Diffusion of Photons in Scattering Media

- Light entering scattering medium breaks into different types
- 1 Photons may be absorbed
- 2 Photons may be highly scattered (many paths) until nearly uniform
- Scattered photons lose almost all information of internal structure
- 3 Photons may travel without scattering: called Ballistic photon
- If photon scattered: but nearly ballistic path called quasi-ballistic
- 4 Photons may be reflected back from the medium

Optical Tomography (OT)

- OT technique for highly scattering media
- Assume the Beer-Lambert Law
 - Light scattering grows exponentially
 Tissue is forward scattering (g ~ 0.9)

 $I_{out} = I_{in} \exp\left[-\left(\mu_a + \mu_s\right)d\right] \qquad \mu_{seff} = \mu_s (1-g)$

- Scattering Ratio (SR) for the test samples
 - Scattered to ballistic/quasi-ballistic photon ratio
 Reduced scattering ratio is measured
- This work presents diode sources for optical imaging
 - Experimented with 670 nm (red) diode
 Will implement 808 nm and 975 nm diode lasers
- Applied to scattering fluids and animal tissue

Existing OT Methods

- Three OT methods:
 - Time of flight (Time Domain)
 - Phase Coherence Domain
 - Angular Domain Imaging
- Time Domain
 - Based on path length
 - Shortest path photons arrive first
- Launch very short pulse
 - Few Femtosec
 - Ballistic arrive first
 - Quasi ballistic next
 - Scattered last
- Use high speed shutter to select

Existing OT Methods

- This work uses Angular Domain Imaging (ADI)
 - Laser source aligned to small acceptance angle angular filters
 - Ballistic/quasi-ballistic light deviates only small angles
 - o Most scattered light outside acceptance angle

ADI and Angular Filters

- Use high aspect ratio micromachined tunnels
 - 51 µm diameter x 1 cm length
 - Tunnels spaced on 102 µm centers
 - Aspect ratio ~200:1
 - Acceptance angle ~0.29°
- Use test phantoms in 5 cm scattering fluid
 - Use lines/spaces (204, 153, 102, 51 µm)
- Experimentally calibrate scattering solution
 - Water with partially skimmed milk
 SR increases with milk concentration
- Angular filter images one line
 - Sample is vertically stepped (52 µm)
 - Lines assembled into 2-D image

670 nm Laser Diode system

- New work with 670 nm diode laser
 - Low cost, low power, highly portable
 - Many diode wavelengths available
- Problem: asymmetric beam divergence
 - Typical: 23° (V) and 8° (H)
 - High-power aspheric lens (f = 4.5 mm)
 Collimates vertical, overcorrects horizontal
- Corrected by cylindrical lens system
 - o Beam expander collimates horizontally

ADI setup with 670nm Laser Diode

- Diode laser with aspheric and cylindrical lens system
- Produces 5 cm wide beam x 3.5 mm high line
- Test phantoms and scattering sample as before
 - Vertical stage raises scattering sample
- Angular filter aligned to laser and CMOS camera

Argon vs. 670 nm @ SR = 10⁶:1

- Contrast decreased for both
- Results at 670 nm are on par or better
 - o Improvement due to narrower line of illumination (3.5 mm vs. 25 mm)
 - o Lines and gaps of 204 μm and 153 μm individually resolvable
 - o Detectable 102 μm and 51 μm test phantoms

SR = 10⁶:1 with 488-514 nm (Argon) (2.5 cm diameter beam)

SR = 10^{6} :1 with 670 nm diode laser (2.3 cm x 3.5 mm line)

670 nm @ SR = 10⁷:1 with image processing

- Successful results at SR = 10^7 :1 (μ_{seff} = 3.22 cm⁻¹) @ 670 nm
 - More background scattered light than 10⁶:1
 - Digital image processing can improve contrast
 - Further improvement requires new optics for narrower 670 nm line

Wedge subtraction at max SR: 4.5x10⁸:1

- Maximum SR = 4.5×10^8 :1 for current setup
 - Original image not detectable
 - DSP is not enhancing enough
- Wedge subtraction with higher contrast

Original image

Wedge subtraction: Combined image

Background scattered light image

Wedge subtraction: DSP enhanced

Only DSP enhanced

