Plasma Etching Rates & Gases
e (Gas ratios affects etch rate & etch ratios to resist/substrate

Table 4 Etch Rates and Selectivities for Dry Etching
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Fig.32 SEM micrographs illustrating the results of highly anisotropic etching in reactive
plasmas. (a) Plasma-eiched pattern in polysilicon film. (b) Plasma-eiched pattern in Al-
0.7% Cu film. (c) Reactive-ion-etched pattern in a silicon substrate.® =



Development of Sidewalls Passivating Films
e Sidewalls get inert species deposited on them
e Creates passivating (non reacting) layers
e Controls how vertical the sidewalls area

Figure 11-10 Schematic diagram of a high pressure
Hihatropie etch showing the formation of sidewall

M ivating films,



Plasma Etch Station
e CVD and Plasma Etch stations identical
¢ Only difference in chemistry used
e Can have same system do both with plate change
e However if use Chlorine chemistry requires stainless steel
e Much more expensive

ng"ﬁ 11-13 Photograph of a computer controlled, dual chamber. parallel plate plasma cich sy stem
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e Done at low pressures
e Uses Argon so no reaction

Ion Milling

e Simple sputtering type process

e Relatively slow process

e Problems: Tappered edges, photoresist reposition
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Reactive Ion Etching
e [f increase electrode/substrate voltage get ion bombardment
e Called Reactive Ion etchings

Improves Etch Anisotropy in 3 ways

e Sputtering removal of material
e Heating/bond breaking enhances chemical reactions
e Sputtering removal of protective residues

& redeposition on sidewalls

(a) (b)

Residue

® lon

Resist

() Gas molecule

@® Substrate atom

Substrate -~_h_,/___"_
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Figure 6-11 Ways in which anisotropic etching is enhanced by ion bombardment in a plasma. (a)
Sputtering: physical removal of substrate ions. (&) Heating and bond loosening accelerate chemical reaction
with substrate. (¢) Sputtering of protective residues in bombarded area enhances reaction rate.



Example XeF, RIE of Si
e Change in flow rate significantly affects etch rate
e Sideways etching is slower, without ion bombardment
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Fig. 29 Silicon etch rate versus X¢F, flow rate with and without 1-keV Ne* bombardment.
Insert shows the ion-assisted reaction in the vertical direction.**



RIE Reactor Types
e Parallel Plate ( 1 - 4 at a time)
e Hexode: does many at time

il

Vacuum

Gas
inlet

Vacuum

Figure 11-17 Top and side views of parallel plate and hexode batch RIE
systems. Typical conditions for either 1s 30 mtorr and 5 KW/m-.



Damaged Surface Due to RIE
e Deposit many small layers
e Reaction with Photoresists and etch material
e cg When etching oxide down to silicon
e Fluorocarbons, Si-O, Si-Carbide, Si damage & H penetration
e Need to remove damage with Anneals at end.

plasma (lons,
snergetic neutrals,

radicals, etc.)
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Agure 11-20 A cross section schematic of the results of
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Relationship between Plasma Etching and RIE
e Pressure higher for Plasma
e RIE excitation and directionality higher
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Fig. 2 The dry-etching spectrum.



Variables in Plasma Etching/RIE
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Barrel Reactors

e Often used for resist stripping with O plasma
e Called Ashing

Reactive Gas

R.F. Coil to Induce Plasma



Post Fabrication Operations
¢ Die functionally tested e
e Use an automatic prober
e Probe card puts needles on every pad
Functional tester tests device
e Difficult to test wafer at full speed
e Bad die marked
e Wafer sawed up & die separated

Extracting the good ones. & dee pocker
uses suction 1o lift only the good
chiges frcemy the wealer. The maching is
gusdledd i iy selections by the Cor
paatet, whach use= the waier r
fenti penerated by the testing sequenicd

Probing for flaws. A finished wafer,
held on a chuck by suction, is
inspected automatically. Probes reach
out like tiny fingers from the test
imtrument that surmounds each chip in
turn. Each probe, doiven by a com-
puter that feeds signals and recards
responses, louches a different comtac
pad on the chip. The rainbow colors
are an optical efect created by light
refracted by the thin “passivaten™
layer of silicon dioxide—glass—that
coats each chip.




Basic Yield Models

e Wafers have an average defect A density/area
e Yield is number of chips that work
¢ Yield 3% on early runs, 80-90% mature runs
e Wafer production cost does not vary with yield
e Typical production costs

$1000 per wafer (1 micon 2 metal CMOS)

$3500 per wafer (0.13 micon 5 metal CMOS)
e But yield determines profit from run
e Initial new complex design may get only 1 chip /wafer
e Often price device at the initial yield
¢ As yield increase profit increase as production cost fixed
e cg Current Max speed Pentium ~$1400 yield 1-2 per wafer

g e]el”
After Sort After Die Separation

Figure 18.6 Die separation to
plate.

