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Abstract—In this paper, we propose an unsupervised
segmentation algorithm for extracting moving regions from
compressed video using Global Motion Estimation (GME) and
Markov Random Field (MREF) classification. First, motion vectors
(MVs) are compensated from global motion and quantized into
several representative classes, from which MRF priors are
estimated. Then, a coarse segmentation map of the MV field is
obtained using a maximum a posteriori estimate of the MRF label
process. Finally, the boundaries of segmented moving regions are
refined using color and edge information. The algorithm has been
validated on a number of test sequences, and experimental results
are provided to demonstrate its superiority over state-of-the-art
methods.

Index Terms— Motion segmentation, global motion estimation,
global motion compensation, Markov Random Field, compressed
video

I. INTRODUCTION

Moving object segmentation is an important problem in a
variety of applications such as video surveillance, video
database browsing, object-based video transcoding, etc.
During the last two decades, a number of approaches have
been proposed to tackle this problem. Especially interesting is
the problem of moving object segmentation in compressed
video, due to the abundance of compressed video content.
State-of-the-art object segmentation methods can be broadly
grouped into pixel-domain approaches (e.g., [1-3]) and
compressed-domain approaches (e.g., [4-11]). The former
extract objects by exploiting visual features such as shape,
color and texture. In this case, the compressed video has to be
fully decoded prior to segmentation. The high computational
load and over-segmentation are two major drawbacks of these
methods. On the other hand, compressed-domain methods
exploit compressed-domain data, such as motion vectors
(MVs) and DCT coefficients, to facilitate segmentation. Some
methods [4-5] operate directly on sparse (block-based) MV
field. These methods have low complexity, but often suffer
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from poor localization of object boundaries, and inconsistency
in the number of segmented regions from frame to frame. The
presence of camera motion often worsens the performance of
these segmentation approaches, and objects may be over-
segmented due to motion bias introduced by camera movement
[14]. Alternatively, one can create a dense (pixel-based) MV
filed by interpolation, and then run segmentation on the dense
field, at the cost of significantly higher complexity [6-8].
Combinations of compressed-domain and pixel-domain
operations have also been proposed to balance complexity and
accuracy [9-11]. These methods first create a coarse
segmentation from the sparse MV field, and then refine it in
the pixel domain. Although these methods generally offer
higher segmentation accuracy near object boundaries than
purely compressed-domain approaches, maintaining a
consistent number of segmented regions across frames can still
be a challenge.

The segmentation method proposed in this paper extends
our earlier work on combined-compressed domain and pixel-
domain segmentation [15] by incorporating global motion
estimation (GME) and global motion compensation (GMC).
Briefly, our method proceeds as follows. First, GME and
GMC are employed to remove the influence of camera motion
on the MV field. Then, MV vector quantization (VQ) based on
local motion similarity is used to find the most likely number
of moving regions. The statistics of the VQ clusters are used to
initialize prior probabilities for subsequent Markov Random
Field (MRF) classification, which produces a coarse
segmentation map. Finally, a coarse-to-fine strategy is utilized
to refine region boundaries. While each of these components
has been employed in previous segmentation approaches, we
believe that the complete solution incorporating all the listed
components is novel, and represents the main contribution of
this work. Through such comprehensive strategy, the proposed
segmentation framework is able to overcome some of the
difficulties faced by previous methods, such as over-
segmentation [1-3], under-segmentation [4], and segmented
region inconsistency [9-11]. Further, coarse-to-fine boundary
refinement yields more accurate region boundaries than
compressed-domain methods [4-5], while still maintaining a
much lower complexity than pixel-domain methods [6-8].

