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A Model Based Validation Scheme for Organ
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Abstract—In this work, we propose a novel approach for accu-
rate 3D organ segmentation in the CT scan volumes. Instead of
using the organ’s prior information directly in the segmentation
process, here we utilize the knowledge of the organ to validate
a large number of potential segmentation outcomes that are
generated by a generic segmentation process. For this, an organ
space is generated based on PCA approach using which the
fidelity of each segment to the organ is measured. We detail
applications of the proposed method for 3D segmentation of
human kidney and liver in CT scan volumes. For evaluation,
the public database of MICCAI 2007 grand challenge workshop
has been incorporated. Implementation results show an average
Dice similarity measure of 0.90 for segmentation of the kidney.
For the liver segmentation, the proposed algorithm achieves an
average volume overlap error of 8.7% and an average surface
distance of 1.51 mm.

Index Terms—Model based segmentation, statistical model
generation, principal component analysis, model based validation

I. I NTRODUCTION

A N essential part of any computer-aided surgery is plan-
ning prior to the surgery. Planning often involves prepar-

ing a patient specific 3D model of the organ under surgery.
The 3D model is generated by segmenting the organ from a
set of medical images (bundled into a volume) acquired from
different modalities such as Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI). Medical image volumes
generated by various sensors at different imaging conditions
could be affected by conditions such as non-uniform intensity
distribution (both inside a single slice and across the volume)
and noise. Therefore, techniques for medical image segmen-
tation that rely only on low-level information are highly
dependent on the setting of parameters. Given the intricate
anatomical structures, it is more logical to use prior knowledge
about the organ of interest than merely relying on low-
level image content. In this sense, probabilistic model based
segmentation techniques have been proposed to incorporate
statistical knowledge of an organ asa priori to identify the
organ of interest in an image. In this work, we propose a
novel approach that incorporates statistical informationas a
mean of outcome quality measurement. Using a large number
of segmentation outcomes and a statistical model hypothesis
with the highest fidelity to the organ is identified.

A. Previous Work

Previous work for automatic 2D and 3D segmentation of
organs in medical applications of image processing can be
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divided into non-model and model based. Many of these meth-
ods are proposed for extracting kidney and liver in medical
images. Non-model based approaches generally rely on local
information such as texture, intensity, spatial correlation of
the 2D organ image in consecutive slices, and the location of
the organ in the abdominal area with respect to neighboring
structures such as spine and ribs.

Susomboonet al. [1] employed texture features to perform
region classification for extracting liver’s soft tissue. While
this method utilizes several types of features to representthe
liver’s texture in the CT images, it fails to produce good results
on MICCAI’s 2007 grand challenge database [2][3]. This is
perhaps due to the fact that in this approach there is no organ
shape model to compensate for variations of the texture and
intensity levels in different slices. Seoet al. [4] proposed
a multi-modal threshold method based on piecewise linear
interpolation that used spine location as a reference point.
Forouzanet al. [5] reported a multi-layer threshold technique
using thresholds that were obtained by statistical analysis of
the liver intensity. While both these methods take advantage of
the liver’s relative position to the spine and ribs (easily iden-
tifiable in medical images) they are also threshold dependent.
Determining thresholds that perform robustly and consistently
for variant imaging conditions and different intensity values
(such as those in the MICCAI’s data set) is very difficult if
not impossible. Pan and Dawant [6] incorporated a geometrical
level set method for automatic segmentation of the liver in
abdominal CT scans that did not rely on prior knowledge of
shape or size. Although this method relies on a model based
technique that outperforms threshold based techniques, itdid
not use prior knowledge of the liver shape. As a result, it
performs relatively poorly in the cases where the liver includes
tumors. Moreover, this method is verified only on a very
limited number of datasets. In [7] a method for liver extraction
was proposed that combined non-rigid registration and a multi-
layer segmentation technique to identify liver regions based on
it’s boundary edges. Since this method does not rely on any
shape model, it will not be affected by the diversity of the
existing liver shapes in the training set. For the same reason
though, the presented results are not comparable with those
of methods using shape models. Linet al. [8] segmented the
kidney based on an adaptive region growing and an elliptical
kidney region positioning that used spine as landmark. While
they achieve good results based on Dice measure, they fail to
compute and/or report comparable measures similar to those
of MICCAI’s grand challenge workshop. Also since their
method is based on region growing technique, it could be
sensitive to the lighting conditions (as such conditions exist
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in the MICCAI’s dataset volumes). Wu and Sun reported a
deformable contour based method using texture classification
and shape to identify kidney in ultrasound images [9]. The
proposed work was tested and verified only on ultrasound
images. Ultrasound images are essentially very different from
CT and MRI images which contain other similar looking
structures and organs in close vicinity of the kidneys.

Non-model based methods for organ segmentation are sub-
ject to inaccuracies due to variation in imaging condition,
presence of tumor inside the organ and noise. Relying on
texture and image values could cause inaccuracies in the
segmentation process as such features could change from
one patient to another. Moreover, most of these methods are
parameter dependent and for the best performance often these
parameters require adjustment from one CT volume to another.

In recent years, model based image segmentation algorithms
have been developed for various medical applications. These
methods aim to recover an organ based on statistical informa-
tion. State of the art algorithms on model based segmentation
are based on active shape and appearance models [10][11].
Active shape and appearance models incorporate statistical or
parametric shape models (from training data) in the actual
segmentation process.

Cooteset al. [10] described point distribution models to
construct statistical models of general shapes from a training
set. They exploited a linear formulation of the shape models
named Active Shape Models (ASM) to iteratively search for
specific shapes in the image. In the work proposed here, a
similar method to [10] is utilized by applying a PCA-based
(Principal Component Analysis) model on a set of training
data to generate a space (called organ space) that represents
the object of interest. Here however, we propose a novel
approach for incorporating the knowledge of the organ space
for segmentation purposes. Kainmulleret al. [12] used ASM
in combination with a model of the typical intensity distri-
bution around the liver boundary and neighboring structures.
The method in [13] incorporated statistical shape model in
combination with an evolutionary algorithm to provide initial-
ization for a deformable mesh that searches for human liver
boundaries. Both of the two previous methods performed a
search strategy similar to ASM with an improved initialization
step. Ling et al. [14] expanded ASM by two new learning
techniques, marginal space learning and steerable features
accompanied with a new shape space initialization. They
improved the original ASM by handling highly heterogeneous
texture patterns. Wimmer proposed a new ASM [15] which
was entirely built upon non-parametric estimates of probabili-
ties. Spiegelet al. [16] proposed to apply non-rigid registration
to remove the problem of establishing point correspondence
among training data samples in ASM. Aliet al. [17] estimated
kidney shape variations using a distance probabilistic model
to approximate densities of kidney and its surroundings using
Poisson distribution. Algorithms proposed in [12]-[17] are all
variations of the original method by Cooteset al. [10][11]
where the shape model of the organ was utilized as a priori to
lead the segmentation algorithms to better results. All of these
methods suggest improvements over the original approach
either by improving the performance time or simplification

of the required steps for constructing the model. Here, we
present a different approach for utilizing the ASM that uses
the organ space as a selection tool to automatically choose
segmentation parameters that lead to segmentation resultswith
highest fidelity to the model.

