Diffusion and Ion implantation

Reference: Chapter 4 Jaeger or Chapter 3 Ruska

- N & P Dopants determine the resistivity of material
- Note N lower resistivity than p: due to higher carrier mobility
- Near linear relationship below 0.2 ohm-cm (\(\sim 10^{16} \text{ cm}^{-3}\))
- Above that high doping effects
- At \(10^{19}\) get significant degeneracy effects
 quantum effects become important

Fig. 4.8 Room-temperature resistivity in \(n\)- and \(p\)-type silicon as a function of impurity concentration. (Note that these curves are valid for either donor or acceptor impurities but not for compensated material containing both types of impurities.) Copyright 1987 Addison-Wesley Publishing Company. Reprinted with permission from ref. [3].
Diffusion and Dopant Location

- Dopant Atoms Substitutional: activated
- Interstitial dopant: pushes out Si
- True Interstitial dopant atoms: not activated

Fig. 4.1 Atomic diffusion in a two-dimensional lattice. (a) Substitutional diffusion, in which the impurity moves among vacancies in the lattice; (b) interstitialcy mechanism, in which the impurity atom replaces a silicon atom in the lattice, and the silicon atom is displaced to an interstitial site; (c) interstitial diffusion, in which impurity atoms do not replace atoms in the crystal lattice.
Diffusion and Ion implantation
Reference: Chapter 4 Jaeger or Chapter 3 Ruska

Diffusion

• Diffusion flow:

Fick's First Law

\[J = -D \frac{\partial N(x,t)}{\partial x} = -DN(x,t) \]

Where:
N = Impurity concentration: atoms/cc
J = particle flux
D = diffusion coefficient

Continuity Equation

• Continuity Equation: **Fick's Second Law**

\[\frac{\partial N}{\partial t} = -\frac{\partial J}{\partial x} = \frac{\partial}{\partial x} \left(D \frac{\partial N(x,t)}{\partial x} \right) = D \frac{\partial^2 N(x,t)}{\partial x^2} = D \nabla^2 N \]

Where: t = time
• This is the Diffusion differential equation
• Assumption is that D is constant with x
Diffusion under Concentration Gradient

- Dopant moves from heavy concentration area to lower concentration area
- Reason: simple statistics of motion: More dopant in heavy area
- Hence more heading in lower dopant direction

![Diagram of diffusion under concentration gradient](image)

Figure 3-4 Diffusion under a concentration gradient: (a) two slices with different concentrations. (b) Focus on plane P_1 showing change in concentration. (c) Focus on slice 2 showing flux.
Diffusion Solutions

- Solutions depend on Boundary Conditions
- Solutions in terms of Dt (Diffusion coef x time)
- Two typical cases:

Constant Source Diffusion

- Constant source one common condition: ie unlimited dopant

\[N(x,t) = N_0 \text{ erfc} \left(\frac{x}{2 \sqrt{Dt}} \right) \]

- Total impurity concentration

\[Q = \int_0^\infty N(x,t) \, dx = 2N_0 \sqrt{\frac{Dt}{\pi}} \]

Limited Source Diffusion

- Total Dopant is fixed

\[N(x,t) = \left[\frac{Q}{\sqrt{\pi} \, Dt} \right] \exp \left[- \left(\frac{x}{2 \sqrt{Dt}} \right)^2 \right] \]
Constant Source Diffusion Solutions

- Constant source one common condition: ie unlimited dopant
- Surface concentration is fixed for all diffusion time

\[
N(x,t) = N_0 \text{erfc} \left(\frac{x}{2 \sqrt{Dt}} \right)
\]

- Note this involves the Complementary Error Function
- Total impurity concentration

\[
Q = \int_{0}^{\infty} N(x,t) \, dx = 2N_0 \sqrt{\frac{Dt}{\pi}}
\]

Fig. 4.2 A constant-source diffusion results in a complementary error function impurity distribution. The surface concentration \(N_0\) remains constant and the diffusion moves deeper into the silicon wafer as the \(Dt\) product increases. \(Dt\) can change as a result of increasing diffusion time, increasing diffusion temperature, or a combination of both.
Useful Error Function $erfc(x)$ Approximations

