
i) Each image pixel is considered as a region where at large number of candidate segments are extracted. These
corresponds to a nod@ € V) in the overall image candidates are refined in the next process.
graph of G(V, E).
Neighboring pixels are connected by undirected edges
(e € E). For each edge a weight coefficient is computed’
according to the dissimilarities between pixels. This procedure begins from the middle slice. Using the kid-
iii) Similar regionsA and B are merged together to produceney’s potential location (found Section 111-B2.i.c), aktcted
a larger region if the following condition is held: segments of the middle slice, are inspected and only those
that fully or partially overlap with that circular region er

Distributions ofc and = values for the kidney.

i)

Testing Phase: Candidate Hypotheses Refinement

Dif(A,B) < MInt(A, B) (10) kept. For the middle slice, all these candidates are passed t

Where Section III-.E where only one sggment that represents the bes
kidney region for the middle slice is selected.

Dif(A,B) = min w((vi,vy))  (11) The process of hypotheses refinement for other CT slices

vieAus € B, (viv;)EB is slightly different from the middle slice and it is based on

Here E is the graph edge set and((v;,v;)) is the
weight between vertex; andwv;.

M1Int(A, B) = min(Int(A) + 7(A), Int(B) + 7(B)))

the overlap of candidate hypotheses with the best candidate
segment from the previous slice. Since the starting point fo
the processing is the middle slice, this procedure treats CT
slices in two batches. Both batches start from the middte sli

(12) but move in opposite directions. In each slice, all candidat

hypotheses that have overlaps smaller thafi 5@ith the
kidney segment (best chosen segment) of the previous slice
. ) will be removed.

MST represents the Minimum Spanning Tree graph At the end of this process, for each slice, a number of
G(V, E). k hypotheses are remained that location- and size-wise are th
(14) most probable representative of the kidney region for thee.s

Int(A) = (13)

max

w(e)
c€EMST(A,E)

The control parameters of this algorithm include: Gaussian i , i
smoothingo, threshold functionr, and scale of observation - Testing Phase: Best Hypothesis Selection
k. At this point, for each slice there are a number of potential

The range of values selected iorandr are found through kidney region hypotheses. These candidates are projected
statistical analysis of the data in the training sets. ahitj into their corresponding kidney space (from IlI-A) and the
values ofo € [0.1 : 0.2 : 1.7] and7 € [5 : 25 : 155] were hypothesis with the smallest Euclidean distance (as de=tri
used to segment each slice of every training dataset volurire,Section 11-B3) is chosen as the kidney region (kidney
9 x 7 = 63 segment images for each slice. The overlaps afask) of that slice. Once the best candidates for all slices
all segment images of a slice with the mask of that slicare identified, they are stacked up together to generate a 3D
(from the ground truth) are computed and theand 7 of model of the kidney. To refine this 3D model, a post processing
the segment image with the highest overlap are collected. Titased on morphological operation in the sagittal directton
histograms of the distribution of these two parameters weperformed. Here the mask slices of the kidney (in the sdgitta
then estimated, Fig. 9. direction) are first opened by a disk SE of radius 2 pixels and

Using these histograms, a rangg@fl : 0.2 : 1.1] for o and then closed by a disk structuring element of radius 4 pixels.
a range off5 : 25 : 105] for 7 are chosen. These ranges coverhis procedure fills out small holes inside the kidney mask
90% of the best potentiat and = according to the training and removes the excess small parts attached to it boundaries



F. Results for 2D slices of CT training volumes are extracted and stdcke

Some segmentation results for different CT slices are shofff: Fig- 3. These 3D mask volumes are used to generate the
in Fig. 10. In these results, the ground truth are shown wifler space. This liver space is later used for assessmeht an
white solid lines and the contours found by the proposdgentification of candidate segment hypotheses.
method with black lines. The quantitative assessment of the
algorithm based on the entire test set volumes is presentedi Testing Phase: Pre-processing