The main advantage of the model based techniques is
in their accuracy and robustness. They are also capable of
compensating for the missing image features via interpolation.
The performances of these methods however are dependent
on the number and the type of the training data. Also if the
shape to be segmented lies too far away from the model space,
it might not be reachable even by those better methods that
incorporate free-form deformation and statistical model based
approaches. Therefore for some test volumes and organs, due
to diversity in shape and size, their performance could vary.
Also, all of the model based organ segmentation techniques
proposed up to now have utilized statistical information ofthe
organs asa priori to their main segmentation algorithm.

In this paper, we propose a novel alternative approach
for utilizing statistical model information in an identification
phase that is devised to choose the best segmentation candi-
dates according to its distance from an organ’s model space.
Here, first a general segmentation algorithm that covers all
segmentation results from under to over segmentation is used.
After generating segmentation hypotheses, a statistical model,
based on PCA, is used to generate an organ space. The distance
of each candidate from the organ space is measured to choose
the closest candidate as the best segmentation result. The main
contributions of this work are as follows:

1) Introducing a novel approach to validate all potential
unbiased segmentation outcomes according to the sta-
tistical characteristics of the organ, instead of leading
the segmentation process towards results that are biased
by the prior information.

2) A dynamic scheme that enables variation of segmenta-
tion quality control parameters for each slice of a CT
volume independently and according to the fidelity of the
generated outcome for that slice with the model (organ
space).

These two contributions take advantage of both non-model
and model based approaches to segment organs in CT scan
volumes accurately.

II. PROPOSEDMETHOD

The proposed work in this paper is a model based general
algorithm that instead of using the model information to direct
the segmentation algorithm towards segmenting an organ in
an image, uses the model information to choose a segment
(among all possible segmentation outcomes) with the highest
fidelity to the organ. The data flow diagram for this work is
depicted in Fig. 1.

The algorithm includes two phases of training and testing.
In the training phase, using the ground truth provided by the
training dataset, an eigen space is constructed that describes
the organ (this space is referred to as the organ space). The
organ space is a group of eigenvectors that are generated by
applying PCA over the ground truth of the training dataset.
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In the testing phase, unknown CT volumes are processed to
segment the organ of interest.

The testing phase includes four main procedures:

1) Pre-processing: This procedure includes an alignment
process in which the orientation of the CT volumes
are automatically estimated and corrected to a reference
orientation. It is also responsible for establishing a
starting point for the volume under process. This starting
point relies on unique characteristics of the organ of
interest and the general knowledge of the organ that
occurs at a specific location within the volume.

2) Candidate Hypotheses Generation: This procedure seg-
ments each image slice into a large number of overlap-
ping regions among which one region could potentially
be the true region corresponding to the organ of interest
on that specific slice.

3) Candidate Hypotheses Refinement: This procedure re-
duces the search space (candidate hypotheses) by con-
straints that incorporate relationships between organ’s
regions in consecutive slices of the volumes.

4) Best Hypothesis Selection: This procedure measures the
quality of all generated candidate hypotheses (after step
3) according to the organ space generated in the training
phase and identifies the best candidate.

Candidate

Hypotheses

Generation

Refined Candidate

Hypotheses

PCA Based Organ

Space Generation

Best Hypothesis

SelectionOrgan Space

Final Results

Preprocessing

Candidate

Hypotheses

Refinement

Test CT VolumesTraining CT Volumes

Candidate

Hypotheses

Organ Specific

Knowledge

Training Phase Testing Phase

Fig. 1. Flow diagram of the proposed method

In the following subsections, details of the training and
testing procedures are described.

A. Training Phase: PCA Based Model Generation

The objective of this section is to create a vector space that
represents an organ. Such space is a model that encapsulates
the variations of the organ according to the training set
volumes. In general an organ space can be created using
boundaries, masks or image regions of the organ of interest in
CT images. Such information is used to either create masks
for the organ or extract the cropped image of the organ from
the CT scan data to create the organ space. The space can be
created for 2D images/masks of the organ or 3D volumes of
images/masks of the organ. Therefore the input data to this

module could be 2D or 3D vector data of organ’s mask or
cropped image.

In this work, we have used different sets of information for
the applications of the proposed method. In Section III, 3D
kidney organ reconstruction, we have incorporated the cropped
images of the kidney region in each training dataset volume.In
Section IV we present the application of the proposed method
for construction of 3D liver models. For this application, the
2D liver masks from the training data sets are used for creating
the organ space. Fig. 2 shows image slice of abdominal area
with its 2D mask and the extracted liver’s image region. Fig.3
shows how 2D extracted masks of the liver in the CT slices
are piled up together to represent the 3D liver.

Fig. 2. Image of the abdominal area with its corresponding liver.

Fig. 3. A 3D liver volume and it’s corresponding 2D liver masks.

One approach to create an organ space that encodes vari-
ations of an organ in a series of training data is to find the
principal components of the distribution. This is equivalent to
computing the eigenvectors of the covariance matrix of the set
of vector data. Each input vector contributes more or less to
each eigenvector. Each eigenvector looks like a ghostly organ
mask or image depending on the input type. The eigenvectors
form a space that represents the organ where each new organ
vector data can be approximated using a linear combination of
these eigenvectors. Here, without loss of generality we explain
the generation of the model for a training set of 3D input
vectors. Note that these vectors can contain either image pixels
or binary mask values.

All the volumes in the training set of MICCAI’s 2007 grand
challenge workshop have the same size in sagittal (X) and
coronal (Y ) directions (512× 512 pixels) but the sampling in
the transverse (Z) direction is not the same and therefore each
volume has a different number of slices. Also the thickness of
each volume is different and it varies from138mm to 213mm
with a mean of175mm. In this work, all the volumes used
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in the training set for generating the PCA based model are
re-sampled in the transverse direction to the same number of
slices (100 for each volume). Because the size of an organ
is different in different patients, and also the PCA input
vector requires a fixed number of elements, the organ mask
volume is re-sampled to100 slices in thez direction using the
nearest-neighbor scheme. Clearly, re-sampling volume masks
into a fixed number of samples creates slices with different
thicknesses (between different volumes). However, we found
that within the range of organ sizes (in both training and
test datasets) the PCA sufficiently encapsulates the overall
variations of the organ to represent general characteristics of
that organ.