The paper is organized as follows. In Section II, we describe
GME, GMC, and MV quantization. The segmentation
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framework and its major cgmponents are e'laboratf:d in Section Comprossed Video DVidedo RecFonstructed
III, followed by the experimental results in Sections IV. The ecoder rames
conclusions are drawn in Section V. Motion
Coarse segmentation Vectors
II. GLOBAL MOTION COMPENSATION AND MV \ GME & GMC \ = |
QUANTIZATION v Moving
) ) ) . ) . ‘ MV Quantization ‘ » Fine Segmentation —» Regions
The main difficulty in MRF segmentation is to determine ¥
the parameters that specify the MRF, particularly the number ‘ MRF MV Classification ‘
of moving regions and their statistics. Our approach is to first

perform vector quantization (VQ) of MVs in order to estimate
these parameters. However, directly performing VQ on MV
field may lead to inaccurate parameter estimates due to two
reasons. First, MVs are usually generated to maximize the
coding efficiency, rather than represent true motion. Second,
MVs are biased by the camera motion (a.k.a., global motion)
associated with the sequence, which may cause erroneous
region clustering. Thus, to achieve robust VQ, we use GMC to
remove global motion. We also try to suppress the influence of
possibly inaccurate MVs by examining the smoothness of the
MV field.

A. Global Motion Compensation

The first step in GMC is the estimation of global motion
parameters from coarsely sampled MV fields extracted from
the compressed video [16-18]. We use a perspective model
with eight parameters, m = [m,, ..., m;], to represent global
motion. This model describes the 2-D projection of the 3-D
motion of a planar surface, so it is often used to model the
motion of the background, which is assumed far from the
camera. Given (x, y) and (x', ') as the coordinates in the
current and the reference frame, respectively, the perspective
transformation is given by:
_m0x+m1y+m2 _WI3X+WI4)/+W[5

x’ '

; : (1
mgx +m7y +1 mgx +m7y +1
The X- and Y- components of the MV at (x, y) in the current

frame corresponding to this motion model are given by:

MV¥ (x, y;m) = x'—x, MVY (x,y;m) = y'—y. 2)
Estimating global motion parameters (m) from noisy MV
fields involves two steps, often performed iteratively: outlier
removal and parameter estimation. Previous work on this topic
includes three prominent approaches: the iterative gradient
descent [16], the least square solution with an M-Estimator
(LSS-ME) [17], and RANdom SAmple Consensus (RANSAC)
[19]. In this work, we use LSS-ME for estimating m due to its
superior performance over other two approaches when 8-
parameter motion model is applied [18].

Let m, be the vector of estimated GM parameters from LSS-
ME in frame 7. The global motion can be compensated from
the MV at location (x, y) in frame ¢ by:

MV’ (x,y,t) = MV(x,y,t) =MV (x,y;m,) 3)
where MV™(x, y, ©) is the compensated MV at location (x, y),

and MV(x, y; m,) is obtained as in (1) and (2). Motion
quantization is then conducted on MV™(x, y, 7).

Figure 1: Overview of the MRF moving region segmentation system.

B. MV Quantization

In our scheme, a MV that is very different from its
neighbors, and therefore suspected to be inaccurate, will have
less influence on the resulting quantization. A similar idea was
studied in [2] in the context of color quantization. We first
apply a 3x3 vector median filter to the global motion-
compensated MV field. Then, for each motion vector MV,,
we find the maximum Euclidean distance D,yy; from its 8-
adjacent neighbors, and assign it the weight W; = exp(—=Djux;)-
Using these weights, we run a generalized Lloyd algorithm for
vector quantization:

1) Start with a single cluster (all M Vs in the frame), compute
its centroid MV,,,, as

mv,, =X wmve )y w,). @)

cent J

then split it into two clusters by deriving two new
centroids as MV, + MV _.,./2.

2) Quantize all MVs in the frame into existing clusters using
the nearest neighbor criterion. Then, for the i-th cluster C;,
update the centroid MV as

G res
MV, = (ZMVH"“EC, WMV, )/EMVW’”EC, w, ) G
3) Compute the weighted distortion of each cluster C;:

Ci 4 res C;
WD = va;‘”eq WMV -MVE | (6)

cent
Let C, be the cluster with the maximum weighted
distortion, and let Xpa, Xmin, Ymax» and Ynin be,
respectively, the maximum and minimum horizontal and
vertical components among the centroids. Split cluster C;

Cr
cont TP, where

P:(Xmax_Xmin’Ymax_Ymin]’ (7)

2(N-1) 2(N-1)
and N is the total number of clusters prior to splitting.

4) Repeat steps 2) and 3) until the total weighted distortion
(sum of all WD) becomes less than a given threshold (in
our experiments, 5% of its initial value in step 1), or the
smallest cluster size becomes less than another threshold
(in our experiments, 5% of the total MV field size).