Section V. The pre-processing phase includes two main automatic

processes: aligning the dataset volumes, and identifyioget
slices of each volume that indeed include the liver. Thenalig
ing of dataset volumes is performed by procedure presented
in Section 111-B1. Since the number of slices and the logatio
of the liver in each volume varies, the following procedwse i
performed to identify those slices that include the livenisT
procedure includes three steps:

i) In the first step, a number of 3D models of the liver
are generated using segmentation results of the liver
slices in the sagittal and coronal directions. Human'’s
liver is the largest glandular organ of the body within the
abdominal area. When looking at the CT volumes, the
middle slice (regardless of the number of slices) always
includes a segment from the liver. Also in the middle
slice, the segment corresponding to the liver usually
is the largest segment among all detected segments
that correspond to other organs or areas. These two
observations are utilized in this step. Therefore, stgrtin
from the middle slice of each test volume and moving
in two directions, for both sagittal and coronal axes, we
generate 21 3D liver models (by changingin each
case). Here each slice of each volume is segmented
21 times. The 3D model for each is generated by
moving from the middle slice in two directions and
choosing the segment (for the results of curréntith
the maximum overlap with the liver segment from the
previous slice. Obviously, the qualities of these models
are different and their number depends on the range of
segmentation parameters used in the system (in our work
21 3D models).

IV. APPLICATION OF PROPOSEDMETHOD FORLIVER i) In this step, the system identifies the slice that most

SEGMENTATION probably corresponds to largest liver region for the test

volume (in the transverse direction). For each 3D model
generated in step i, the slice (in the transverse direction)
corresponding to the largest liver segment is identified.
Once all such slices are identified for all the 3D models,
a voting scheme is used to identify the most popular
slice. We refer to this slice as the center slice although
it generally does not correspond to the physical center
of the liver. Once this center slice is identified, the next
step is incorporated to estimate the upper and lower
boundaries of the liver slices.

iii) In this step the liver's upper and the lower boundary
slices in the transverse direction are identified as fol-
lowing:

a) A number of liver mask candidates are generated
for the center slice that was found in step ii. As
described in Section 11-B, using a range of segmen-

Similar to Section IlI-A, in this section a liver space is tation parameters, a number of liver segments are
generated for 3D masks in the training dataset. Liver masks generated (one segment for each set of parameter).

Fig. 10. Results of kidney segmentation in transverse){lefronal (center)
and sagittal (right) directions; black: ground truth, anhdite: our method).

In this section, the application of the proposed method for
segmentation of 3D liver in CT scan volumes is presented.
For this application, the organ space is generated from 3D
mask volumes of the liver of MICCAI's 2007 grand challenge
workshop training dataset of twenty patients.

Human liver has a soft triangular shape with four lobes
that are different in shape and size. Slicing 3D CT volumes
of liver's in the transverse direction usually results inaiges
that include more than one liver piece. This adds to the com-
plexity of candidate hypotheses and makes their identificat
process more complicated. Therefore, CT volumes of liver ar
processed in the coronal and sagittal directions in whieh th
observed 2D liver regions consist of one single piece.

A. Training Phase: PCA based Model Generation



All these candidate segments are added togeth
and thresholded. The threshold value is dynam™
cally chosen so that the resultant segment has tk-
highest similarity with the 2D mask extracted from,,
the 3D training model (Section II-A). The 2D mask
of the 3D training model is chosen according to the’
liver area (the largest).

b) The remaining slices in the transverse directio .=
are treated in the same way but in two opposite
directions. Therefore, each test volume slice imaggy. 11. Distributions ofh,- and ks values for the liver.
is segmented several times. The segmentation re-
sults are added together and thresholded using the
threshold value found in iii.a. The segment witrand[3 : 2 : 13]. Using these two ranges, ov&1% of the data
the largest overlap with the liver segment from thé the training volumes will be segmented to their potential
previous slice is considered as the liver segmeaegments.
for that slice.