We assume that each 3D input vector in the training set is
a 3D array ofX by Y by Z or equivalently a 1D vector of
sizeX ·Y ·Z. If L1, L2,..., Ln are 1D vectors of the training
set andψ is their mean, the distance of each vector from its
mean is defined byφi = Li - ψ. Here, we look for the set
of n orthonormal vectorsui that best describe the distribution
of the vector data. These vectors are the result of applying
PCA over the entire training set. They are eigenvectors of the
following covariance matrix:

C =
1

n

n∑

i=1

φiφ
T
i = AAT (1)

whereA = [φ1 φ2 ... φn]. Usually matrixC is large and
computing its eigenvectors is exhaustive. [20] introduceda
computationally effective way to estimate these vectors. The
number of data points in the organ space isn, therefore
only n − 1 meaningful eigenvectors exist and the remaining
eigenvectors will have associated eigenvalues of zero. Dueto
this, the eigenvector equation can be solved for ann by n
matrix instead of aX ·Y ·Z by X ·Y ·Z matrix. Consider the
eigenvectorsvi of ATA such that:

ATAvi = µivi (2)

AATAvi = µiAvi (3)

Equation 3 shows thatAvi is an eigenvector ofAAT .
Using this, instead of calculating the eigenvectors ofAAT , the
eigenvectors ofATA are calculated and are calledvi. Linear
combination ofvi and then training set vectors (φi) is used
to form the eigenvectors that represent the organ space and
are calledui. This is done by:

ui =
1

n

n∑

j=1

vijφj (4)

Once eigenvectors are approximated, they are used to model
the organ. This model is used (as explained in the Sec-
tion II-B4) to measure the similarity of segmented regions
(candidate hypotheses) to the organ.

B. Testing Phase

This phase is responsible for processing unknown CT scan
volumes to identify regions of the organ of interest. This phase
includes four main processes that are explained next.

1) Pre-processing: Most interactive/semi-automatic seg-
mentation algorithms [5][7] require a starting point (on the
organ of interest) to be manually identified. This starting point
is a crucial element with high impact on the accuracy of the
segmentation results. Here the proposed work is fully auto-
matic and therefore does not require identifying such starting
point via manual interaction. To initially localize pointsthat
belong to the organ of interest, we propose a pre-processing
procedure. This procedure utilizes specific and unique physical
attributes of the organ and its environment to identify regions
of CT volume images (in one slice or more) that belong to that
organ. Clearly this procedure must be customized for different
organs. We discuss in details examples of such procedure in
the applications of the proposed method for kidney and liver
3D modeling.

2) Candidate Hypotheses Generation:For creating poten-
tial segment hypotheses, any common segmentation algorithm
may be utilized. The basic idea is to create a set of variant
segmentation parameters (algorithm dependent) that drives
the segmentation results from under segmentation to over
segmentation. For instance, let’s assume that a segmentation
algorithm Seg depends onN parametersp1,..., pN . If the
lower and upper boundaries of these variables, presented by
(v1l, v1u),...,(vNl, vNu), drive the output results from under to
over segmentation, a combination of values forp1 ∈ [v1l, v1l
+ ∆l1,...,v1u],...,pN ∈ [vNl + ∆lN ,..., vNu] will be generated
to segment the input image multiple times. Every unique
combination ofp1,..., pN generates one set of segmentation
results. The number of overall output segments depends on
∆li wherei ∈ 1,...,N .

3) Candidate Hypotheses Refinement:The purpose of this
process is to refine potential candidates by utilizing informa-
tion that was identified in the pre-processing phase. In general,
this phase could rely on organ specific information to remove
outliers. It could also involve further analysis (based on local
or global features) to verify the fidelity of a hypothesis to the
organ.

4) Candidate Selection Based on Similarity to the Organ
Space:Similar to the approach proposed by [20], where the
face space was used for face detection, the organ space can be
used to measure the similarity of a candidate hypothesis to the
organ. Each candidate hypothesis is a vector data, same as the
training dataset that was used to create the organ space. For
measuring the similarity of each candidate hypothesis vector
(Lhypo) with the organ, first, the mean adjusted hypothesis
vectorφhypo is projected onto the organ space using:

φhypo = Lhypo − ψ (5)

ηi = uiφhypo (6)

The result of this projection is a vector of [η1,η2,...,ηn].
Each ηi represents the contribution of an eigenvectorui
in the reconstruction of projected candidate hypothesis. The
reconstructed candidate hypothesis is then generated by:

φrec =

n∑

i=1

ηiui (7)
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For each refined candidate hypothesis, generated in Sec-
tion II-B3, the Euclidean distance between the mean adjusted
volume (φhypo) and the reconstructed version (φrec) is com-
puted by:

E =‖ φrec − φhypo ‖ (8)

The candidate hypothesis with the smallest Euclidean distance
from its reconstructed version in the organ space is chosen as
the best segmentation result.

III. A PPLICATION OFPROPOSEDMETHOD FORK IDNEY

SEGMENTATION

In this section, the application of the proposed method for
segmentation of the 3D right kidney in CT scan volumes is
presented. We follow the same organization as in Section II
for presenting processes utilized in this application.

A. Training Phase: PCA based Model Generation

For this application, a kidney space is generated for the
2D cropped images of the kidney from the training set of
MICCAI’s grand challenge workshop [2][3]. It is worth to
mention that different volumes of the data have different
thicknesses. They usually range between0.7mm to 5mm
in the Z direction (transverse). In order to establish correct
correspondences between different volumes, all the volumes
are re-sampled to the same number of slices (100) in theZ di-
rection. First the CT volume is divided into several sections in
the transverse direction with each section containing the same
number of slices in them (5 slices in this work). The kidney
is then manually extracted for all slices and translated into
the center of a blank image with the same size as the image
slice. The kidney images of each section, from the training
set of MICCAI’s CT volumes, are used to train the kidney
space for that section of slices. Here, shape, texture, intensity,
and size of kidney regions are more similar to each other for
closer slices. Therefore, multiple kidney spaces are generated
for different transverse sections of CT volumes along the
transverse direction. The process of assigning different slices
to different sections is shown in Fig 4.

{

CT scan

volume

A section including

several slices

Fig. 4. Different sections of CT scan volumes used for kidneyspaces.

B. Testing Phase: Pre-processing

The pre-processing phase includes two main automatic
processes: aligning the dataset volumes, and identifying those
slices of each volume that indeed include the organ of interest
and finding an initial starting point within the organ.

1) Aligning volumes:In order to identify the orientation
of the dataset volume and to correct for potentially various
orientations the following algorithm is implemented:

i) The area associated with the spine (refer to as spine
mask) in the physical middle slice of each test volume
in the transverse direction is extracted according to the
described procedure in Section III-B2.ii.a. The center of
gravity of this mask is also computed.

ii) The lengths of all line segments passing through the
center of gravity and limited to the boundaries of the
mask ([-90:1:90] degrees) are computed.

iii) The rotation angle corresponding to longest line segment
is found. The image is then rotated back by that angle.
After the rotation the longest axis of the spine mask
becomes parallel with image horizontal axis. To make
sure that the spine is always rotated in the correct
direction (we want the spine to be on the right side
of the image) the distance of the spine mask’s center
of gravity from image right border is used. Once the
rotation angle and the rotation direction are estimated,
all slices of the volume are rotated, Fig. 5.
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Fig. 5. Visual presentation of the aligning process for dataset volumes.