- Error function $erf(x)$, Complementary Error Function $erfc(x)$ are

\[
erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-s^2} ds
\]

\[
erfc(x) = 1 - erf(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-s^2} ds
\]

- $erf(x)$ hard to find but easy to approximate with

\[
erf(x) = 1 - \left(a_1 t + a_2 t^2 + a_3 t^3\right) e^{-x^2}
\]

\[
t = \frac{1}{1 + px} \quad \text{where} \quad p = 0.47047
\]

\[
a_1 = 0.3480242, \quad a_2 = -0.0958798, \quad a_3 = 0.7478556
\]

- See Abramowitz & Segun (Handbook of Mathematical Functions)
- Error on this is $< 2.5 \times 10^{-5}$ for all x
- We are using complementary error function

\[
erfc(x) = 1 - erf(x) \quad erf(0) = 1 \quad erf(\infty) = 0
\]

- Approximation has $<2\%$ error for $x < 5.5$
- For $x > 5.5$ use asymptotic approximation

\[
erfc(x) \xrightarrow{x \to \infty} \frac{e^{-x^2}}{x\sqrt{\pi}} \left[1 - \frac{1}{2x^2}\right]
\]

- Excel & Quatropro spreadsheet use $=erf(x)$ and $=erfc(x)$ but become inaccurate for $x > 5.4$ – then use asymptotic
Limited Source Diffusion Solutions

- Where total dopant is fixed
- Surface dopant falls with time while dopant goes deeper

\[
N(x, t) = \left[\frac{Q}{\sqrt{\pi Dt}} \right] \exp \left[-\left(\frac{x}{2\sqrt{Dt}} \right)^2 \right]
\]

- Often do constant source first (high concentration very shallow)
- Then drive in deeper using limited source

Fig. 4.3 A Gaussian distribution results from a limited-source diffusion. As the \(Dt\) product increases, the diffusion front moves more deeply into the wafer and the surface concentration decreases. The area under each of the three curves is the same.
Comparison of Normalized Gaussian & ERFC

• erfc(x) much steeper than Gaussian

\[x = \frac{\bar{x}}{2\sqrt{D\tau}} \]

Normalized distance from surface, \(\bar{x} \)

Fig. 4.4 A graph comparing the Gaussian and complementary error function (erfc) profiles. We will use this curve to evaluate the erfc and its inverse.
Diffusion Constants in Si

- For common dopants: Change with temperature
- Follows Arrhenius Formula

\[D = D_0 \exp \left(- \frac{E_A}{kT} \right) \]

Fig. 4.5 Diffusion constants in silicon for (a) substitutional diffusers (above) and (b) interstitial diffusers (next page)
Diffusion Constants in Si

- High diffusion coef D for poisons: Cu, Au, Fe & Li

\[D = D_0 \exp \left(-\frac{E_A}{kT} \right) \]

Table 4.1 Typical Diffusion Coefficient Values for a Number of Impurities.

<table>
<thead>
<tr>
<th>Element</th>
<th>(D_0) (cm(^2)/sec)</th>
<th>(E_A) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>10.5</td>
<td>3.69</td>
</tr>
<tr>
<td>Al</td>
<td>8.00</td>
<td>3.47</td>
</tr>
<tr>
<td>Ga</td>
<td>3.60</td>
<td>3.51</td>
</tr>
<tr>
<td>In</td>
<td>16.5</td>
<td>3.90</td>
</tr>
<tr>
<td>P</td>
<td>10.5</td>
<td>3.69</td>
</tr>
<tr>
<td>As</td>
<td>0.32</td>
<td>3.56</td>
</tr>
<tr>
<td>Sb</td>
<td>5.60</td>
<td>3.95</td>
</tr>
</tbody>
</table>
Formation of PN Junction

- When diffusion falls below background dopant
- Must subtract background doping to get carriers:
 \[n = N_A - N_D = N_A - N_B \]

