ENSC 800: Your Oral Paper Presentation

- Check the allowed time
- Typical times 15 -20 minutes
- Give for a general audience in that field
 More detailed for the area
- Use the KISS principle: Keep It Simple Stupid

Answer these questions

- Who did this
- What was the problem you were looking at?
- Why is it important to solve that?
- How did you do the work? .
- When/where did you do this (if needed)?
- How does your results compare to others
- What did you do that was important/new?
- Always summarize your work

Title Page of Your Lecture

Title page

- Paper title,
- Name, coauthors
- University,
- Address, Contact info
- Supported by
- conference

Bimetallic Thermal Activated Films for Microfabrication, Photomasks and Data Storage

Yuqiang Tu, Glenn H. Chapman, Marinko V. Sarunic Simon Fraser University School of Engineering Science Burnaby, B.C. Canada V5A 1S6 PHONE: (604)-291-3814; FAX: (604)-291-4951; EMAIL: glennc@cs.sfu.ca

This work is supported by NSERC, BC Advance Systems Institute, Canadian Microelectronics Corp CREO Products Inc.

Structure of Your Lecture

- Title page
- Outline

Introduce the topic

- What is the problem you want to solve?
- Why is it important to solve that?

Present your Research

- How did you do the work?
- Give your experimental/simulations/analysis
- Analyze your results
- How does your results compare to others
- What did you do that was important/new?

Conclusion

- Always summarize your work
- Future work what should follow on your thesis

Page Layouts

- Font Size Typically 18 pt
- Do not make fonts smaller than 16 pt

 Maybe 14 in figures.

 This is 16 pt

 This is 14 pt

This is 12 pt This is 10 pt

- Use strong contrast with background
- With power point do not use too busy a background
- Make diagrams clear and readable
- When lecturing bring a pointer
- Always point to areas you are talking about
- Bring a marking pen so you can mark on the overheads
- Print photographs directly on laser printer.
- Have extra overheads to answer questions you expect
- Work from your paper reference parts of it.

13.4 nm Poynting Vector and Energy Deposition curves

- Bi/In resist absorbs well at 13.4 nm
- Reflection at boundry very small
- Poynting vector (P) energy flow slow declin
- Energy Depositon shows some cyclical values

P curve for 30 nm total thick film of Bi/In exposed with 13 nm EUV

Q curve for 30 nm total thick film of Bi/In exposed with 13 nm EUV

Tu, Chapman, Sarunic

Photonics West 2002

Cu Electroplating from Bi/In

• Deposition of 3 micron of copper

Optical Picture of Cu Lines

SEM Picture of Cu Square

SEM Picture of Cu Lines

Tu, Chapman, Sarunic

Photonics West 2002

Voice Projection and Presentation

- Talk to the audience not the screen
- Do not read notes
- Practice, Practice, Practice
- Dry Run your talk with supervisor and other graduate students
- Expect your talk to take 10% longer when given
- Project your voice throughout the room
- Look at your audience
- Voice Projection Workshop Learning and Instruction Development Centre 8 week course starting Sept. 23