2) Organ region identification:In this phase, first the upper
and lower slices, corresponding to the beginning and end of the
kidney in the CT volume, are automatically identified. Once
these slices are identified, their middle slice is processedto
find the kidney region in it. This section includes two main
processes.

i) A fully automated organ reconstruction system requires
automatic identification of slices that include that organ
within each volume. Such algorithm varies from organ
to organ as characteristics of various organs differ. In
this section, we introduce a method for identification of
the lower and upper boundary slices of the CT volume
that contain the kidney (in the transverse direction). This
algorithm includes three steps:

a) In the first step, each slice is thresholded in the
transverse direction using a dynamic threshold that
is determined for each slice by:

TR = k ×mean(I) (9)

here k is set to 1.35 (a constant value for the
entire dataset volumes, found empirically) andI
is the image region corresponding the abdominal
area of each slice (estimated as described in Sec-
tion III-B2.ii.b), Fig. 6.

b) Next we identify a slice that includes the kidney
(starting slice). Based on the observation from the
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Fig. 6. Left is the slice from transverse direction containing only the
abdominal area and right is the thresholded image.

training datasets, usually slices that fall between
the bottom slice of the liver and the slice corre-
sponding to the largest 2D liver surface (in the
transverse direction) contain a slice that corre-
sponds to a large 2D segment of kidney. Identi-
fication of slices containing the largest 2D surface
and the bottom slice of the liver are described in
section IV-B. Therefore, the slice corresponding
to the midpoint between these two slices is cho-
sen as the starting slice of each volume. Using
the kidney subregion area, as described in sec-
tion III-B2.ii.c, a kidney mask guesstimate is ex-
tracted for the starting slice. The thresholded image
from step III-B2.i.a is then utilized to identify the
segment with largest area in kidney subregion.

c) Finally, the algorithm propagates the kidney mask
guesstimates in two directions from the starting
slice (in the transverse direction). The propagation
is performed by choosing the segment with the
largest area overlap with the kidney mask guessti-
mate of the previous slice. This process continues
in both directions until the mask guesstimates reach
to zero at the two ends.

ii) In this section, the middle slice of the kidney slices is
processed to estimate the approximate location of the
kidney. The relative location of the kidney with respect
to the spine is used for this purpose. This procedure
includes the following steps:

a) In CT scan images of the abdominal area, pixels
corresponding to bones (spine and ribs) appear
substantially brighter than pixels of soft tissue re-
gions. Using intensity based thresholding approach
(similar to [8]), the middle slice is thresholded.
The threshold value is found empirically based
on the training dataset. For CT scan images with
maximum and minimum pixel values of 1024 and
-1024, this threshold was set to 400. To make the
process more robust, 10 slices before and 10 slices
after the middle slice are also thresholded. The
thresholded results of all 21 images are unionized.
The resulting image is a binary mask that holds val-
ues of 1 for spine and rib regions and 0 otherwise.
In this process, some soft tissues with brighter
intensities (Fig. 7.a) could be wrongly thresholded
and therefore will be added to the mask. These

points are usually sparse and filtered out using a
morphological operations that first fills the holes
and then removes rib regions (connected to the
spine) using a disk structuring element (SE) of
radius 4 pixels (Fig. 7.b). The largest connected
piece in the resultant image is then identified as
spine, Fig. 7.c.

b) Now, we extract the boundary of abdominal area.
For this, first the middle slice is enhanced using
a Log transform. Canny edge detector is then
applied. The NOT of the resulting edge map image
is opened with a circular SE of radius 4. The
largest piece of the resultant mask is selected. This
region represents the entire abdominal area and its
boundary is extracted to highlight the region in
which the kidney is located (Figs. 7.d, e and f).

c) In the final step, we require to identify a subregion
within the abdominal area that most likely contains
the kidney or parts of it. Focusing on processing
a smaller region of the image, reduces the chance
of misidentification of the kidney which is a real
problem given it’s size and texture in comparison
with its neighboring organs such as heart and gall
bladder. Usually, the location of the kidney with
respect to spine, lies on a line that creates a 70o

angle with the horizontal line passing from the
center of the spine (Fig. 8.a). The 70o is determined
empirically. Therefore from the center (center of
gravity) of the spine mask, a line is emitted at
70o and its intersection with the boundary of the
abdominal region is found (length ofl). Center of
the kidney is usually located at a distance of 0.3l
from the center of spine. A circular region (radius
of 50 pixels) that most likely withholds the kidney,
is then centered at the location of 0.3l , Fig. 8.b.

a) Mask of the

thresholded image

b) After filling holes

and removing ribs

c) Largest piece

corresponding to spine

d) Canny edge map

of Log transformed image

e) The NOT image

opened

f) Boundary of the largest

piece of NOT image

Fig. 7. Kidney extraction: extracting spine and abdomen area boundary.

C. Testing Phase: Candidate Hypotheses Generation

After the pre-processing, segmentation is performed on all
images of the CT scan volume and all candidate segments
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Fig. 8. Kidney extraction pre-processing: extracting kidney location center.

are identified. These candidates are generated for every 2D
slice of each volume of the test set using the graph based
segmentation method [18]. Graph-based segmentation is a
method capable of preserving details in low-variability image
regions while ignoring details in high-variability areas.The
algorithm includes following steps:

i) Each image pixel is considered as a region where it
corresponds to a node(v ∈ V ) in the overall image
graph ofG(V,E).

ii) Neighboring pixels are connected by undirected edges
(e ∈ E). For each edge a weight coefficient is computed
according to the dissimilarities between pixels.

iii) Similar regionsA andB are merged together to produce
a larger region if the following condition is held:

Dif(A,B) ≤MInt(A,B) (10)

Where

Dif(A,B) = min
vi∈A,vj∈B,(vi,vj)∈E

w((vi, vj)) (11)

Here E is the graph edge set andw((vi, vj)) is the
weight between vertexvi andvj .

MInt(A,B) = min(Int(A) + τ(A), Int(B) + τ(B)))
(12)

Int(A) = max
e∈MST (A,E)

w(e) (13)

MST represents the Minimum Spanning Tree graph
G(V,E).

τ(A) =
k

|A|
(14)

The control parameters of this algorithm include: Gaussian
smoothingσ, threshold functionτ , and scale of observation
k.

The range of values selected forσ andτ are found through
statistical analysis of the data in the training sets. Initially,
values ofσ ∈ [0.1 : 0.2 : 1.7] and τ ∈ [5 : 25 : 155] were
used to segment each slice of every training dataset volume,
9 × 7 = 63 segment images for each slice. The overlaps of
all segment images of a slice with the mask of that slice
(from the ground truth) are computed and theσ and τ of
the segment image with the highest overlap are collected. The
histograms of the distribution of these two parameters were
then estimated, Fig. 9.