Upon completion, a preliminary segmentation map is
obtained: global motion-compensated MVs in cluster C; will
be used to compute MRF priors.

into two clusters with centroids MV
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Figure 2: First-order MRF system and clique configuration.

III. MARKOV RANDOM FIELD MOTION SEGMENTATION

Block diagram of the proposed segmentation system is
shown in Fig. 1. The framework uses a coarse-to-fine
segmentation strategy with two major components: coarse
segmentation from motion, which is carried out in the
compressed domain, and fine segmentation, performed in the
pixel domain near moving region boundaries. GME and GMC,
along with MV quantization, serve as the foundations for
coarse segmentation, and facilitate the computation of the
priors for Markov Random Field (MRF) MV classification.

A. Markov Random Field Motion Model

Our approach to coarse motion segmentation is based on a
Markov Random Field (MRF) motion model [1], [3], [8]. In
this model, motion vectors MV = (MV*, MV'") within a given
moving region o follow a conditional distribution P(MV | ®),
while region labels (@s) follow a 2-D MRF distribution based
on a given neighborhood system. The goal is to infer region
labels (aJs) from the observed MV field.

To simplify calculations, we assume that within each region,
MVs form an independent bivariate Gaussian process. Under
this assumption, the likelihood function for the j-th block in
the frame is

PMY, |0)=——1 .

J
\/Zﬁﬁaidij

by —ms vy —my )
o]

exp| —— ‘
2 oS
are the means of the horizontal and

®)

where m” and m!
@j @j

vertical MV components within the region labeled @, while

o-a))( ~and O'Z ~ are the corresponding standard deviations. The
j j

dependence among the labels of neighboring blocks is

modeled by a MRF which follows the Gibbs distribution:
1
P(w;) = EH exp(-V(C)), ©)
C

where Z is the normalizing constant ensuring that ZP(«) = 1,
C is a clique (a set of neighboring blocks) and V(C) is the
clique potential. We only consider 4-adjacency cliques. In
other words, two blocks form a clique if one is immediately to
the North, South, East, or West of the other, as shown in Fig.2.

Figure 3: Interior regions grow within boundary regions.

If @ and @, are the region labels of the two blocks in the
clique C, the potential of C is defined to be

V(C)= {—ﬂ, if 0, = w,,

where £ > 0 is a parameter controlling the homogeneity of the
regions. Based on (9) and (10), nearest neighbors are more
likely to have the same region label.

(10)

+ [, otherwise.

The MRF priors, i.e., the number of regions, ma))( ,
1

mg) _ ,O'X of  and P(w), are determined after MV
1

@;’ @;
quantization. The MVs in each cluster C; obtained from

quantization are given the region label @ , and the means and
standard deviations are computed from MVs in each cluster.

B. MRF Motion Segmentation

For block j, based on the Bayes' theorem, the posterior
probability P(w | MV)) is proportional to P(MV; | @)P(@), so
the Maximum A Posteriori (MAP) estimate of ) is given by:

oy =argrr61l)gXP(MV‘/ |a)j)P(a)j), (11)
j
where P(MV; | @) is computed as in (8) and P(®) as in
(9)-(10). The MAP segmentation for the entire MV field
corresponds to maximizing:
[TPMV; (o) )Plo). (12)
J
and is obtained using the method of Iterated Conditional
Modes (ICM) [13], by iteratively solving (12) for each block
in the frame. We use the ICM implementation from [3]
(modified for MV segmentation instead of pixel
segmentation), with six iterations. The final step is to identify
small regions whose size is less than 2% of the total MV field,
and group each block in those regions to the neighboring large
region with the closest centroid MV.

C. Boundary Refinement

Segmentation map obtained from the coarse segmentation is
block-based. Since real region boundaries rarely follow block
boundaries, segmentation map must be refined. As shown in
Fig. 3, based on motion consistency along the coarsely
segmented regions, we identify the blocks that likely contain
region boundaries, and apply a region growing procedure to
obtain pixel-wise boundaries using features such as edges and
color.
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Figure 4: [Top]: Coarse segmentation and identified boundary blocks,
[Middle]: Initial boundary regions and edges within them, [Bottom]: Result of
interior region growing. Segmentation with GMC is employed on the left,
while segmentation without GMC is employed on the right.