Fig. 4.7 Formation of a pn junction by diffusion. (a) An example of a p-type Gaussian diffusion into a uniformly doped n-type wafer; (b) net impurity concentration in the wafer. The metallurgical junction occurs at the point \(x = x_j \), where the net concentration is zero. The material is converted to p-type to the left of \(x_j \) and remains n-type to the right of \(x_j \).
Limits to Diffusion: Solid Solubility

- Sets upper limit to diffusion
- Silicon participates out dopant at higher levels

![Solid solubilities of various impurities in silicon.](Reference 7. Reprinted with permission from the Bell System Technical Journal. Copyright 1960, AT&T.)
Common Process: Predeposition & Drive in

- Use diffusion for thin layer
- Then drive in dopant from limited source at surface

Fig. 4.9 Calculated boron impurity profiles for Example 4.2. (a) Following the predeposition step at 900 °C for 15 min; (b) following a subsequent 5-hr drive-in step at 1100 °C. The final junction depth is 2.77 μm with a surface concentration of 1.1×10^{18}/cm3. The initial profile approximates an impulse.
Dopant And Masks

- Commonly use patterned layer (oxide mostly) as mask
- Hence grow oxide, pattern with resist, etch oxide, strip for mask
- Then diffuse dopant at high temp (too high for resist)
- Dopant diffuses under mask

![Diagram showing diffusion](image)

Figure 3-8 Pattern of diffusion near a masking window. (a) View of the window, showing one- and multidimensional diffusion zones. (b) Calculated two-dimensional diffusion profiles near a window. (Figure...
Dopant Diffusion Under Mask

- Under mask diffusion depends on type: Constant or limited source

Fig. 4.10 Normalized two-dimensional Gaussian and complementary error function diffusions near the edge of a window in the barrier layer. Copyright 1965 by International Business Machines Corporation; reprinted with permission from ref. [4].
Common Dopant Sources

- Often have solid, liquid and gaseous sources
- Different materials for each source type

<table>
<thead>
<tr>
<th>Type</th>
<th>Element</th>
<th>Compound Name</th>
<th>Formula</th>
<th>State</th>
<th>Diffusion Reactions*</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Antimony</td>
<td>Antimony Trioxide</td>
<td>Sb₂O₃</td>
<td>Solid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Arsenic Trioxide</td>
<td>As₂O₃</td>
<td>Solid</td>
<td>2AsH₃ + 3O₂ → As₂O₃ + 3H₂O</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Arsine</td>
<td>AsH₃</td>
<td>Gas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phosphorus</td>
<td>Phosphorus Oxchloride</td>
<td>POCl₃</td>
<td>Liquid</td>
<td>4POCl₃ + 3O₂ → 2P₂O₅ + 6Cl₂</td>
</tr>
<tr>
<td></td>
<td>Phosphorus</td>
<td>Phosphorus Pentoxide</td>
<td>P₂O₅</td>
<td>Solid</td>
<td>2PH₃ + 4O₂ → P₂O₅ + 3H₂O</td>
</tr>
<tr>
<td></td>
<td>Phosphorus</td>
<td>Phosphine</td>
<td>PH₃</td>
<td>Gas</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Boron</td>
<td>Boron Tribromide</td>
<td>BBr₃</td>
<td>Liquid</td>
<td>4BBr₃ + 3O₂ → 2B₂O₃ + 6Br₂</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Boron Trioxide</td>
<td>B₂O₃</td>
<td>Solid</td>
<td>B₂H₆ + 3O₂ → B₂O₃ + 3H₂O</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Diborane</td>
<td>B₂H₆</td>
<td>Gas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Boron Trichloride</td>
<td>BCl₃</td>
<td>Gas</td>
<td>BCl₃ + 3H₂ → 2B + 6HCl</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Boron Nitride</td>
<td>BN</td>
<td>Solid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gold</td>
<td>Gold</td>
<td>Au</td>
<td>Solid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lithium</td>
<td>Li</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Ni</td>
<td></td>
<td></td>
<td>Undesirable impurities from contamination</td>
</tr>
<tr>
<td></td>
<td>Sodium</td>
<td>Na</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Only selected diffusion reactions are listed