Using these histograms, a range of[0.1 : 0.2 : 1.1] for σ and
a range of[5 : 25 : 105] for τ are chosen. These ranges cover
90% of the best potentialσ and τ according to the training
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Fig. 9. Distributions ofσ andτ values for the kidney.

dataset volumes. The observation scale ofk proved to have
minimal affects on the results and therefore was kept constant
at 50.

At the end of this process, for each slice of the CT volume
a large number of candidate segments are extracted. These
candidates are refined in the next process.

D. Testing Phase: Candidate Hypotheses Refinement

This procedure begins from the middle slice. Using the kid-
ney’s potential location (found Section III-B2.i.c), all detected
segments of the middle slice, are inspected and only those
that fully or partially overlap with that circular region are
kept. For the middle slice, all these candidates are passed to
Section III-E where only one segment that represents the best
kidney region for the middle slice is selected.

The process of hypotheses refinement for other CT slices
is slightly different from the middle slice and it is based on
the overlap of candidate hypotheses with the best candidate
segment from the previous slice. Since the starting point for
the processing is the middle slice, this procedure treats CT
slices in two batches. Both batches start from the middle slice
but move in opposite directions. In each slice, all candidate
hypotheses that have overlaps smaller than 50% with the
kidney segment (best chosen segment) of the previous slice
will be removed.

At the end of this process, for each slice, a number of
hypotheses are remained that location- and size-wise are the
most probable representative of the kidney region for that slice.

E. Testing Phase: Best Hypothesis Selection

At this point, for each slice there are a number of potential
kidney region hypotheses. These candidates are projected
into their corresponding kidney space (from III-A) and the
hypothesis with the smallest Euclidean distance (as described
in Section II-B3) is chosen as the kidney region (kidney
mask) of that slice. Once the best candidates for all slices
are identified, they are stacked up together to generate a 3D
model of the kidney. To refine this 3D model, a post processing
based on morphological operation in the sagittal directionis
performed. Here the mask slices of the kidney (in the sagittal
direction) are first opened by a disk SE of radius 2 pixels and
then closed by a disk structuring element of radius 4 pixels.
This procedure fills out small holes inside the kidney mask
and removes the excess small parts attached to it boundaries.
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F. Results

Some segmentation results for different CT slices are shown
in Fig. 10. In these results, the ground truth are shown with
white solid lines and the contours found by the proposed
method with black lines. The quantitative assessment of the
algorithm based on the entire test set volumes is presented in
Section V.

Fig. 10. Results of kidney segmentation in transverse (left), coronal (center)
and sagittal (right) directions; black: ground truth, and white: our method).

IV. A PPLICATION OFPROPOSEDMETHOD FORL IVER

SEGMENTATION

In this section, the application of the proposed method for
segmentation of 3D liver in CT scan volumes is presented.
For this application, the organ space is generated from 3D
mask volumes of the liver of MICCAI’s 2007 grand challenge
workshop training dataset of twenty patients.

Human liver has a soft triangular shape with four lobes
that are different in shape and size. Slicing 3D CT volumes
of liver’s in the transverse direction usually results in images
that include more than one liver piece. This adds to the com-
plexity of candidate hypotheses and makes their identification
process more complicated. Therefore, CT volumes of liver are
processed in the coronal and sagittal directions in which the
observed 2D liver regions consist of one single piece.

A. Training Phase: PCA based Model Generation

Similar to Section III-A, in this section a liver space is
generated for 3D masks in the training dataset. Liver masks

for 2D slices of CT training volumes are extracted and stacked
up, Fig. 3. These 3D mask volumes are used to generate the
liver space. This liver space is later used for assessment and
identification of candidate segment hypotheses.

B. Testing Phase: Pre-processing

The pre-processing phase includes two main automatic
processes: aligning the dataset volumes, and identifying those
slices of each volume that indeed include the liver. The align-
ing of dataset volumes is performed by procedure presented
in Section III-B1. Since the number of slices and the location
of the liver in each volume varies, the following procedure is
performed to identify those slices that include the liver. This
procedure includes three steps:

i) In the first step, a number of 3D models of the liver
are generated using segmentation results of the liver
slices in the sagittal and coronal directions. Human’s
liver is the largest glandular organ of the body within the
abdominal area. When looking at the CT volumes, the
middle slice (regardless of the number of slices) always
includes a segment from the liver. Also in the middle
slice, the segment corresponding to the liver usually
is the largest segment among all detected segments
that correspond to other organs or areas. These two
observations are utilized in this step. Therefore, starting
from the middle slice of each test volume and moving
in two directions, for both sagittal and coronal axes, we
generate 21 3D liver models (by changingβ in each
case). Here each slice of each volume is segmented
21 times. The 3D model for eachβ is generated by
moving from the middle slice in two directions and
choosing the segment (for the results of currentβ) with
the maximum overlap with the liver segment from the
previous slice. Obviously, the qualities of these models
are different and their number depends on the range of
segmentation parameters used in the system (in our work
21 3D models).

ii) In this step, the system identifies the slice that most
probably corresponds to largest liver region for the test
volume (in the transverse direction). For each 3D model
generated in step i, the slice (in the transverse direction)
corresponding to the largest liver segment is identified.
Once all such slices are identified for all the 3D models,
a voting scheme is used to identify the most popular
slice. We refer to this slice as the center slice although
it generally does not correspond to the physical center
of the liver. Once this center slice is identified, the next
step is incorporated to estimate the upper and lower
boundaries of the liver slices.

iii) In this step the liver’s upper and the lower boundary
slices in the transverse direction are identified as fol-
lowing:

a) A number of liver mask candidates are generated
for the center slice that was found in step ii. As
described in Section II-B, using a range of segmen-
tation parameters, a number of liver segments are
generated (one segment for each set of parameter).
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All these candidate segments are added together
and thresholded. The threshold value is dynami-
cally chosen so that the resultant segment has the
highest similarity with the 2D mask extracted from
the 3D training model (Section II-A). The 2D mask
of the 3D training model is chosen according to the
liver area (the largest).

b) The remaining slices in the transverse direction
are treated in the same way but in two opposite
directions. Therefore, each test volume slice image
is segmented several times. The segmentation re-
sults are added together and thresholded using the
threshold value found in iii.a. The segment with
the largest overlap with the liver segment from the
previous slice is considered as the liver segment
for that slice.

c) This process is repeated until the liver mask area
becomes zero in both directions. At that point the
algorithm has reached to the boundary slices of that
data set volume.

C. Testing Phase: Candidate Hypotheses Generation

To highlight the generality of the proposed algorithm, for
the liver segmentation application a different segmentation al-
gorithm (the Mean Shift segmentation method [19]) is utilized.