The boundary refinement process consists of three steps:
boundary block identification (Fig. 4 (a)-(b)), edge detection
(Fig. 4 (c)-(d)), and interior region growing (Fig. 4 (e)-(f)).
Boundary blocks are identified in the segmentation map from
Section III-B using the Region Motion Deviation (RMD) map.
The RMD value 7 of MV, within region C is the normalized
deviation of MV, from the centroid MV of region C:

1€ =255x(DC/DS,.). (13)

max

where
C C C C
D :“MVcem —MVj“, DS =max; DS (14)

A two-pass procedure is employed to classify a block as
either a boundary block or interior block. In the first pass, we
scan all the blocks in the raster scan order, and for each block
we check its East (E), South (S), and South-East (SE)
neighboring blocks, if available. If any of these blocks belong
to a different region than the one the current block belongs to,
we compare the RMD values of all four blocks (current, E, S,
SE), and label the block with the highest RMD value as a
boundary block. In the second pass, we seek to extend the
boundary to be at least 2 blocks (16 pixels) wide, to improve
the chance that the real region boundaries lie within boundary
blocks. To do this, we check 4-adjacency neighbors of all
boundary blocks found so far, and check if they have at least
one horizontal (vertical) neighbor classified as a boundary
block. If not, we label the horizontal (vertical) neighbor with
the higher RMD value as a boundary block. At the end, all

blocks not classified as boundary blocks are labeled as interior
blocks.

Canny edge detector on the Y-component is used to identify
edges within boundary blocks as shown in Fig. 4(c). Then,
interior regions are grown towards each other via
morphological erosion of the boundary blocks using a 3x3
structuring element. The structuring element is not allowed to
cross an edge. Hence, this restricted erosion will move the
interior region boundaries up to the nearest edge(s). In this
process, some boundaries of neighboring interior regions may
meet, in which case the pixel-wise boundary between these
regions is identified. In other cases, boundaries do not meet
due to a complicated edge pattern between them, so we further
employ region growing based on color, as in [11], to finalize
region boundaries.

In Fig. 4, we illustrate the refinement procedure on frame
#22 from Flower Garden. Figs. 4 (a)-(b) show boundary block
identification, Figs. 4 (c)-(d) show detected edges in boundary
regions, and Figs. 4 (e)-(f) show interior region growing. In
this example, the comparison is made between the
segmentation produced by the proposed algorithm that
incorporates GMC (Fig. 4(a), (¢), (e)), and the one produced
by our previous work [15] (Fig. 4(b), (d), (f)), which does not
include GMC. In both cases, the tree trunk is well-segmented,
but the method from [15] ends up with a higher number of
regions in the background due to its lack of GMC.

IV. RESULTS AND DISCUSSION

The proposed segmentation algorithm has been tested on
several standard YUV 4:2:0 sequences at CIF (352x288) and
SIF (352%240) resolution, all with a frame rate of 30 frames
per second. We employed the XviD MPEG-4 codec
(http://www.xvid.org/) for compression, using the IPPP...
GOP structure, at 512 kbps. We point out that the
segmentation framework is generic and easily adapted to other
video compression standards. The MVs extracted from the
bitstream are normalized to form a uniformly sampled MV
field, where each MV corresponds to an 8x8 block.

A. LSS-ME tuning

One of the key parameters in LSS-ME [17] is the tuning
constant C, which is used to reject outlier MVs by assigning
the weight w, computed as:

w(s) = (1_(%#)]2’ e<C-p, (15)
0,

e>C-pu,

where € is the L1 error between the estimated MV (x, y; m) and
the observed MV (x, y), and p is the average L1 error over all
MV's in the field..

The performance of LSS-ME depends on the value of C,
and we investigate its effect on the accuracy of GME using
synthetic noisy MV fields. We identify two types of MV noise:
(1) outliers, such as moving objects, and (2) MV estimation
noise caused by imperfect motion estimation in the encoder.
We synthesize four MV fields using four sets of global motion
parameters in [16], and then corrupt them by varying amounts
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of both types of noise. The estimation performance criterion is
the signal-to-noise ratio (SNR) between the MV field
generated by the estimated parameters m and the ground truth
MYV field, as in [16].