Figure 11.18 Deposition source table.
Furnace Seceptor Sources

- Boron Nitride wafer seseptors, between wafers
- Grow layer of Boron oxide on surface (soft)
- In furnace oxide releases Boron to wafers
- Boron dopant on surface of wafers
- Note wafers front faces seceptor
- Easy to do but disks change over time

Fig. 13 Stacking pattern for solid disc type dopants in a diffusion furnace. Courtesy of Standard Oil Engineered Materials.
Gas Dopant Sources

- Dopant containing gas flows over wafer
- Usually have a carrier gas (nitrogen)
- Dangerous gas product output

Fig. 4.22 Open-furnace-tube diffusion systems. (a) Solid source in a platinum source boat in the rear of diffusion tube; (b) liquid-source system with carrier gas passing through a bubbler; (c) diffusion system using gaseous impurity sources.
Bubbler Dopant Source

- Use gas or liquid dopant in bubbler to furnace

Figure 3-9 Vaporizer or "bubbler" for use with liquid sources.
Safety and Dopant Sources

- Common sources very deadly
- Measure exposure limit for 8 hours in parts per million (ppm)

<table>
<thead>
<tr>
<th>Source</th>
<th>8-hour exposure level (ppm)</th>
<th>Life-threatening exposure</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diborane (B₂H₆)</td>
<td>0.10</td>
<td>160 ppm for 15 min</td>
<td>Colorless, sickly sweet, extremely toxic, flammable.</td>
</tr>
<tr>
<td>Phosphine (PH₃)</td>
<td>0.30</td>
<td>400 ppm for 30 min</td>
<td>Colorless, decaying fish odor, extremely toxic, flammable.</td>
</tr>
<tr>
<td>Arsine (AsH₃)</td>
<td>0.05</td>
<td>6–15 ppm for 30 min</td>
<td>Colorless, garlic odor, extremely toxic. A few minutes’ exposure to 2000 ppm can be lethal.</td>
</tr>
<tr>
<td>Silane (SiH₄)</td>
<td>0.50</td>
<td>Unknown</td>
<td>Repulsive odor, burns in air, explosive, poorly understood.</td>
</tr>
<tr>
<td>Dichlorosilane (SiH₂Cl₂)</td>
<td>5.00</td>
<td>...</td>
<td>Colorless, flammable, toxic. Irritating odor provides adequate warning for voluntary withdrawal from contaminated areas.</td>
</tr>
</tbody>
</table>

Data from the 1979 American Conference of Governmental Hygienists (ACGIH).
Uniformity of Dopant Distribution

- Variation with Vapour source Dopants
- Doping level varies with gas flow
- Note variation with flow direction

Figure 3-14 Doping patterns of phosphine under different flow conditions. Substrates were loaded parallel to the flow; arrows show flow direction. (Reference 22. Reprinted with permission of Solid State Technology, published by Technical Publishing, a company of Dun & Bradstreet.)
Spin-on Glass Dopants

- Glasses with dopant dissolved in solvent
- Spin on like photoresist
- Viscosity and spin speed control thickness
- Usually diluted with ethanol
- Types available:
 - As (arsenosilica)
 - B (Borosilica)
 - P (phosphorosilica)
 - Sb (antimoysilica)
- After spin on bake: 250 °C, 15 min.
- Baking densifies film, removes water
- Diffusion proceeds as with constant source diffusion

<table>
<thead>
<tr>
<th>Dopant</th>
<th>Gaseous Source</th>
<th>Liquid Source</th>
<th>Solid Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>AsH₃, AsF₃</td>
<td>arsenosilica<sup>§</sup></td>
<td>AlAsO₄<sup>d</sup></td>
</tr>
<tr>
<td>P</td>
<td>PH₃, PF₃</td>
<td>POCl₃, phosphosilica<sup>§</sup></td>
<td>NH₄H₂PO₄<sup>d</sup>, (NH₄)₂H₂PO₄<sup>d</sup></td>
</tr>
<tr>
<td>B</td>
<td>B₂H₆, BF₃, BCl₃</td>
<td>BBr₃, (CH₃O)₃Bborosilica<sup>§</sup></td>
<td>BN<sup>d</sup></td>
</tr>
<tr>
<td>Sb</td>
<td>SbH₃<sup>l</sup></td>
<td>Sb₃Cl₅, antimonysilica<sup>§</sup></td>
<td>Sb₂O₃, Sb₂O₄</td>
</tr>
</tbody>
</table>