Mean shift segmentation is a non-parametric feature space
originally introduced in [22]. In mean shift segmentation usu-
ally an attribute of the image (for example color or intensity)
is chosen as the feature. Therefore, first a search window
is chosen and is centered on an initial location. The mean
location of the data in that window represents the new centroid.
Therefore, the search window is migrated to a new position
which is centered at the location of the centroid found from
the previous step. The procedure is repeated until window
has reached a local maximum in the density function and
the movement of the window’s centroid becomes negligible.
When segmenting an image, search windows are uniformly
positioned over the image data. The converged mean shift
window for each initial position is found and windows with
the same local maxima are merged together. Mean shift seg-
mentation algorithm controls the quality of segments through
three parameters of intensity (hr) and spatial (hs) resolutions,
and minimum segment size.hs affects the smoothing, and
connectivity of the potential segments andhr controls the
number of segments. The minimum segment size is the area
(in pixel) of the smallest individual segment.

In this work the minimum segment size was kept fixed at
20 pixels. The range of values selected forhr and hs are
found through statistical analysis of the data in the training
sets. Initially, values ofhr ∈ [1 : 2 : 27] and hs ∈ [1 :
2 : 15] were used to segment each slice of every training
volume. The overlap of all segmented images of a slice with
the mask of that slice (from the ground truth) is estimated
and thehr andhs of the segmented image with the highest
overlap are collected. The histograms of the distribution for
these two parameters are then estimated, Fig. 11. Using these
histograms, the range ofhr andhs are then set to[5 : 2 : 23]
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Fig. 11. Distributions ofhr andhs values for the liver.

and[3 : 2 : 13]. Using these two ranges, over90% of the data
in the training volumes will be segmented to their potential
segments.

D. Testing Phase: Candidate Hypotheses Refinement

The process of candidate hypotheses generation starts from
the middle slice of each CT volume in the coronal and sagittal
directions where liver has its largest or near largest 2D surface.

Due to the large size and unique texture of the liver
region, the candidate hypotheses generation process tends,
occasionally, to cut the liver into smaller pieces. To ensure that
such condition does not jeopardize the quality of the process, a
post processing procedure is proposed in here. This procedure
allows reduction of a large number of segments into a smaller
number but more consistent set. It includes the following steps:

i) The boundary edges of segment regions (for each set of
parameter combination) are extracted to form an edge
map (EM ).

ii) The EMs of each image (oneEM for each set of
parameters) are added together to form an accumulative
edge map (AEM ) for that input image (equation 15).

AEM =
∑

s

EM (15)

iii) The contrast of AEM is enhanced using the Log
transform. The AEM image includes a few gray levels.
The logarithmic correction in here expands the low
level range of the AEM image. This allows utilizing
the thresholding process at finer levels which leads to a
larger number of segment candidates with more precise
differences.

iv) Contrast enhancedAEM is then thresholded to form
an Enhanced Edge Map (EEM ) that includes isolated
connected regions. This is described by equation 16:

EEMβ(x, y) =

{

1 Log(AEM(x, y)) > Thresh
0 otherwise

(16)
whereThresh = max(max(Log(AEM)))/β.

The threshold applied here (Thresh, the frequency of observa-
tion in the segmentation) represents the minimum strength of
the boundaries of each segment hypothesis. Naturally, a con-
stantThresh would not provide same quality results across all
input images. Therefore, different values ofβ are utilized to
generate a number ofThreshs andEEM images. A range of
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[1.5,1.6,...,3.5] forβ is used for the liver segmentation in this
work. This range was found empirically by inspecting thirty
liver CT scan volumes of different patients including a variety
of shapes and imaging conditions.

At each slice, differentEEMs are generated according to
equation 16. If the processed slice is indeed the middle slice of
the CT volume, the algorithm selects the segment (inEEM )
with the largest area as the best segment representative of
the liver. If the current slice is not the middle slice of the
volume, the segment (inEEM ) with the largest overlap with
the liver’s segment from the previous slice is considered asthe
liver segment. This segment is first morphologically openedby
a circular SE (radius of 4 pixels) to remove any excess small
parts around its boundary. Next a morphological hole filling
process is applied to fill any small gaps within this segment.
SampleEEM results with their detected liver segments at
differentβs are shown in Fig. 12.

After extracting all liver segments of a volume for aβ value,
these masks are stacked up together to form a candidate 3D
liver mask volume. This implies that for eachThresh (or β)
value, one liver volume hypothesis is generated.

As mentioned earlier, the segmentation candidate generation
for liver is performed in the sagittal and coronal directions. If
segmentation results in any of those directions include an extra
part attached to them, when viewing from transverse direction,
such extra part manifest itself as a line of angle zero or 90
degrees. This is clearly under the condition that such an extra
piece is not constantly found on consecutive slices. To filter
out such those lines, first all detected segments are stacked
together to create a 3D model. Then the model is sliced in the
transverse direction and filtered using a morphological post
processing with a line SE.

Fig. 13 shows three examples of 3D volumes generated for
different values ofβ along with the associated 3D ground
truth.

ß = 1.5 ß = 2 ß = 2.5

Fig. 12. SampleEEM for differentβ values (top row) with the correspond-
ing extracted mask candidate (bottom row) for the liver extraction application.

E. Testing Phase: Best Hypotheses Selection

After generating all liver volume candidate hypotheses (in-
cluding all candidate hypotheses for both sagittal and coronal
directions) they are projected into the liver space according to
equation 6. They are then reconstructed using equation 7 and

ß = 1.5 ß = 2

ß = 2.5 Ground Truth

Fig. 13. Sample 3D volume mask representation for differentβ values in
the liver extraction application.

the hypothesis with the smallest Euclidean distance from its
reconstructed version is chosen as the best 3D reconstructed
model of the liver for that CT volume. Note that here we have
created two sets of models: one using the data in the sagittal
direction and one using the coronal direction. The two sets
of models are then measured against the PCA model and the
model with the highest similarity will be chosen. Therefore
the final selected 3D model could have been originated from
either sagittal or coronal directions.

F. Results

Fig. 14 shows some examples of the detected 2D liver
mask boundaries along with their corresponding ground truth
at transverse, coronal and sagittal directions.

In these results, the ground truth is shown by white lines
and the results of the proposed method are shown with black.
Quantitative results along with a comparison with the stateof
art are presented in the next section.

V. TEST RESULTS

This section presents complete results and discussions for
both applications of the proposed method. In generating
segmentation results, the dataset of MICCAI’s 2007 grand
challenge workshop is used. This dataset includes 20 training
and 10 test CT scan volumes.

In the kidney case, we used 23 volumes (15 training and
8 test) provided for the MICCAI’s grand challenge. The
MICCAI’s grand challenge was designed for the liver 3D
modeling and therefore some of its volumes did not include
the kidney organ completely. Also, the training volumes did
not include the ground truth for the kidney. Therefore, the
ground truth for both training and test volumes were found
manually.