¢) This process is repeated until the liver mask argg Testing Phase: Candidate Hypotheses Refinement
becomes zero in both directions. At that point the
algorithm has reached to the boundary slices of tht%t
data set volume.
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The process of candidate hypotheses generation starts from
e middle slice of each CT volume in the coronal and sagittal
directions where liver has its largest or near largest 2Easer
Due to the large size and unique texture of the liver
C. Testing Phase: Candidate Hypotheses Generation region, the candidate hypotheses generation process, tends

To highlight the generality of the proposed algorithm, fopccasiona!ly, to cut the Iiyer into _smaIIer pieges. To eaghat
the liver segmentation application a different segmeaitail-  SUCh condition does not jeopardize the quality of the prces
gorithm (the Mean Shift segmentation method [19]) is weitiz post processing procedure is proposed in here. '_I'h|5 proeedu
Mean shift segmentation is a non-parametric feature spa?dlapws reduction of a "'?“ge ””mbef of segments into a smaller
originally introduced in [22]. In mean shift segmentatiosut number but more consistent set. It includes the followiegst
ally an attribute of the image (for example color or inteyjsit 1) The boundary edges of segment regions (for each set of
is chosen as the feature. Therefore, first a search window Parameter combination) are extracted to form an edge
is chosen and is centered on an initial location. The mean Map EM).
location of the data in that window represents the new cehtro i) The EMs of each image (oné/M for each set of
Therefore, the search window is migrated to a new position ~ Parameters) are added together to form an accumulative
which is centered at the location of the centroid found from  €dge map AEM) for that input image (equation 15).
the previous step. The procedure is repeated until window
has reached a local maximum in the density function and AEM =Y EM (15)
the movement of the window’s centroid becomes negligible. s
When segmenting an image, search windows are uniformlyii) The contrast of AEM is enhanced using the Log
positioned over the image data. The converged mean shift transform. The AEM image includes a few gray levels.

window for each initial position is found and windows with The logarithmic correction in here expands the low
the same local maxima are merged together. Mean shift seg- level range of the AEM image. This allows utilizing
mentation algorithm controls the quality of segments tigiou the thresholding process at finer levels which leads to a
three parameters of intensity,() and spatial k) resolutions, larger number of segment candidates with more precise
and minimum segment sizé., affects the smoothing, and differences.

connectivity of the potential segments ang controls the iv) Contrast enhancedlEM is then thresholded to form

number of segments. The minimum segment size is the area an Enhanced Edge Mag/¢ M) that includes isolated

(in pixel) of the smallest individual segment. connected regions. This is described by equation 16:
In this work the minimum segment size was kept fixed at

20 pixels. The range of values selected fgr and h, are EEM [ 1 Log(AEM(x,y)) > Thresh
found through statistical analysis of the data in the tragni s(z,y) =19 o otherwise
sets. Initially, values ofh, € [1 : 2 : 27]) and hs € [1 : (16)

2 : 15| were used to segment each slice of every training ~WhereThresh = maz(maxz(Log(AEM)))/B.

volume. The overlap of all segmented images of a slice withe threshold applied her@'{resh, the frequency of observa-
the mask of that slice (from the ground truth) is estimateibn in the segmentation) represents the minimum strenfyth o
and theh, and hs of the segmented image with the highesthe boundaries of each segment hypothesis. Naturally, a con
overlap are collected. The histograms of the distribution fstantT'hresh would not provide same quality results across all
these two parameters are then estimated, Fig. 11. Using thieput images. Therefore, different values @fare utilized to
histograms, the range &f. andh, are then set td5: 2 : 23] generate a number @fhreshs andEEM images. A range of
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[1.5,1.6,...,3.5] forg is used for the liver segmentation in this
work. This range was found empirically by inspecting thirty
liver CT scan volumes of different patients including a eayi
of shapes and imaging conditions.