^d = disc source ^s = spin on source ⁱ = ion implantation source only
Angle Lapping: Stain Measurement of Junction thickness

- Junction depth important process
- Typically put in a test wafer at that level
- Lap (grind away) wafer at shallow angle (< 2°)
- After lapping stain the wafer to identify dopant

Staining N type Junction

- Place drop of copper sulfate (CuSO₄) junction
- Illuminate junction with intense light (UV best)
 - causes junction to forward bias
- Voltage causes Cu⁺⁺ to plate on n side
Interference Technique for Grove

- Angle lap & stain wafers
- Place Glass slide over wafer
- Illuminate with single wavelength light laser or sodium vapour light
- Get optical interference creating lines at half wavelength
- Junction depth by counting lines

\[x_j = d \tan(\theta) = N \frac{\lambda}{2} \]

Fig. 4.12 Junction depth measurement by the angle-lap and stain method. Interference fringe lines are used to measure the distance \(d \), which is related to the junction depth using eq. (4.12).
Cylinder Grove of Junctions

- To get shallow angle use a rotating cylinder
- Grove & stain, then measure linear distance
- Depth calculated as below

\[x_j = \sqrt{(R^2 - b^2)} - \sqrt{(R^2 - a^2)} \] (4.10)

\[
(x + x_j) - x = \sqrt{R^2 - b^2} - \sqrt{R^2 - a^2} = R \left(\sqrt{1 - \left(\frac{b}{R}\right)^2} - \sqrt{1 - \left(\frac{a}{R}\right)^2} \right)
\]

\[
= R \left\{ \left(1 - \frac{1}{2} \frac{b^2}{R^2}\right) - \left(1 - \frac{1}{2} \frac{a^2}{R^2}\right) \right\} \quad \text{for } R > a, R > b
\]

\[
x_j = \frac{a^2 - b^2}{2R} = \frac{(a+b)(a-b)}{2R}
\]

Fig. 4.11 Junction-depth measurement by the groove-and-stain technique. The distances \(a\) and \(b\) are measured through a microscope, and the junction depth is calculated using eq. (4.11).
Sheet Resistance Definition

- Sheet resistance used for thin films or layers
- Measure resistance in Ohms per square

![Sheet resistance diagram]

\[R = \rho \frac{L}{A} \quad \rho = \frac{1}{\sigma} \quad \sigma = q (\mu_n n + \mu_p p) \]

Fig. 4.13 Resistance of a block of material having uniform resistivity. A uniform current distribution is entering the material perpendicular to the end of the block. The ratio of resistivity to thickness is called the *sheet resistance* of the material.

\[R = \left(\frac{\rho}{t} \right) \left(\frac{L}{W} \right) = R_s \left(\frac{L}{W} \right) \quad (4.14) \]

where \(R_s = \left(\frac{\rho}{t} \right) \) is called the *sheet resistance* of the layer of material.
Test Structures for Sheet Resistance

- Always create test structures to monitor process
- Typically place at edge of chip or special patterns in wafer
- Measure resistance sheet resistance Ohms/sq.
- Linear test structures

\[R_s = \frac{\bar{\rho}}{x_j} = \left[\int_0^{x_j} \sigma(x) \, dx \right]^{-1} \]

\[\frac{L}{W} = 7 \]

\[\frac{L}{W} = 7 \]

\[R = \rho \frac{L}{A} = \left(\frac{\rho}{l} \right) \left(\frac{L}{W} \right) = R_s \left(\frac{L}{W} \right) \]