For the liver, in order to generate the organ space for the
PCA based model of the liver, first all 20 training volumes
were used. The ground truth (liver masks for the training
volumes) was provided by the MICCAI’s workshop. The
ground truth for the test volumes however was not provided
but the quality of the results was measured against MICCAI’s
ground truth by MICCAI’s workshop. By exchanging the role
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TABLE I
QUANTITATIVE RESULTS FOR THE RIGHT(FIRST ROW) AND LEFT (LAST ROW) KIDNEYS EXTRACTION.

Training by 7 sets Training by 10 sets Training by 15 sets
Dice MSE SE Dice MSE SE Dice MSE SE

Mean (right kidney) 0.8964 5131 0.8873 0.9066 4686 0.8965 0.9063 4415 0.8985
Mean (left kidney) 0.9010 5096 0.8912 0.9062 4634 0.9009 0.9042 4923 0.8939

TABLE II
QUANTITATIVE RESULTS FOR THE RIGHT KIDNEY EXTRACTION.

Results based on 20 training datasets
Vol Score Ave Score Ave symm Score RMS symm Score Max symm Score Total

overlap symm surface surface surface
error% diff% dist [mm] dist [mm] dist [mm]

Mean1 8.54 66.64 -2.44 82.38 1.35 66.14 2.62 63.57 22.37 70.57 69.86
Mean2 8.70 66.00 -0.76 85.35 1.51 62.22 3.06 57.37 27.78 63.44 66.88

Fig. 14. Results of liver segmentation in transverse (left), coronal (center)
and sagittal (right) directions,(black: ground truth, white: our method).

of training and test volumes and utilizing the manually found
ground truth for one of the test volumes, we were able to
present 30 test cases. Details of this process are presentedin
Section V-B.

To compare the proposed method with the state of the art,
two sets of measures are used. While both these sets can be
estimated for each one of these applications, the first set is
used for the kidney and the second set for the liver. This was
imposed by the state of art, since we could not find any paper
that represents both measures for both of these organs.

A. Results for Kidney Segmentation

The proposed solution has been applied on 20 test volumes.
Also to make our comparison compatible with the state of
art [16], the training phase utilizes 3 models based on 7, 10 and
15 training volumes. The ground truth was prepared manually
for both training and test volumes. In order to accommodate

the 15 training volumes and 20 test volumes (given that the
entire MICCAI’s dataset include only 23 (training and test)
volumes with both kidneys entirely contained within the sets)
the role of training and test volumes are exchanged at several
points during the test results generation.

To evaluate the performance of this work on the kidney
segmentation, following metrics and sensitivity measure are
utilized.

i) Dice Coefficient: this is a similarity measure defined
according to the following:

Dice =
2|X

⋂
Y |

|X |+ |Y |
(17)

hereX is the segmentation result by our algorithm and
Y is the gold standard (ground truth).

ii) Mean Square Error: this is computed by:

MSE =
1

Ω

∑
(X − Y )2 (18)

hereX andY are segmentation results by our algorithm
and manually found ground truth andΩ is the total
number of the pixels in the union ofX andY .

iii) Sensitivity Measure: this is the ratio of correctly iden-
tified organ segments to the overall segments in the
ground truth.

SE =
TP

TP + FN
(19)

here TP is the True Positive and it represents the number
of voxels that are segmented consistently (correctly) as
kidney tissue by both the proposed method and the
ground truth. FN is the False Negative and it represents
the number of voxels that exist in the ground truth but
were missed by our solution.

These measures are computed and are presented in Table I.
The results are separated according to the number of training
sets and for left and right kidneys. The mean Dice measure
for the left and the right kidneys (across all three models)
is 90% which shows slightly better results than the 88.6%
presented by [8]. The results for SE (for training with 10 sets)
indicate 15% improvement over the results presented by [16]
(74%). Interestingly, our proposed method seems to perform
rather uniformly regardless of the number of training sets.
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The presented MSE results are not compared against values
reported by [16] due to the differences in the resolution, size,
position and orientation of used datasets.

B. Results for Liver Segmentation

In this section the proposed algorithm has been assessed
for liver. In order to generate the organ space for the PCA
based model of the liver, first all 20 training volumes are used.
The ground truth (liver masks for the training volumes) was
provided by the MICCAI’s workshop. The ground truth for
the test volumes however was not provided but the quality of
the results was measured against MICCAI’s ground truth by
MICCAI’s workshop.

To extend the number of test cases, 20 more tests were
achieved by using the ground truth of one of the test volumes
(manually prepared) and 19 training volumes (leaving one out)
to generate the organ space for the PCA model. The left out
training volume (acts a test volume) was then modeled using
the PCA model. The measurements for these 20 cases were
estimated using the assessment program that was provided by
the MICCAI’s workshop.

To evaluate the performance the evaluation metrics of MIC-
CAI’s 2007 workshop [2][3] are adopted. Brief descriptionsof
these metrics are as follows.

i) Volumetric Overlap Error, in percent. This is the number
of voxels in the intersection of segmentation and ground
truth divided by the number of voxels in their union,
subtracted from 1 and multiplied by 100.

ii) Relative Volume Difference, in percent. This is the total
volume difference between segmentation and ground
truth divided by total volume of ground truth.

iii) Average Symmetric Surface Distance, in millimeters.
The Euclidean distance between every bordering voxel
in segmentation and the closest bordering voxel in
ground truth is determined.

iv) Symmetric RMS Surface Distance, in millimeters. This
measure is similar to the previous measure but here the
squared distances are used and the root of the average
value is taken.

v) Maximum Symmetric Absolute Surface Distance, in
millimeters. This measure is similar to the 2 previous
measures but only the maximum of all distances is
found.

Table II show the above metrics. In this table, the row
Mean1 represents the mean of the MICCAI’s test volumes and
the row Mean2 displays the mean for all the 30 test cases.
The proposed algorithm achieves an average of8.70% for
Volume Overlap Error and an average of1.51 mm for Average
Symmetric Surface Distance. The best reported average values
for these measures (6.65% and 1.03 mm) by an automatic
algorithm on the same dataset are reported by [12]. The
average quantitative results for liver segmentation basedon
all the aforementioned measures show that, at the time of
this publication, our algorithm stands among the top four
automatic segmentation algorithms for liver extraction and are
comparable to those by some of the interactive methods.

C. Execution

All the codes for this project are implemented in MAT-
LAB 7.6.0.324 environment (on a PC with an Intel Core 2
Duo (2 GHz) processor) except for the generic segmentation
algorithms (mean shift and graph based), which are done in
C++. Since for each slice of each volume, the segmentation
algorithm is performed multiple times a large percentage
(about 80%) of the running time is spent on the segmentation
process. The average runtime for extracting the liver mask of
a single slice using the proposed algorithm is about 1 minute.
This time for kidney is about 40 seconds. Also the entire
system can be programmed in C++ to make the execution
time faster.