Fig. 5 shows the effect of C on LSS-ME accuracy. Fig. 5(a)
demonstrates the GME performance on MV field with 2% MV
outliers while the noise standard deviation ¢ varies from 0.5 to
3. We see that LSS-ME performance with 2 < C < 4 is, on
average, better than with C outside of this range. Fig. 5(b)
illustrates the GME performance on MV field corrupted by
noise with ¢ = 1.5 while the outlier percentage varies from 0%
to 40%. We observe that with C = 2, LSS-ME maintains a
relatively consistent performance up to outlier percentage of
20%. These experiments indicate that the optimal value of C
depends on the amount of noise and outliers in the MV field.
However, these statistics are generally not available in the
compressed stream. We therefore set C = 2 in all our
subsequent experiments, because this value seems to work well
for different amounts of noise and outliers. With C = 2, we
compare the performance of LSS-ME to gradient-descent
GME (GD-GME) [16] using the same four sets of global
motion parameters. The results are shown in Fig. 6, where we
see that LSS-ME achieves about 1.5 - 2 dB SNR improvement
over GD-GME with 2% outliers in Fig. 6(a), and slight SNR
gain with MV noise (o = 1.5), as shown in Fig. 6(b).

SNR vs. Noise 5.D. (2% outliers)

SNR vs. outliers (%)

e
&
£

k=3

& &

B8 8

Average SNR (dB)
=]

5 B 8
Average SNR (dB)

&

=)

o

(=]

1 1.5 2 25 0 20
Moise Standard Deviation Percentage of Outliers

(a) (b)

Figure 5: (a): LSS-ME performance with MV field corrupted by 2% outliers
and noise with different standard deviations, (b): LSS-ME performance with
MYV field corrupted by noise (o = 1.0) and various outlier percentages.

SNR vs, Noise S.D. (2% outliers) SNR vs. outliers (sigma = 1.5)

. - 40
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m m
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% 35 \.\— % 25
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Figure 6: (a): LSS-ME (C=2) vs. GD-GME, MV field corrupted by 2%
outliers and noise with different standard deviations, (b): LSS-ME vs. GD-
GME, MV field corrupted by noise (¢ = 1.0) and various outlier percentages.
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Figure 7: [Left]: Weighted quantization error vs. the number of motion
classes, [right]: the corresponding segmentation map after MV quantization,
where segments are distinguished by different colors. From top to bottom:
Flower Garden with GMC, Flower Garden without GMC, and Table Tennis.

B. Estimation of the number of MRF classes

Next, we evaluate MV quantization as a way to determine
the number of MRF classes and provide the initial
segmentation map. Evaluation results on two sequences are
presented in Fig. 7, Flower Garden (frame #2) with a moving
camera, and initial portion of Table Tennis (frame #4) with a
relatively static camera.

We demonstrate two approaches on Flower Garden: the
proposed MV quantization after GMC, shown in the top row
(Fig. 7 (a)-(b)), and direct MV quantization [15] without
GMC, shown in the middle row (Fig. 7 (c)-(d)). The sub-
figures on the left show how the weighted quantization
distortion changes as a function of the number of clusters
(classes). The knee of this curve indicates that three classes
seem to be appropriate for the frame #2 of Flower Garden
without GMC (Fig. 7(c)), while two classes are appropriate if
GMC is performed prior to quantization (Fig. 7(a)). This
makes sense, since the tree in this sequence is much closer to
the camera than the other objects (garden and houses), and
appears to be the only foreground object in the scene. GMC
seems to be a critical factor to mitigate background over-
segmentation when the sequence contains camera motion. The
corresponding initial coarse segmentation maps are shown in
Figs. 7(b) and (d). In Fig. 7(b), the tree trunk is the main
segmented object; also, some of blocks in the branches are
associated with the tree trunk. Meanwhile, in Fig. 7(d), the
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background is separated into multiple regions due to the lack
of GMC. While the difference between GMC and non-GMC
quantization is obvious on a sequence like Flower Garden, the
two approaches differ little on a sequence with relatively static
camera. We show the quantization result of the proposed
approach on the initial portion of Table Tennis at the bottom
(Fig. 7 (e)-(f)), which is similar to the result presented in [15].