At each slice, differenE EM's are generated according tc
equation 16. If the processed slice is indeed the middle slic
the CT volume, the algorithm selects the segmentHiGiM)
with the largest area as the best segment representative
the liver. If the current slice is not the middle slice of the
volume, the segment (i¥ £ M) with the largest overlap with
the liver's segment from the previous slice is considerethas
liver segment. This segment is first morphologically opelmgd
a circular SE (radius of 4 pixels) to remove any excess sm.
parts arqund its_ bounqary' Next a morphqlogical_hole ﬁIIir‘gig. 13. Samuplze's3D volume mask representationGrfO(u)nrdT(rjuiﬂf‘femémalues in
process is applied to fill any small gaps within this segmente liver extraction application.

Sample EEM results with their detected liver segments at
different 8s are shown in Fig. 12.

After extracting all liver segments of a volume fopavalue, the hypothesis with the smallest Euclidean distance fram it
these masks are stacked up together to form a candidate reBConstructed version is chosen as the best 3D reconstructe
liver mask volume. This implies that for ea@resh (or 3) model of the liver for that CT volume. Note that here we have
value, one liver volume hypothesis is generated. created two sets of models: one using the data in the sagittal

As mentioned earlier, the segmentation candidate genaratilirection and one using the coronal direction. The two sets
for liver is performed in the sagittal and coronal direciof of models are then measured against the PCA model and the
segmentation results in any of those directions includextrae model with the highest similarity will be chosen. Therefore
part attached to them, when viewing from transverse diacti the final selected 3D model could have been originated from
such extra part manifest itself as a line of angle zero or ®ither sagittal or coronal directions.
degrees. This is clearly under the condition that such armext
piece is not constantly found on consecutive slices. Torfiltg Results
out such those lines, first all detected segments are stackeE_ .
together to create a 3D model. Then the model is sliced in the ig. 14 shows some examples of the detected 2D liver

transverse direction and filtered using a morphologicak pcﬁs;atSk boundaries alng V‘gth th%lrlcg_rreipondlng groundhtrut
processing with a line SE. at transverse, coronal and sagittal directions.

Fig. 13 shows three examples of 3D volumes generated f0|Jn these results, the ground truth is shown by wh_ite lines
different values of3 along with the associated 3D groun nd the results of the proposed method are shown with black.
truth Quantitative results along with a comparison with the stdite

art are presented in the next section.
B=1.5

V. TESTRESULTS

This section presents complete results and discussions for
both applications of the proposed method. In generating
segmentation results, the dataset of MICCAI's 2007 grand
challenge workshop is used. This dataset includes 20 migini
and 10 test CT scan volumes.

In the kidney case, we used 23 volumes (15 training and
8 test) provided for the MICCAIl's grand challenge. The
MICCAI's grand challenge was designed for the liver 3D
modeling and therefore some of its volumes did not include
the kidney organ completely. Also, the training volumes did
not include the ground truth for the kidney. Therefore, the
ground truth for both training and test volumes were found
manually.

For the liver, in order to generate the organ space for the
) ) PCA based model of the liver, first all 20 training volumes
E. Testing Phase: Best Hypotheses Selection were used. The ground truth (liver masks for the training

After generating all liver volume candidate hypotheses (ivolumes) was provided by the MICCAIl's workshop. The
cluding all candidate hypotheses for both sagittal and malro ground truth for the test volumes however was not provided
directions) they are projected into the liver space acogrtd but the quality of the results was measured against MICCAI's
equation 6. They are then reconstructed using equation 7 andund truth by MICCAI's workshop. By exchanging the role

B=2 B=25

Fig. 12. Sample® EM for different 8 values (top row) with the correspond-
ing extracted mask candidate (bottom row) for the liver aotion application.



11

TABLE |
QUANTITATIVE RESULTS FOR THE RIGHT(FIRST ROW) AND LEFT (LAST ROW) KIDNEYS EXTRACTION.