To ensure the quality of the results the segmentation pa-
rameters are chosen to have a large range (covering results
from under to over segmentation). This however contributes
to substantially higher number of segmentation calls. One way
of improving the execution time could be to lower the range
of the parameters, concentrating only on the nominal values
(as presented in Sections III-C and IV-C). This would cause
an overall faster performance, but clearly in some cases the
accuracy of the results will be compromised. By assessing the
quality of the reconstructed model, we can decide whether
further segmentation using an extend range of parameters is
required or not. This should allow improvement of the results
for such cases while reducing the mean processing time for
the entire test volumes.

VI. CONCLUSION

This paper presented a novel method for identification of
organs in CT volumes. The proposed work combined low-
level segmentation schemes with a statistical-based modeling
approach to accurately identify organ segments. The use of
a multi-layer mechanism (through multiple parameter setting
combinations) for any generic segmentation algorithm enables
the approach to cope with distortions originating from varia-
tion in imaging condition and different noise sources. The ad-
dition of statistical information (from a training set) provided
a unique way to automatically select the most appropriate
segmentation parameters (at the slice level) leading to the
results that best conformed to the organ’s model.

The applications of the proposed method were presented
in details for segmentation of kidney and liver in CT scan
volumes. Comparison of the performance with the state of
art was demonstrated using MICCAI 2007 grand challenge
dataset. Currently this work stands among the top four auto-
matic algorithms reported for liver extraction on this dataset.

The proposed solution is a general approach and can be eas-
ily customized for general object detection and segmentation
applications.

REFERENCES

[1] R. Susomboon, D. Raicu and J. Furst,”A Hybrid Approach for Liver
Segmentation,”3D Segmentation in the Clinic - MICCAI’07 Grand
Challenge, pp. 151-160, 2007.

[2] T. Heinmann, M. Styner and B. van Ginneken,”3D Segmentation in the
Clinic - A Grand Challenge,”International Conference on Medical Image
Computing and Computer Assisted Intervention, Workshop Proceedings,
pp. 7-15, 2007.

[3] T. Heinmann, B. van Ginneken and M. Styner,”Comparison and Eval-
uation of Methods for Liver Segmentation from CT Datasets,”IEEE
Transaction on Medical Imaging, 28(8), pp. 1251-1265, 2009.



13

[4] K. Seo, L. C. Ludeman, S. Park and J. Park,”Efficient Liver Segmentation
Based on the Spine,”Advances in Information Systems, vol. 3261, pp.
400-409, 2005.

[5] A. H. Forouzan, R. A. Zoroofi, M. Hori and Y. Sato,”Liver Segmentation
by Intensity Analysis and Anatomical Information in Multi-Slice CT
images,” Proceeding of Liver Segmentation by Intensity Analysis and
Anatomical Information in Multi-Slice CT images, volume 4,pp. 287-
297, 2009.

[6] S. Pan and B. M. Dawant,”Automatic 3D segmentation of the liver from
abdominal CT images: a level-set approach,”Society of Photographic
Instrumentation Engineers (SPIE) on Medical Imaging, vol.4322, pp.
128-138, 2001.

[7] H. Badakhshannoory and P. Saeedi,”Liver Segmentation Based on De-
formable Registration and Multi-Layer Segmentation,”IEEE International
Conference on Image Processing, pp. 2549-2552, 2010.

[8] D. T. Lin, C. C. Lei and S. W. Hung,”Computer-Aided Kidney Seg-
mentation on Abdominal CT Images,”IEEE Transaction on Information
Technology in Biomedicine, pp. 59-65, 2006.

[9] C. H. Wu and Y. N. Sun,”Segmentation of Kidney from Ultrasound B-
mode Images with Texture-Based Classification,”Journal of Computer
Methods and Programs in Biomedicine, vol. 84, pp. 114-123, 2006.

[10] T. F. Cootes, C. J. Taylor, D. H. Cooper and J. Graham,”Active Shape
Models - their Training and Application,”Journal of Computer Vision
and Image Understanding, 61(1), pp. 38-59, 1995.

[11] T. F. Cootes, C. J. Taylor and D. H. Cooper,”Statistical Models of
Appearance for Medical Image Analysis and Computer Vision,” Society
of Photographic Instrumentation Engineers (SPIE) on Medical Imaging,
vol. 4322, pp. 236-248, 2001.

[12] D. Kainmuller, T. Lange and H. Lamecker,”Shape constrained auto-
matic segmentation of the liver based on a heuristic intensity model,” 3D
Segmentation in the Clinic - MICCAI’07 Grand Challenge, pp.109-116,
2007.

[13] T. Heimann, H. P. Meinzer and I. Wolf,”A Statistical Deformable Model
for the Segmentation of Liver CT Volumes,”3D Segmentation in the Clinic
- MICCAI’07 Grand Challenge, pp. 161-166, 2007.

[14] H. Ling, S. K. Zhou, Y. Zheng and B. Georgescu,”Hierarchical,
Learning-based Automatic Liver Segmentation”IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1-8, 2008.

[15] A. Wimmer, G. Soza and J. Hornegger,”A Generic Probabilistic Active
Shape Model for Organ Segmentation,”International Conference on
Medical Image Computing and Computer Assisted Intervention, pp. 26-
33, 2009.

[16] M. Spiegel, D. A. Hahn, V. Daum, J. Wasza and J. Hornegger, ”Segmen-
tation of Kidney Using a New Active Shape Model Generation Technique
Based on Non-Rigid Image Registration,”Journal of Computerized Med-
ical Imaging and Graphics, 33(1), pp. 29-39, 2009.

[17] A. M. Ali, A. A. Farag and A. S. El-Baz,”Graph Cuts Framework for
Kidney Segmentation with Prior Shape Constraints,”International Confer-
ence on Medical Image Computing and Computer Assisted Intervention,
pp. 384-392, 2007.

[18] P. F. Felzenszwalb and D. P. Huttenlocher,”Efficient Graph-Based Image
Segmentation,”International Journal of Computer Vision, 59(2), pp. 167-
181, 2004.

[19] D. Comaniciu and P. Meer,”Mean Shift: A Robust Approach Toward
Feature Space Analysis,”IEEE Transaction on Pattern Analysis and
Machine Intelligence, 24(5), pp. 603-619, 2002.

[20] M. Turk and A. Pentland,”Eigenfaces for Recognition,”Journal of
Cognitive Neuro-science, 3(1), pp. 71-86, 1991.

[21] M. Turk and A. Pentland,”Face recognition using eigenfaces,”IEEE
Conference on Computer Vision and Pattern Recognition, pp.586-591,
1991.

[22] F. Keinosuke and L.D. Hostetler,”The Estimation of the Gradient
of a Density Function, with Applications in Pattern Recognition,” IEEE
Transactions on Information Theory, 21(1), pp. 3240, 1975.