Fig. 4.14 Top and side views of two diffused resistors of different physical size having equal values of resistance. Each resistor has a ratio \(L/W \) equal to 7 squares. Each end of the resistor contributes approximately 0.65 additional squares.
Estimating Resistance

- Often state size of structure in terms of squares
- Thus for metal contact to diffusion pads get

Fig. 4.15 Effective square contributions of various resistor end and corner configurations.
Surface Dopant Density vs Junction Depth

- Relationship between junction depth, Background N_B and surface dopant concentration N_0
- Different charts for Constant and Limited source, n & p type
4 Point Probe Sheet Resistance Measurement

- Use 2 current sources, separate from V measurement
- Thus do not get resistive loss in measurement
- Use on test wafer

Fig. 4.17 Four-point probe with probe spacing s used for direct measurement of bulk wafer resistivity and the sheet resistance of thin diffused layers. A known current is forced through the outer probes, and the voltage developed is measured across the inner probes. (See eqs. (4.16) through (4.18).)
Common Resistance Test Structure: Van der Pauw

- 4 point probe type test structure
- Measures sheet resistance

Fig. 4.19 A simple van der Pauw test structure used to measure the sheet resistance of a diffused layer. Sheet resistance is calculated using eq. (4.20).
Advanced Techniques for Dopant Measurement

TABLE 4
Commonly used diffusion profile measurement techniques

<table>
<thead>
<tr>
<th>Profile techniques</th>
<th>Characteristics</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance-Voltage</td>
<td>Carrier concentration at the edge of the depletion layer of a pn junction. Maximum total dopants 2×10^{12} atoms/cm2.</td>
<td>33</td>
</tr>
<tr>
<td>Differential conductance</td>
<td>Resistivity and Hall effect mobility of net electrically active species. Requires thin-layer removal, concentration range from 10^{20} to 10^{18} atoms/cm3.</td>
<td>34</td>
</tr>
<tr>
<td>Spreading resistance</td>
<td>Resistance on angle-beveled sample. Good for comparison with known profiles and quick semi quantitative evaluation. $x_j \geq 1$ μm.</td>
<td>35</td>
</tr>
<tr>
<td>SIMS</td>
<td>High sensitivity on many elements; for B and As detection limit is 5×10^{15}cm$^{-3}$. Capable of measuring total dopant profiles in 1000Å range. Needs standards.</td>
<td>36</td>
</tr>
<tr>
<td>Radioactive tracer analysis</td>
<td>Total concentration. Lower limit is 10^{15}cm$^{-3}$. Limited to radioactive elements with suitable half-life times: P, As, Sb, Na Cu, Au, etc.</td>
<td>37</td>
</tr>
<tr>
<td>Rutherford backscattering</td>
<td>Applicable only for elements heavier than Si.</td>
<td>38</td>
</tr>
<tr>
<td>Nuclear reaction</td>
<td>Measures total boron through 10B($n,^4$He)7Li, or 11B(p,α). Needs Van de Graaff generator.</td>
<td>39</td>
</tr>
</tbody>
</table>
Spreading Resistance

- Make angle grove
- Now use 4 point probe across width of grove
- Good for junctions greater than 1 microns
- Gives junction profiles

Fig. 20 Commercial spreading resistance measuring system. Courtesy of Solid State Measurements, Inc.
Secondary Ion Mass Spectrometry (SIMS)

- Bombard surface in vacuum with ions (1-20 KeV)
- Nocks atoms off surface (sputtering)
- Sputtered atoms collect in Mass Spectrometer
- Count the number of atoms with specific charge/mass ratio
 Si different than dopants
- Can sputter down depth of sample measuring ratios
- Get a depth versus dopant profile
- Can map the dopants vs position
- Expensive: about $500/$1000 per profile

Fig. 18 (a) Schematic diagram of a secondary ion mass spectrometer. (b) Typical SIMS depth profile for boron into boron-doped silicon.
Scanning Ion Microscopy (SMIS)

- Get 2D map of dopant profile
- Expensive: about $1000 per profile
- Great for complex 2D structures