C. MRF motion segmentation and boundary refinement

In this subsection we evaluate MRF segmentation,
especially the number of ICM iterations and the role of
parameter £ in (10), which influences the spatial structure of
the MRF. In Fig. 8, on sequence Flower Garden, we show the
normalized posteriori energy (the sum of potentials in (10) of
all cliques in the field) vs. the number of iterations of ICM
implementation from [3], when £ € {1.5, 2.5, 3.5}. The graph
indicates that 4-6 iterations are sufficient for convergence for
this range of f, as suggested in [3]. Hence, we used 6
iterations in all our experiments. Also note that as f increases,
the number of iterations needed for convergence is reduced.

ICM Optimization: Garden

—+—beta=1.5
14 ——beta=2.5||
—+—beta=3.5

Posterori energy
1
[=)
(5]

Iterations

Figure 8: Posteriori energy vs. iterations in MRF motion classification

In Fig. 9, we show the segmentation of frame #2 of Flower
Garden obtained after 6 iterations, where £ is set to 0, 1.5, and
3.5, from top to bottom, respectively. The segmentation with
GMC (left side of the figure) and without GMC as in [15]
(right side) are both shown for comparison. When £ = 0, no
spatial constraints are imposed on the MRF, so the
segmentation does not change from its initial layout obtained
by MV quantization (Fig. 7(b) and (d)). As f increases,
neighboring blocks are more likely to be in the same region, so
region boundaries end up being more compact. Our
experiments indicate that f = 3.5 provides a good balance
between boundary compactness and segmentation accuracy, so
we use this value in the remaining experiments.

In Fig. 10(a), we illustrate the final MRF segmentation of
frame #2 of Flower Garden (after merging blocks from small
regions to neighboring regions), and in Fig. 10(b) we show the
boundary refinement results. The corresponding results (MRF
segmentation and boundary refinement) from [15] are shown
in Fig. 10 (c) and (d) for comparison. As we can see, the
proposed segmentation correctly separates the foreground
from the background, while the algorithm from [15], which
does not include GMC, over-segments the background into
several regions due to global motion bias.

=35

Figure 9: [Left]: MRF segmentation with proposed coarse segmentation
incorporating GMC, [Right]: MRF segmentation from [15]. Top row to
bottom row, the MRF segmentation with parameter £ set to {0, 1.5, 3.5}.

We also show the results from four other state-of-the-art
segmentation algorithms: [2], [4], [7], and [11], for
comparison. Fig. 10(e) shows the segmentation result using the
algorithm from [2], which is image-based, and does not use
motion information, thus resulting in over-segmentation. This
problem has been mitigated to some extent by the method
proposed in [11], shown in Fig. 10(f), which utilizes k-means
clustering and motion consistency. However, the scene is still
over-segmented. Fig. 10(g) shows the result of using the
method from [4], which is based on two-class MRF
(background and foreground) without GMC. The main
problem here is the accuracy, since part of the background
(garden) is included in the same segment as the foreground
(tree trunk). Finally, Fig. 10(h) shows the segmentation result
from [7], which is a MV-based approach using the Expectation
Maximization algorithm on a dense MV field. This method
ends up with the same number of moving regions as [15], and
segments the background scene into multiple regions due to its
lack of GMC. Also, the segmented moving regions are less
compact than in our case, and some are not even spatially
connected.

Finally, in Fig. 11 we demonstrate the final boundary-
refined segmentation results of our method for several other
sequences: Table Tennis, Stefan, Coastguard, and Hall
Monitor, where both Stefan and Coastguard involve a moving
camera, while Hall Monitor and the initial portion of Table
Tennis have a static camera.
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(g) (h)

Figure 10: (a): Coarse MRF segmentation, (b):boundary refinement., (c)
Coarse MRF segmentation from [3], (d) boundary refinement from [3], (e, f,
g, h): segmentation result from Ref. [2], [11], [4] and [7], respectively.