Training by 7 sets Training by 10 sets Training by 15 sets
Dice MSE SE Dice MSE SE Dice MSE SE
Mean (right kidney) 0.8964 | 5131 | 0.8873 || 0.9066 | 4686 | 0.8965 || 0.9063 | 4415 | 0.8985
Mean (left kidney) 0.9010 | 5096 | 0.8912 || 0.9062 | 4634 | 0.9009 || 0.9042 | 4923 | 0.8939

TABLE Il
QUANTITATIVE RESULTS FOR THE RIGHT KIDNEY EXTRACTION

Results based on 20 training datasets

Vol Score | Ave Score | Ave symm | Score | RMS symm | Score | Max symm | Score | Total

overlap symm surface surface surface

error% diff% dist [mm] dist [mm] dist [mm]
Mean! 8.54 66.64 | -2.44 | 82.38 1.35 66.14 2.62 63.57 22.37 70.57 | 69.86
Mean? 8.70 66.00 | -0.76 | 85.35 151 62.22 3.06 57.37 27.78 63.44 | 66.88

the 15 training volumes and 20 test volumes (given that the
entire MICCAI's dataset include only 23 (training and test)
volumes with both kidneys entirely contained within thesyet
the role of training and test volumes are exchanged at devera
points during the test results generation.

To evaluate the performance of this work on the kidney
segmentation, following metrics and sensitivity measue a
utilized.

i) Dice Coefficient: this is a similarity measure defined
according to the following:

2 XY
| X[+ Y]
here X is the segmentation result by our algorithm and

Y is the gold standard (ground truth).
i) Mean Square Error: this is computed by:

Dice = (17)

MSE = é S (X -y (18)

hereX andY are segmentation results by our algorithm
and manually found ground truth ard is the total
number of the pixels in the union of andY'.

iii) Sensitivity Measure: this is the ratio of correctly e
tified organ segments to the overall segments in the
ground truth.

Fig. 14. Results of liver segmentation in transverse (leftyonal (center)
and sagittal (right) directions,(black: ground truth, tehiour method).

of training and test volumes and utilizing the manually fdun SE — TP (19)
ground truth for one of the test volumes, we were able to TP+ FN

present 30 test cases. Details of this process are presented  here TP is the True Positive and it represents the number
Section V-B. of voxels that are segmented consistently (correctly) as

To compare the proposed method with the state of the art,  jdney tissue by both the proposed method and the
two sets of measures are used. While both these sets can be ground truth. FN is the False Negative and it represents

estimated for each one of these applications, the first set is  the number of voxels that exist in the ground truth but
used for the kidney and the second set for the liver. This was  \ere missed by our solution.
imposed by the state of art, since we could not find any paper;

hese measures are computed and are presented in Table I.
that represents both measures for both of these organs.

The results are separated according to the number of tgainin
) ) sets and for left and right kidneys. The mean Dice measure
A. Results for Kidney Segmentation for the left and the right kidneys (across all three models)
The proposed solution has been applied on 20 test volumiss90% which shows slightly better results than the 88.6
Also to make our comparison compatible with the state giresented by [8]. The results for SE (for training with 10s¥et
art [16], the training phase utilizes 3 models based on 7ntl0 aindicate 15 improvement over the results presented by [16]
15 training volumes. The ground truth was prepared manua(l§4%). Interestingly, our proposed method seems to perform
for both training and test volumes. In order to accommodatather uniformly regardless of the number of training sets.
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The presented MSE results are not compared against val@esExecution