Plated Die



Simple Yield modeling
e Generally assume point defects
1e single small defect point
e Map defect distribution at probe time.
e Simple model assumes Poisson Distribution of x defects/die
¢ Yield of x = 0 defects for chip area S is

Y(O,S):exp(—KS)

e Yield is always less than 1
¢ Note yield drops as chip area increases
e Eg if area S doubles then yield decreases by square

Y(0,2S ) = exp(—128) = [exp(-=AS)] =¥(0,S )?

e cg: Y(0,5)=0.5, Y(0,25)=0.25 ie now 75% of wafer fails
e But some chips have more than one defect

e Yield not that simple often

e Process unevenness: Center and edges poor yield



Clustering of Defects
e Get clustering of defects - defects tend to be close together
e Why: simple statisical clusters
¢ Also what causes one defect causes others
e Studies show this follows a different distribution
e Result is Negative Binomial Distribution probability

% X
revay o)
P(X,S)— X./F(O(c) ( X J)ﬁac

I+—

a'C

Where P = probability of x defects per area S,
A = defect density per chip
o, = the cluster coefficient.



Clustering of Defects
e Cluster coefficients start at infinity random Poisson distribution

¢ o = | 1s moderate clustering

e 0. = 0.1 means most defects near each other

ing

higher yields for more cluster

1S gives

e Th

ips have many defects

some ch
¢ [_caves more with no defects at given defect density/area

e Reason
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Figure 4.6 Defect Map Example (A=0.1)



Determining Yield Problems

e Use chip and test devices
e Use chip electrical test for some defect identification

But difficult to isolate that way
¢ Visual inspection of defect areas also
e Most wafers have test chips on them
e Check yield of test devices: inserted on wafer
e Typical test devices
e sheet resistance all metals, poly, diffusions
¢ Via and contact chains:

checks connections one level to another

e Step coverage devices: conductors over steps
e level to level 1solation
e CV diodes to measure threshold
¢ Transistors characteristics
e Ring Oscillators (chains of odd number of inverters)

SRS

FIGLRE 1



Test Structures on Wafers
e Wafers have areas of test structures
e Designed to characterize the process
e Lab wafer mostly test structures
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Alignment Cross Structure
¢ Note the nesting of light and dark field structures

e Often change alignment structures when reach too may levels
otherwise grows to large

e Always align relative to critical level (usually first level)

/‘”-‘an meén + Struc fﬂr‘E



Kalvin 4 Point Probs
e Used to measure sheet resistance for all layers
e Outer two current, inner two voltage
e [ab ones 7 squares in size

f(E.Irm'n cheel resis lt‘.'ﬂ{(



InterDigitated Combs
e Test for shorts between 2 sides of same level at minimum spacing




Line Snakes over Etched Groves
e Check for breaks as steps over etchs/structures (ie when open)
e Also shorts due to conductor along edges (ie low resistance)
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Other Common Tests
e CV measurements of oxide
¢ Diode characteristics: turn on voltage, reverse current,
breakdown voltage, forward resistance

e MOS Transistor Characteristics: Threshold voltage, impedance
IV characteristics (transistor curves)
¢ Bipolar Transistors (if any): IV of BC, BE, EC &
Transistor Curves and
¢ Via and contact cut chairs (via/contact resistance & opens)
e Ring oscillators: feed output of odd number of inverters into input
e Creates oscillator at max transistor speed.
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Wafer Scribing and Cutting
e Wafer coated to protect die
¢ Oldest method: diamond tip scribe along d planes
bend wafer and snap on planes: loss of die
e Diamond saw cuts in channels
problem: chips from cut can damage die
e Laser beam cutting: newest
less damage, but more expensive at present
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Fig. 6,10 Dicing of ICs: (a) diamond saw; (b) diamond scribe; (c) laser scribing



Packaging Chips
e DIP: Dual Inline Pin: up to 64 pins now
e More complex devices mean more complex packages
e Most expensive: Ceramic package with cover
used in test samples, small runs
e Sealed ceramic: best for high power
e Molded Plastic: low cost, lower power

Lid

@/

Premade CeramicC

CERDIP

Figure 18.17 DIP packages.
Molded Plastic



More Advanced Packages for lower pin count
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FIGURE 3
A variety of package designs. Not all ceramic package varieties are shown. (Courtesy of
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High Pin Count and Density Packages
¢ Quad packages: pins on 4 sides
¢ Pin Grid Arrays (PGA): matrix of pins
e Surface mount: put directly on PC board

Figure 18.20 Quad package.

FIGURE 20
Refractory multilaver-ceramic pin-grid-array (PGA) package. (Courtesy of Mitsubishi

Elecrric Corp.)



10 and Package
e Almost all large count packages now Pin Grid Arrays

ATTACHMENT
METHOD
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FIGURE 4
IC package types as a function of I/Os and method of attachment to PWBs.
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