D. Quantitative evaluation

In addition to the above visual results, we provide a
quantitative evaluation of our method, using the manually
segmented sequences Stefan CIF and Table Tennis SIF
(available at: http://www.sfu.ca/~ibajic/datasets.html). We test
how accurately the foreground moving regions (player’s hand
and ball in Table Tennis, tennis player in Stefan) can be
segmented. By counting the pixels correctly identified as
moving region pixels (True Positives —TP), the pixels correctly
identified as the background (True Negatives — TN), the pixels
wrongly identified as moving region pixels (False Positives —
FP), and the pixels wrongly identified as background (False
Negatives — FN), we can compute several quantities for
assessing segmentation accuracy, such as Precision, Recall,
and F-measure as the harmonic mean of Precision and Recall
[15]. In terms of these quantities, we compare our proposed
method to the method from [4], which is a recent work
addressing MRF motion segmentation in block-based
compressed video. In our implementation, an 8x8 uniformly
sampled MV field is utilized.

(¢) (d)

Figure 11: Final segmentation results, (a): Sequence Table Tennis (frame # 5),
(b): Stefan (frame #24), (c): Coastguard (frame # 40), (d): Hall Monitor
(frame # 50).

The top and middle rows in Figs. 12-13 show the segmented
objects in Table Tennis and Stefan, extracted by our method
and the one from [4]. TP, TN, FP, and FN pixels are shown in
different colors. The last row in both figures shows the
quantitative measures for the initial portion of the two
sequences, while their averages are listed in Table I. From
these figures, we see that the proposed method performs much
better in segmenting moving regions than the method from [4].
This is especially true in Stefan where, due to the global
motion, a large portion of background is inappropriately
classified as part of the foreground by the method from [4].
For Table Tennis, whose initial portion involves a static
camera, the two methods perform similarly. Nonetheless, our
boundary refinement yields more accurate boundaries, which
again leads to higher precision (0.91 vs. 0.79).

Note that the precision curve of our method in Stefan
appears lower in first 15 frames, and then rises from frame 16
onwards. The reason is that the player does not move much in
the first 15 frames, so he gets classified as the background.
However, once his distinct motion starts at frame 16, our
segmentation approach picks it up quite easily and separates it
rather well from the background. By contrast, the method from
[4] erroneously includes large portions of background into its
estimate of foreground (shown as blue pixels in Fig. 12), and
yields very low precision on this sequence. Another
observation from Fig. 12 is that the region boundary (tennis
player) is not well localized in comparison to the manually
segmented ground truth, because the moving region represents
a rather small and flexible object. Hence, coarse segmentation
from block-based MVs may miss certain small parts of this
object (e.g., head or arms) that do not completely fill an 8x8
block. This problem is common to all block-based coarse
segmentation methods.

Finally, note that our segmentation method has a reasonably
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low complexity. On a standard desktop PC with Intel Pentium
CPU at 3.0 GHz, with 2 GB of RAM, on a CIF sequence,
motion segmentation (in MATLAB) takes on average about
105 ms per frame, and boundary refinement (in C/C++) takes
about 20 ms.

V. CONCLUSIONS

In this paper, we have presented an unsupervised moving
region segmentation algorithm for compressed video. The
framework consists of camera motion removal through global
motion compensation, followed by MRF-based coarse
segmentation and boundary refinement using color and edge
information. The proposed method delivers a good balance
between accuracy and complexity, and compares favorably
against other state-of-the-art segmentation methods.

.TPDTN.FP.FN

¥

Stefan - the proposed Stefan - Zeng et. al. [4]
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Figure 12: Quantitative evaluation — Stefan. [Top]: the proposed method,
frame #17, #26, #31, #37, from left to right, [Middle]: corresponding
segmentation using method from [4], [Bottom]: the quantitative evaluation
for the proposed method (left) and method from [4] (right).

Tennis - Zeng et al, [4]
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Figure 13: Quantitative evaluation — Table Tennis. [Top]: the proposed
method, frame #1, #3, #5, #7, from left to right, [Middle]: corresponding
segmentation using the method from [4], [Bottom]: the quantitative
evaluation for the proposed method (left) and the method from [4] (right).

TABLEI
AVERAGE PRECISION, RECALL, AND F-MEASURE.

Page 10 of 32

S Table Tennis Stefan
equence
Proposed Ref. [4] Proposed Ref. [4]
Precision 0.91 0.79 0.39 0.06
Recall 0.67 0.69 0.97 0.96
F-measure 0.75 0.72 0.49 0.11
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