reported by [16] due to the differences in the resolutioresi Al the codes for this project are implemented in MAT-
position and orientation of used datasets. LAB 7.6.0.324 environment (on a PC with an Intel Core 2
Duo (2 GHz) processor) except for the generic segmentation
algorithms (mean shift and graph based), which are done in
C++. Since for each slice of each volume, the segmentation
In this section the proposed algorithm has been assességbrithm is performed multiple times a large percentage
for liver. In order to generate the organ space for the PQ@about 80%%) of the running time is spent on the segmentation
based model of the liver, first all 20 training volumes areduseprocess. The average runtime for extracting the liver mdsk o
The ground truth (liver masks for the training volumes) wag single slice using the proposed algorithm is about 1 minute
provided by the MICCAI's workshop. The ground truth forThis time for kidney is about 40 seconds. Also the entire
the test volumes however was not provided but the quality system can be programmed in C++ to make the execution
the results was measured against MICCAI's ground truth liyne faster.
MICCAI's workshop. To ensure the quality of the results the segmentation pa-
To extend the number of test cases, 20 more tests wé&agneters are chosen to have a large range (covering results
achieved by using the ground truth of one of the test volum&em under to over segmentation). This however contributes
(manually prepared) and 19 training volumes (leaving ortg odio substantially higher number of segmentation calls. Oag w
to generate the organ space for the PCA model. The left ditimproving the execution time could be to lower the range
training volume (acts a test volume) was then modeled usiafthe parameters, concentrating only on the nominal values
the PCA model. The measurements for these 20 cases w@e presented in Sections IlI-C and IV-C). This would cause
estimated using the assessment program that was provideddyoverall faster performance, but clearly in some cases the
the MICCAI's workshop. accuracy of the results will be compromised. By assessiag th
To evaluate the performance the evaluation metrics of Mi@uality of the reconstructed model, we can decide whether

CAI's 2007 workshop [2][3] are adopted. Brief descriptiafs further segmentation using an extend range of parameters is
these metrics are as follows. required or not. This should allow improvement of the result
i) Volumetric Overlap Error, in percent. This is the numbe{rog Se%ir;ecﬁessisvg\llglrfe;educmg the mean processing time for
of voxgl; in the intersection of segmenta_tion ar_1d grpunB V1. CONCLUSION
truth divided by the number of voxels in their union, . . e
subtracted from 1 and multiplied by 100 This paper presented a novel method for identification of
i) Relative Volume Difference, in percent. This is the fot organs in CT vplumes. The proposed .W(.)rk combln(_ed low-
volume difference between segmentation and gmlﬁ%/el segmentation schemes with a statistical-based nimadel
truth divided by total volume of ground truth. approach to accurately identify organ segments. The use of
a multi-layer mechanism (through multiple parameter sgtti

iii) Average Symmetric Surface Distance, in millimeters; o ; . .
The Euclidean distance between every bordering vox qmblnatlons) for any generic segmentation algorithm kErsab
e approach to cope with distortions originating from aari

in segmentation and the closest bordering voxel |t o : diti d diff t noi TH
ground truth is determined. ion in imaging condition and different noise sources. THe a

iv) Symmetric RMS Surface Distance, in millimeters. Thigition of statistical information (from a training set) mided

measure is similar to the previous measure but here tﬂeunique way to automatically select the most appropriate

squared distances are used and the root of the aVer§§gmentat|on parameters (at the slice 'Ievel) leading to the
value is taken. results that best conformed to the organ’s model.

v) Maximum Symmetric Absolute Surface Distance, in -I(-jhet f'sllpr;hcatlons Oftt?_e pr(;plgzed metzolc.i were g_rresented
millimeters. This measure is similar to the 2 previouI ol (renglss ggmsegrr.gzr:] acnl‘o'?h: elrf?)?r)rgair::e 'V%: Itr;1e stz;c(:aarc])f
measures but only the maximum of all distances o ' pari : P Wi
found art was demonstrated using MICCAI 2007 grand challenge
' _ _ dataset. Currently this work stands among the top four auto-
Table Il show the above metrics. In ttus table, the rowatic algorithms reported for liver extraction on this deta
Mean' representg the mean of the MICCAI’s test volumes and e proposed solution is a general approach and can be eas-
the row Mead displays the mean for all the 30 test casefy customized for general object detection and segmenntati
The proposed algorithm achieves an averages.@0% for applications.
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